Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55676 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_3$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ M_1M_2$, $ M_2M_3$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_3\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_3q_2q_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_3$ | . | -10 | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - 4*t^6.06 - 2*t^6.07 - t^6.11 + 4*t^6.4 + 3*t^6.43 + 2*t^6.46 + t^6.49 + t^6.54 + 2*t^7.03 + 2*t^7.04 + 2*t^7.08 + 4*t^7.09 + 2*t^7.15 + 2*t^7.47 + t^7.5 + 3*t^7.51 + 7*t^7.52 + 3*t^7.53 + 7*t^7.54 + 4*t^7.56 + 4*t^7.57 + 14*t^7.58 + 12*t^7.59 + 7*t^7.6 + 4*t^7.61 + t^7.62 + 9*t^7.63 + 7*t^7.64 + 3*t^7.65 + 2*t^7.67 + 4*t^7.7 + t^7.73 - t^7.75 + 3*t^7.76 + 4*t^8.02 + 6*t^8.03 + 3*t^8.05 - t^8.06 + t^8.08 + 8*t^8.09 - 2*t^8.12 - 20*t^8.13 + 2*t^8.14 - 2*t^8.15 - 7*t^8.16 - 3*t^8.17 - t^8.18 - 8*t^8.19 - 7*t^8.2 - 4*t^8.22 - 2*t^8.23 - 2*t^8.24 - t^8.28 - t^8.29 + t^8.3 + 5*t^8.53 + 4*t^8.56 + 3*t^8.59 + t^8.61 + 2*t^8.63 + 3*t^8.66 + 2*t^8.67 + 2*t^8.68 + t^8.71 + 4*t^8.72 + 4*t^8.73 + 3*t^8.74 + 2*t^8.77 + 2*t^8.79 + t^8.83 - t^4.64/y - (2*t^6.77)/y - t^6.8/y + t^7.26/y + (2*t^7.3)/y + t^7.36/y - t^7.91/y + (2*t^8.4)/y + t^8.44/y + t^8.47/y + (2*t^8.5)/y + (4*t^8.89)/y + t^8.9/y + (2*t^8.92)/y + (4*t^8.94)/y + (8*t^8.95)/y + t^8.98/y + (4*t^8.99)/y - t^4.64*y - 2*t^6.77*y - t^6.8*y + t^7.26*y + 2*t^7.3*y + t^7.36*y - t^7.91*y + 2*t^8.4*y + t^8.44*y + t^8.47*y + 2*t^8.5*y + 4*t^8.89*y + t^8.9*y + 2*t^8.92*y + 4*t^8.94*y + 8*t^8.95*y + t^8.98*y + 4*t^8.99*y | t^2.13/(g1^4*g2^4) + t^2.13/(g1^4*g5^4) + t^2.16/(g3^4*g4^4) + t^3.27/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g6^4*t^3.75 + g5^4*g6^4*t^3.75 + g3^4*g6^4*t^3.77 + g4^4*g6^4*t^3.77 + g2^4*g5^4*t^3.81 + g1^4*g6^4*t^3.81 + g2^4*g3^4*t^3.82 + g2^4*g4^4*t^3.82 + g3^4*g5^4*t^3.82 + g4^4*g5^4*t^3.82 + g1^4*g3^4*t^3.88 + g1^4*g4^4*t^3.88 + t^4.26/(g1^8*g2^8) + t^4.26/(g1^8*g5^8) + t^4.26/(g1^8*g2^4*g5^4) + t^4.3/(g1^4*g2^4*g3^4*g4^4) + t^4.3/(g1^4*g3^4*g4^4*g5^4) + t^4.33/(g3^8*g4^8) + (g6^7*t^5.34)/(g1*g2*g3*g4*g5) + (g2^3*g6^3*t^5.39)/(g1*g3*g4*g5) + (g5^3*g6^3*t^5.39)/(g1*g2*g3*g4) + t^5.4/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.4/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g3^3*g6^3*t^5.4)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.4)/(g1*g2*g3*g5) + t^5.44/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g2^7*t^5.45)/(g1*g3*g4*g5*g6) + (g2^3*g5^3*t^5.45)/(g1*g3*g4*g6) + (g5^7*t^5.45)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