Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55457 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ | 0.8981 | 1.1052 | 0.8127 | [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_2$ | . | -12 | 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - 8*t^6.07 + 4*t^6.47 + t^6.6 + t^7.01 + 8*t^7.08 + 4*t^7.14 + t^7.43 + 8*t^7.49 + 6*t^7.52 + 34*t^7.56 + 8*t^7.59 + 27*t^7.62 + t^7.65 + 9*t^7.69 - 8*t^7.72 + 3*t^8.03 - 3*t^8.06 + 8*t^8.09 - 8*t^8.13 - 18*t^8.16 - 10*t^8.19 - 8*t^8.22 + 3*t^8.29 + 5*t^8.63 + 3*t^8.66 + 8*t^8.73 + 2*t^8.76 + 10*t^8.79 - t^4.65/y - (2*t^6.81)/y + t^7.31/y + t^7.35/y - t^7.95/y + (2*t^8.46)/y + (2*t^8.49)/y + (2*t^8.87)/y + (16*t^8.93)/y - (3*t^8.96)/y - t^4.65*y - 2*t^6.81*y + t^7.31*y + t^7.35*y - t^7.95*y + 2*t^8.46*y + 2*t^8.49*y + 2*t^8.87*y + 16*t^8.93*y - 3*t^8.96*y | t^2.16/(g1^4*g2^4) + t^2.16/(g3^4*g4^4) + t^3.3/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g5^4*g6^4*t^3.71 + g1^4*g5^4*t^3.78 + g2^4*g5^4*t^3.78 + g3^4*g5^4*t^3.78 + g4^4*g5^4*t^3.78 + g1^4*g6^4*t^3.78 + g2^4*g6^4*t^3.78 + g3^4*g6^4*t^3.78 + g4^4*g6^4*t^3.78 + g1^4*g3^4*t^3.84 + g2^4*g3^4*t^3.84 + g1^4*g4^4*t^3.84 + g2^4*g4^4*t^3.84 + t^4.31/(g1^8*g2^8) + t^4.31/(g3^8*g4^8) + t^4.31/(g1^4*g2^4*g3^4*g4^4) + (g5^7*t^5.36)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.36)/(g1*g2*g3*g4) + (g6^7*t^5.36)/(g1*g2*g3*g4*g5) + (g1^3*g5^3*t^5.43)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.43)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.43)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.43)/(g1*g2*g3*g6) + (g1^3*g6^3*t^5.43)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.43)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.43)/(g1*g2*g3*g5) + t^5.46/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + t^5.46/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^7*t^5.49)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.49)/(g3*g4*g5*g6) + (g2^7*t^5.49)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.49)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.49)/(g1*g4*g5*g6) + (g3^7*t^5.49)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.49)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.49)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.49)/(g1*g2*g5*g6) + (g4^7*t^5.49)/(g1*g2*g3*g5*g6) + (g5^4*g6^4*t^5.87)/(g1^4*g2^4) + (g5^4*g6^4*t^5.87)/(g3^4*g4^4) + (g3^4*g5^4*t^5.93)/(g1^4*g2^4) + (g1^4*g5^4*t^5.93)/(g3^4*g4^4) + (g2^4*g5^4*t^5.93)/(g3^4*g4^4) + (g4^4*g5^4*t^5.93)/(g1^4*g2^4) + (g3^4*g6^4*t^5.93)/(g1^4*g2^4) + (g1^4*g6^4*t^5.93)/(g3^4*g4^4) + (g2^4*g6^4*t^5.93)/(g3^4*g4^4) + (g4^4*g6^4*t^5.93)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.07)/g5^4 - (g2^4*t^6.07)/g5^4 - (g3^4*t^6.07)/g5^4 - (g4^4*t^6.07)/g5^4 - (g1^4*t^6.07)/g6^4 - (g2^4*t^6.07)/g6^4 - (g3^4*t^6.07)/g6^4 - (g4^4*t^6.07)/g6^4 + t^6.47/(g1^12*g2^12) + t^6.47/(g3^12*g4^12) + t^6.47/(g1^4*g2^4*g3^8*g4^8) + t^6.47/(g1^8*g2^8*g3^4*g4^4) + t^6.6/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g5^2*g6^2*t^7.01)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g5^2*t^7.08)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.08)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.08)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.08)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.08)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.08)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.08)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.08)/(g1^2*g2^2*g3^2*g5^2) + (g1^2*g3^2*t^7.14)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.14)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.14)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.14)/(g1^2*g3^2*g5^2*g6^2) + g5^8*g6^8*t^7.43 + g1^4*g5^8*g6^4*t^7.49 + g2^4*g5^8*g6^4*t^7.49 + g3^4*g5^8*g6^4*t^7.49 + g4^4*g5^8*g6^4*t^7.49 + g1^4*g5^4*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g3^4*g5^4*g6^8*t^7.49 + g4^4*g5^4*g6^8*t^7.49 + (g5^7*t^7.52)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.52)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.52)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.52)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.52)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.52)/(g1^5*g2^5*g3*g4*g5) + g1^8*g5^8*t^7.56 + g1^4*g2^4*g5^8*t^7.56 + g2^8*g5^8*t^7.56 + g1^4*g3^4*g5^8*t^7.56 + g2^4*g3^4*g5^8*t^7.56 + g3^8*g5^8*t^7.56 + g1^4*g4^4*g5^8*t^7.56 + g2^4*g4^4*g5^8*t^7.56 + g3^4*g4^4*g5^8*t^7.56 + g4^8*g5^8*t^7.56 + g1^8*g5^4*g6^4*t^7.56 + g1^4*g2^4*g5^4*g6^4*t^7.56 + g2^8*g5^4*g6^4*t^7.56 + 2*g1^4*g3^4*g5^4*g6^4*t^7.56 + 2*g2^4*g3^4*g5^4*g6^4*t^7.56 + g3^8*g5^4*g6^4*t^7.56 + 2*g1^4*g4^4*g5^4*g6^4*t^7.56 + 2*g2^4*g4^4*g5^4*g6^4*t^7.56 + g3^4*g4^4*g5^4*g6^4*t^7.56 + g4^8*g5^4*g6^4*t^7.56 + g1^8*g6^8*t^7.56 + g1^4*g2^4*g6^8*t^7.56 + g2^8*g6^8*t^7.56 + g1^4*g3^4*g6^8*t^7.56 + g2^4*g3^4*g6^8*t^7.56 + g3^8*g6^8*t^7.56 + g1^4*g4^4*g6^8*t^7.56 + g2^4*g4^4*g6^8*t^7.56 + g3^4*g4^4*g6^8*t^7.56 + g4^8*g6^8*t^7.56 + (g1^3*g5^3*t^7.59)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.59)/(g1*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.59)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.59)/(g1^5*g2^5*g3*g6) + (g1^3*g6^3*t^7.59)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.59)/(g1*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.59)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.59)/(g1^5*g2^5*g3*g5) + g1^8*g3^4*g5^4*t^7.62 + g1^4*g2^4*g3^4*g5^4*t^7.62 + g2^8*g3^4*g5^4*t^7.62 + g1^4*g3^8*g5^4*t^7.62 + g2^4*g3^8*g5^4*t^7.62 + g1^8*g4^4*g5^4*t^7.62 + g1^4*g2^4*g4^4*g5^4*t^7.62 + g2^8*g4^4*g5^4*t^7.62 + g1^4*g3^4*g4^4*g5^4*t^7.62 + g2^4*g3^4*g4^4*g5^4*t^7.62 + g1^4*g4^8*g5^4*t^7.62 + g2^4*g4^8*g5^4*t^7.62 + t^7.62/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + t^7.62/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.62/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + g1^8*g3^4*g6^4*t^7.62 + g1^4*g2^4*g3^4*g6^4*t^7.62 + g2^8*g3^4*g6^4*t^7.62 + g1^4*g3^8*g6^4*t^7.62 + g2^4*g3^8*g6^4*t^7.62 + g1^8*g4^4*g6^4*t^7.62 + g1^4*g2^4*g4^4*g6^4*t^7.62 + g2^8*g4^4*g6^4*t^7.62 + g1^4*g3^4*g4^4*g6^4*t^7.62 + g2^4*g3^4*g4^4*g6^4*t^7.62 + g1^4*g4^8*g6^4*t^7.62 + g2^4*g4^8*g6^4*t^7.62 - (g5^3*t^7.65)/(g1*g2*g3*g4*g6^5) + (g1^7*t^7.65)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.65)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.65)/(g1*g3^5*g4^5*g5*g6) - (3*t^7.65)/(g1*g2*g3*g4*g5*g6) + (g3^7*t^7.65)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.65)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.65)/(g1^5*g2^5*g3*g5*g6) - (g6^3*t^7.65)/(g1*g2*g3*g4*g5^5) + g1^8*g3^8*t^7.69 + g1^4*g2^4*g3^8*t^7.69 + g2^8*g3^8*t^7.69 + g1^8*g3^4*g4^4*t^7.69 + g1^4*g2^4*g3^4*g4^4*t^7.69 + g2^8*g3^4*g4^4*t^7.69 + g1^8*g4^8*t^7.69 + g1^4*g2^4*g4^8*t^7.69 + g2^8*g4^8*t^7.69 - (g1^3*t^7.72)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.72)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.72)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.72)/(g1*g2*g3*g5*g6^5) - (g1^3*t^7.72)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.72)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.72)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.72)/(g1*g2*g3*g5^5*g6) + (g5^4*g6^4*t^8.03)/(g1^8*g2^8) + (g5^4*g6^4*t^8.03)/(g3^8*g4^8) + (g5^4*g6^4*t^8.03)/(g1^4*g2^4*g3^4*g4^4) - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 + (g3^4*g5^4*t^8.09)/(g1^8