.45)/(g2*g3*g4*g5) + (g2^3*g3^3*t^5.46)/(g1*g4*g5*g6) + (g2^3*g4^3*t^5.46)/(g1*g3*g5*g6) + (g3^3*g5^3*t^5.46)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.46)/(g1*g2*g3*g6) + (g3^7*t^5.47)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.47)/(g1*g2*g5*g6) + (g4^7*t^5.47)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.5)/(g3*g4*g5*g6) + (g1^3*g5^3*t^5.5)/(g2*g3*g4*g6) + (g1^3*g3^3*t^5.52)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.52)/(g2*g3*g5*g6) + (g1^7*t^5.56)/(g2*g3*g4*g5*g6) + (g6^4*t^5.89)/g1^4 + (g2^4*g6^4*t^5.89)/(g1^4*g5^4) + (g5^4*g6^4*t^5.89)/(g1^4*g2^4) + (g3^4*g6^4*t^5.9)/(g1^4*g2^4) + (g4^4*g6^4*t^5.9)/(g1^4*g2^4) + (g3^4*g6^4*t^5.9)/(g1^4*g5^4) + (g4^4*g6^4*t^5.9)/(g1^4*g5^4) + (g2^4*g6^4*t^5.92)/(g3^4*g4^4) + (g5^4*g6^4*t^5.92)/(g3^4*g4^4) + (g3^4*t^5.95)/g1^4 + (g4^4*t^5.95)/g1^4 + (g2^4*g3^4*t^5.95)/(g1^4*g5^4) + (g2^4*g4^4*t^5.95)/(g1^4*g5^4) + (g3^4*g5^4*t^5.95)/(g1^4*g2^4) + (g4^4*g5^4*t^5.95)/(g1^4*g2^4) + (g2^4*g5^4*t^5.97)/(g3^4*g4^4) + (g1^4*g6^4*t^5.98)/(g3^4*g4^4) - 6*t^6. - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g1^4*t^6.06)/g2^4 - (g1^4*t^6.06)/g5^4 - (g2^4*t^6.06)/g6^4 - (g5^4*t^6.06)/g6^4 - (g3^4*t^6.07)/g6^4 - (g4^4*t^6.07)/g6^4 - (g1^4*t^6.11)/g6^4 + t^6.4/(g1^12*g2^12) + t^6.4/(g1^12*g5^12) + t^6.4/(g1^12*g2^4*g5^8) + t^6.4/(g1^12*g2^8*g5^4) + t^6.43/(g1^8*g2^8*g3^4*g4^4) + t^6.43/(g1^8*g3^4*g4^4*g5^8) + t^6.43/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.46/(g1^4*g2^4*g3^8*g4^8) + t^6.46/(g1^4*g3^8*g4^8*g5^4) + t^6.49/(g3^12*g4^12) + t^6.54/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g2^2*g6^2*t^7.03)/(g1^2*g3^2*g4^2*g5^2) + (g5^2*g6^2*t^7.03)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g6^2*t^7.04)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g5^2) + (g2^2*g5^2*t^7.08)/(g1^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.08)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g3^2*t^7.09)/(g1^2*g4^2*g5^2*g6^2) + (g2^2*g4^2*t^7.09)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g5^2*t^7.09)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.09)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g3^2*t^7.15)/(g2^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.15)/(g2^2*g3^2*g5^2*g6^2) + (g6^7*t^7.47)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.47)/(g1^5*g2^5*g3*g4*g5) + (g6^7*t^7.5)/(g1*g2*g3^5*g4^5*g5) + g2^8*g6^8*t^7.51 + g2^4*g5^4*g6^8*t^7.51 + g5^8*g6^8*t^7.51 + (g2^3*g6^3*t^7.52)/(g1^5*g3*g4*g5^5) + (g6^3*t^7.52)/(g1^5*g2*g3*g4*g5) + (g5^3*g6^3*t^7.52)/(g1^5*g2^5*g3*g4) + g2^4*g3^4*g6^8*t^7.52 + g2^4*g4^4*g6^8*t^7.52 + g3^4*g5^4*g6^8*t^7.52 + g4^4*g5^4*g6^8*t^7.52 + g3^8*g6^8*t^7.53 + g3^4*g4^4*g6^8*t^7.53 + g4^8*g6^8*t^7.53 + t^7.54/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.54/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.54/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g3^3*g6^3*t^7.54)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.54)/(g1^5*g2*g3*g5^5) + (g3^3*g6^3*t^7.54)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.54)/(g1^5*g2^5*g3*g5) + (g2^3*g6^3*t^7.56)/(g1*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.56)/(g1*g2*g3^5*g4^5) + g2^8*g5^4*g6^4*t^7.56 + g2^4*g5^8*g6^4*t^7.56 + t^7.57/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.57/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + g1^4*g2^4*g6^8*t^7.57 + g1^4*g5^4*g6^8*t^7.57 + (g2^7*t^7.58)/(g1^5*g3*g4*g5^5*g6) + (g2^3*t^7.58)/(g1^5*g3*g4*g5*g6) + (g5^3*t^7.58)/(g1^5*g2*g3*g4*g6) + (g5^7*t^7.58)/(g1^5*g2^5*g3*g4*g6) + g2^8*g3^4*g6^4*t^7.58 + g2^8*g4^4*g6^4*t^7.58 + 2*g2^4*g3^4*g5^4*g6^4*t^7.58 + 2*g2^4*g4^4*g5^4*g6^4*t^7.58 + g3^4*g5^8*g6^4*t^7.58 + g4^4*g5^8*g6^4*t^7.58 + g1^4*g3^4*g6^8*t^7.58 + g1^4*g4^4*g6^8*t^7.58 + (g2^3*g3^3*t^7.59)/(g1^5*g4*g5^5*g6) + (g2^3*g4^3*t^7.59)/(g1^5*g3*g5^5*g6) + (g3^3*t^7.59)/(g1^5*g2*g4*g5*g6) + (g4^3*t^7.59)/(g1^5*g2*g3*g5*g6) + (g3^3*g5^3*t^7.59)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.59)/(g1^5*g2^5*g3*g6) + g2^4*g3^8*g6^4*t^7.59 + g2^4*g3^4*g4^4*g6^4*t^7.59 + g2^4*g4^8*g6^4*t^7.59 + g3^8*g5^4*g6^4*t^7.59 + g3^4*g4^4*g5^4*g6^4*t^7.59 + g4^8*g5^4*g6^4*t^7.59 + t^7.6/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + (g3^7*t^7.6)/(g1^5*g2*g4*g5^5*g6) + (g3^3*g4^3*t^7.6)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.6)/(g1^5*g2*g3*g5^5*g6) + (g3^7*t^7.6)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.6)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.6)/(g1^5*g2^5*g3*g5*g6) + (g2^7*t^7.61)/(g1*g3^5*g4^5*g5*g6) + (g2^3*g5^3*t^7.61)/(g1*g3^5*g4^5*g6) + (g5^7*t^7.61)/(g1*g2*g3^5*g4^5*g6) + (g1^3*g6^3*t^7.61)/(g2*g3^5*g4^5*g5) + g2^8*g5^8*t^7.62 + g2^8*g3^4*g5^4*t^7.63 + g2^8*g4^4*g5^4*t^7.63 + g2^4*g3^4*g5^8*t^7.63 + g2^4*g4^4*g5^8*t^7.63 + g1^4*g2^4*g3^4*g6^4*t^7.63 + g1^4*g2^4*g4^4*g6^4*t^7.63 + g1^4*g3^4*g5^4*g6^4*t^7.63 + g1^4*g4^4*g5^4*g6^4*t^7.63 + g1^8*g6^8*t^7.63 + g2^8*g3^8*t^7.64 + g2^8*g3^4*g4^4*t^7.64 + g2^8*g4^8*t^7.64 + g2^4*g3^8*g5^4*t^7.64 + g2^4*g3^4*g4^4*g5^4*t^7.64 + g2^4*g4^8*g5^4*t^7.64 + g3^8*g5^8*t^7.64 + g3^4*g4^4*g5^8*t^7.64 + g4^8*g5^8*t^7.64 - (2*t^7.64)/(g1*g2*g3*g4*g5*g6) + g1^4*g3^8*g6^4*t^7.65 + g1^4*g3^4*g4^4*g6^4*t^7.65 + g1^4*g4^8*g6^4*t^7.65 + (g1^3*g2^3*t^7.67)/(g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.67)/(g2*g3^5*g4^5*g6) - (g2^3*t^7.69)/(g1*g3*g4*g5*g6^5) - (g5^3*t^7.69)/(g1*g2*g3*g4*g6^5) + g1^8*g3^4*g6^4*t^7.69 + g1^8*g4^4*g6^4*t^7.69 + g1^4*g2^4*g3^8*t^7.7 + g1^4*g2^4*g3^4*g4^4*t^7.7 + g1^4*g2^4*g4^8*t^7.7 + g1^4*g3^8*g5^4*t^7.7 + g1^4*g3^4*g4^4*g5^4*t^7.7 + g1^4*g4^8*g5^4*t^7.7 - (g3^3*t^7.7)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.7)/(g1*g2*g3*g5*g6^5) + (g1^7*t^7.73)/(g2*g3^5*g4^5*g5*g6) - (g1^3*t^7.75)/(g2*g3*g4*g5*g6^5) + g1^8*g3^8*t^7.76 + g1^8*g3^4*g4^4*t^7.76 + g1^8*g4^8*t^7.76 + (g6^4*t^8.02)/(g1^8*g2^4) + (g2^4*g6^4*t^8.02)/(g1^8*g5^8) + (g6^4*t^8.02)/(g1^8*g5^4) + (g5^4*g6^4*t^8.02)/(g1^8*g2^8) + (g3^4*g6^4*t^8.03)/(g1^8*g2^8) + (g4^4*g6^4*t^8.03)/(g1^8*g2^8) + (g3^4*g6^4*t^8.03)/(g1^8*g5^8) + (g4^4*g6^4*t^8.03)/(g1^8*g5^8) + (g3^4*g6^4*t^8.03)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^8.03)/(g1^8*g2^4*g5^4) + (g6^4*t^8.05)/(g1^4*g3^4*g4^4) + (g2^4*g6^4*t^8.05)/(g1^4*g3^4*g4^4*g5^4) + (g5^4*g6^4*t^8.05)/(g1^4*g2^4*g3^4*g4^4) - g1*g2*g3*g4*g5*g6^9*t^8.06 + (g2^4*g6^4*t^8.08)/(g3^8*g4^8) - (g6^4*t^8.08)/(g1^4*g2^4*g5^4) + (g5^4*g6^4*t^8.08)/(g3^8*g4^8) + (g3^4*t^8.09)/(g1^8*g2^4) + (g4^4*t^8.09)/(g1^8*g2^4) + (g2^4*g3^4*t^8.09)/(g1^8*g5^8) + (g2^4*g4^4*t^8.09)/(g1^8*g5^8) + (g3^4*t^8.09)/(g1^8*g5^4) + (g4^4*t^8.09)/(g1^8*g5^4) + (g3^4*g5^4*t^8.09)/(g1^8*g2^8) + (g4^4*g5^4*t^8.09)/(g1^8*g2^8) - g1*g2^5*g3*g4*g5*g6^5*t^8.12 - g1*g2*g3*g4*g5^5*g6^5*t^8.12 - (6*t^8.13)/(g1^4*g2^4) - (g3^4*t^8.13)/(g1^4*g2^4*g4^4) - (g4^4*t^8.13)/(g1^4*g2^4*g3^4) - (g2^4*t^8.13)/(g1^4*g5^8) - (6*t^8.13)/(g1^4*g5^4) - (g3^4*t^8.13)/(g1^4*g4^4*g5^4) - (g4^4*t^8.13)/(g1^4*g3^4*g5^4) - (g5^4*t^8.13)/(g1^4*g2^8) - g1*g2*g3^5*g4*g5*g6^5*t^8.13 - g1*g2*g3*g4^5*g5*g6^5*t^8.13 + (g2^4*g5^4*t^8.14)/(g3^8*g4^8) + (g1^4*g6^4*t^8.14)/(g3^8*g4^8) - (g3^4*t^8.15)/(g1^4*g2^4*g5^4) - (g4^4*t^8.15)/(g1^4*g2^4*g5^4) - (5*t^8.16)/(g3^4*g4^4) - (g2^4*t^8.16)/(g3^4*g4^4*g5^4) - (g5^4*t^8.16)/(g2^4*g3^4*g4^4) - g1*g2^9*g3*g4*g5*g6*t^8.17 - g1*g2^5*g3*g4*g5^5*g6*t^8.17 - g1*g2*g3*g4*g5^9*g6*t^8.17 - g1^5*g2*g3*g4*g5*g6^5*t^8.18 - t^8.19/(g2^4*g5^4) - t^8.19/(g1^4*g6^4) - (g2^4*t^8.19)/(g1^4*g5^4*g6^4) - (g5^4*t^8.19)/(g1^4*g2^4*g6^4) - g1*g2^5*g3^5*g4*g5*g6*t^8.19 - g1*g2^5*g3*g4^5*g5*g6*t^8.19 - g1*g2*g3^5*g4*g5^5*g6*t^8.19 - g1*g2*g3*g4^5*g5^5*g6*t^8.19 - (g3^4*t^8.2)/(g1^4*g2^4*g6^4) - (g4^4*t^8.2)/(g1^4*g2^4*g6^4) - (g3^4*t^8.2)/(g1^4*g5^4*g6^4) - (g4^4*t^8.2)/(g1^4*g5^4*g6^4) - g1*g2*g3^9*g4*g5*g6*t^8.2 - g1*g2*g3^5*g4^5*g5*g6*t^8.2 - g1*g2*g3*g4^9*g5*g6*t^8.2 - (g1^4*t^8.22)/(g2^4*g3^4*g4^4) - (g1^4*t^8.22)/(g3^4*g4^4*g5^4) - (g2^4*t^8.22)/(g3^4*g4^4*g6^4) - (g5^4*t^8.22)/(g3^4*g4^4*g6^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.23 - g1^5*g2*g3*g4*g5^5*g6*t^8.23 - g1^5*g2*g3^5*g4*g5*g6*t^8.24 - g1^5*g2*g3*g4^5*g5*g6*t^8.24 - (g1^4*t^8.28)/(g3^4*g4^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.29 + t^8.3/g6^8 + t^8.53/(g1^16*g2^16) + t^8.53/(g1^16*g5^16) + t^8.53/(g1^16*g2^4*g5^12) + t^8.53/(g1^16*g2^8*g5^8) + t^8.53/(g1^16*g2^12*g5^4) + t^8.56/(g1^12*g2^12*g3^4*g4^4) + t^8.56/(g1^12*g3^4*g4^4*g5^12) + t^8.56/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.56/(g1^12*g2^8*g3^4*g4^4*g5^4) + t^8.59/(g1^8*g2^8*g3^8*g4^8) + t^8.59/(g1^8*g3^8*g4^8*g5^8) + t^8.59/(g1^8*g2^4*g3^8*g4^8*g5^4) + (g6^5*t^8.61)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.63/(g1^4*g2^4*g3^12*g4^12) + t^8.63/(g1^4*g3^12*g4^12*g5^4) + t^8.66/(g3^16*g4^16) + (g2*g6*t^8.66)/(g1^3*g3^3*g4^3*g5^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + (g3*g6*t^8.67)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.67)/(g1^3*g2^3*g3^3*g5^3) + t^8.68/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.68/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + t^8.71/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + (g2^5*t^8.72)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g5*t^8.72)/(g1^3*g3^3*g4^3*g6^3) + (g5^5*t^8.72)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.72)/(g2^3*g3^3*g4^3*g5^3) + (g2*g3*t^8.73)/(g1^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.73)/(g1^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.73)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.73)/(g1^3*g2^3*g3^3*g6^3) + (g3^5*t^8.74)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.74)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.74)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g2*t^8.77)/(g3^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.77)/(g2^3*g3^3*g4^3*g6^3) + (g1*g3*t^8.79)/(g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.79)/(g2^3*g3^3*g5^3*g6^3) + (g1^5*t^8.83)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.64/(g1*g2*g3*g4*g5*g6*y) - t^6.77/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.77/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.8/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.26/(g1^8*g2^4*g5^4*y) + t^7.3/(g1^4*g2^4*g3^4*g4^4*y) + t^7.3/(g1^4*g3^4*g4^4*g5^4*y) + (g1*g2*g3*g4*g5*g6*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.4/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.4/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.44/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + (g3^3*g4^3*t^8.47)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.5)/(g3*g4*g5*g6*y) + (g1^3*g5^3*t^8.5)/(g2*g3*g4*g6*y) + (2*g6^4*t^8.89)/(g1^4*y) + (g2^4*g6^4*t^8.89)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.89)/(g1^4*g2^4*y) - t^8.9/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.9/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.9/(g1^9*g2^9*g3*g4*g5*g6*y) + (g3^4*g6^4*t^8.9)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.9)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.9)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.9)/(g1^4*g5^4*y) + (g2^4*g6^4*t^8.92)/(g3^4*g4^4*y) + (g5^4*g6^4*t^8.92)/(g3^4*g4^4*y) - t^8.93/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) - t^8.93/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) + (g6^4*t^8.93)/(g3^4*y) + (g6^4*t^8.93)/(g4^4*y) + (g2^4*t^8.94)/(g1^4*y) + (g5^4*t^8.94)/(g1^4*y) + (g6^4*t^8.94)/(g2^4*y) + (g6^4*t^8.94)/(g5^4*y) + (2*g3^4*t^8.95)/(g1^4*y) + (2*g4^4*t^8.95)/(g1^4*y) + (g2^4*g3^4*t^8.95)/(g1^4*g5^4*y) + (g2^4*g4^4*t^8.95)/(g1^4*g5^4*y) + (g3^4*g5^4*t^8.95)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.95)/(g1^4*g2^4*y) + (g2^4*g5^4*t^8.97)/(g3^4*g4^4*y) - t^8.97/(g1*g2*g3^9*g4^9*g5*g6*y) + (g1^4*g6^4*t^8.98)/(g3^4*g4^4*y) + (g2^4*t^8.99)/(g3^4*y) + (g2^4*t^8.99)/(g4^4*y) + (g5^4*t^8.99)/(g3^4*y) + (g5^4*t^8.99)/(g4^4*y) - (t^4.64*y)/(g1*g2*g3*g4*g5*g6) - (t^6.77*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.77*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.8*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.26*y)/(g1^8*g2^4*g5^4) + (t^7.3*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.3*y)/(g1^4*g3^4*g4^4*g5^4) + g1*g2*g3*g4*g5*g6*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.4*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.4*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.44*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g4^3*t^8.47*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.5*y)/(g3*g4*g5*g6) + (g1^3*g5^3*t^8.5*y)/(g2*g3*g4*g6) + (2*g6^4*t^8.89*y)/g1^4 + (g2^4*g6^4*t^8.89*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.89*y)/(g1^4*g2^4) - (t^8.9*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.9*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.9*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g3^4*g6^4*t^8.9*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.9*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.9*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.9*y)/(g1^4*g5^4) + (g2^4*g6^4*t^8.92*y)/(g3^4*g4^4) + (g5^4*g6^4*t^8.92*y)/(g3^4*g4^4) - (t^8.93*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) - (t^8.93*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) + (g6^4*t^8.93*y)/g3^4 + (g6^4*t^8.93*y)/g4^4 + (g2^4*t^8.94*y)/g1^4 + (g5^4*t^8.94*y)/g1^4 + (g6^4*t^8.94*y)/g2^4 + (g6^4*t^8.94*y)/g5^4 + (2*g3^4*t^8.95*y)/g1^4 + (2*g4^4*t^8.95*y)/g1^4 + (g2^4*g3^4*t^8.95*y)/(g1^4*g5^4) + (g2^4*g4^4*t^8.95*y)/(g1^4*g5^4) + (g3^4*g5^4*t^8.95*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.95*y)/(g1^4*g2^4) + (g2^4*g5^4*t^8.97*y)/(g3^4*g4^4) - (t^8.97*y)/(g1*g2*g3^9*g4^9*g5*g6) + (g1^4*g6^4*t^8.98*y)/(g3^4*g4^4) + (g2^4*t^8.99*y)/g3^4 + (g2^4*t^8.99*y)/g4^4 + (g5^4*t^8.99*y)/g3^4 + (g5^4*t^8.99*y)/g4^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55718 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.9178 | 1.1404 | 0.8048 | [X:[], M:[0.7263, 0.7224, 0.7083], q:[0.6458, 0.6279, 0.6388], qb:[0.6388, 0.6458, 0.6279], phi:[0.5437]] | t^2.13 + t^2.17 + t^2.18 + t^3.26 + t^3.77 + 4*t^3.8 + 3*t^3.82 + 4*t^3.85 + t^4.25 + t^4.29 + t^4.3 + t^4.33 + t^4.35 + t^4.36 + t^5.39 + 3*t^5.4 + 5*t^5.43 + t^5.44 + 4*t^5.45 + 3*t^5.46 + 4*t^5.49 + 3*t^5.51 + t^5.89 + 5*t^5.93 + 4*t^5.98 + 3*t^5.99 - 9*t^6. - t^4.63/y - t^4.63*y | detail | |
55788 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_2$ | 0.9181 | 1.1419 | 0.804 | [X:[], M:[0.7095, 0.7251, 0.7095], q:[0.6531, 0.6374, 0.6374], qb:[0.6374, 0.6374, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.18 + t^3.27 + 4*t^3.76 + t^3.81 + 5*t^3.82 + 2*t^3.87 + 3*t^4.26 + 2*t^4.3 + t^4.35 + t^5.33 + 6*t^5.4 + t^5.44 + t^5.45 + 10*t^5.46 + 4*t^5.51 + t^5.55 + 7*t^5.89 + 2*t^5.94 + 6*t^5.95 + t^5.98 - 9*t^6. - t^4.64/y - t^4.64*y | detail | |
55713 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_1q_3$ | 0.9386 | 1.1822 | 0.794 | [X:[], M:[0.7063, 0.7163, 0.7063, 0.6914], q:[0.6612, 0.6324, 0.6474], qb:[0.6363, 0.6324, 0.6159], phi:[0.5436]] | t^2.07 + 2*t^2.12 + t^2.15 + t^3.26 + 2*t^3.74 + t^3.76 + 2*t^3.79 + 2*t^3.81 + t^3.83 + 2*t^3.84 + t^3.89 + t^4.15 + 2*t^4.19 + t^4.22 + 3*t^4.24 + 2*t^4.27 + t^4.3 + t^5.33 + t^5.34 + 4*t^5.38 + t^5.39 + t^5.41 + t^5.42 + 3*t^5.43 + 2*t^5.44 + t^5.45 + t^5.46 + 2*t^5.47 + t^5.48 + 2*t^5.51 + 2*t^5.52 + t^5.56 + t^5.6 + 2*t^5.82 + t^5.83 + 4*t^5.86 + t^5.87 + 4*t^5.88 + 2*t^5.89 + 5*t^5.91 + 3*t^5.93 + t^5.94 + 3*t^5.96 + t^5.98 - 8*t^6. - t^4.63/y - t^4.63*y | detail | |
55774 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_3$ | 0.9383 | 1.1802 | 0.795 | [X:[], M:[0.7046, 0.7236, 0.7046, 0.7046], q:[0.6646, 0.6308, 0.6382], qb:[0.6382, 0.6308, 0.6308], phi:[0.5416]] | 3*t^2.11 + t^2.17 + t^3.25 + 3*t^3.78 + 6*t^3.81 + 2*t^3.91 + 6*t^4.23 + 3*t^4.28 + t^4.34 + 3*t^5.36 + 6*t^5.41 + t^5.42 + 6*t^5.43 + 3*t^5.45 + 3*t^5.51 + 2*t^5.53 + t^5.61 + 6*t^5.9 + 16*t^5.92 + 3*t^5.96 - 14*t^6. - t^4.62/y - t^4.62*y | detail | |
55763 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ | 0.9383 | 1.1801 | 0.7951 | [X:[], M:[0.7049, 0.7236, 0.7049, 0.7049], q:[0.6475, 0.6475, 0.6382], qb:[0.6382, 0.6475, 0.6149], phi:[0.5415]] | 3*t^2.11 + t^2.17 + t^3.25 + 2*t^3.76 + 3*t^3.79 + 6*t^3.86 + 6*t^4.23 + 3*t^4.29 + t^4.34 + t^5.31 + 3*t^5.36 + 2*t^5.38 + 3*t^5.41 + t^5.42 + 3*t^5.45 + 6*t^5.48 + 6*t^5.51 + 6*t^5.87 + 6*t^5.9 + 3*t^5.96 + 12*t^5.97 - 14*t^6. - t^4.62/y - t^4.62*y | detail | |
55738 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_3\tilde{q}_3$ | 0.938 | 1.1784 | 0.796 | [X:[], M:[0.7131, 0.7131, 0.7131, 0.7131], q:[0.6535, 0.6333, 0.6535], qb:[0.6333, 0.6333, 0.6333], phi:[0.5399]] | 4*t^2.14 + t^3.24 + 6*t^3.8 + 4*t^3.86 + t^3.92 + 10*t^4.28 + 4*t^5.38 + 10*t^5.42 + 8*t^5.48 + 3*t^5.54 + 16*t^5.94 - 4*t^6. - t^4.62/y - t^4.62*y | detail | |
55786 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\tilde{q}_2\tilde{q}_3$ | 0.9378 | 1.1777 | 0.7963 | [X:[], M:[0.7162, 0.7248, 0.7011, 0.7162], q:[0.6495, 0.6343, 0.6376], qb:[0.6376, 0.6495, 0.6343], phi:[0.5393]] | t^2.1 + 2*t^2.15 + t^2.17 + t^3.24 + t^3.81 + 4*t^3.82 + 2*t^3.85 + 4*t^3.86 + t^4.21 + 2*t^4.25 + t^4.28 + 3*t^4.3 + 2*t^4.32 + t^4.35 + t^5.34 + 2*t^5.38 + t^5.41 + 3*t^5.42 + 4*t^5.43 + 3*t^5.44 + 4*t^5.47 + 4*t^5.48 + 3*t^5.51 + t^5.91 + 4*t^5.92 + 8*t^5.96 + t^5.98 - 8*t^6. - t^4.62/y - t^4.62*y | detail | |
55765 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ \phi_1\tilde{q}_3^2$ | 0.9089 | 1.1242 | 0.8085 | [X:[], M:[0.7319, 0.7477, 0.7319], q:[0.6475, 0.6207, 0.6261], qb:[0.6261, 0.6207, 0.7344], phi:[0.5311]] | 2*t^2.2 + t^2.24 + t^3.19 + t^3.72 + 4*t^3.74 + 2*t^3.82 + 2*t^4.07 + 2*t^4.08 + t^4.15 + 3*t^4.39 + 2*t^4.44 + t^4.49 + 3*t^5.32 + 4*t^5.33 + 3*t^5.35 + 2*t^5.38 + 2*t^5.4 + 2*t^5.41 + t^5.43 + t^5.48 + 6*t^5.94 + t^5.97 - 9*t^6. - t^4.59/y - t^4.59*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55457 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ | 0.8981 | 1.1052 | 0.8127 | [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] | 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y | detail |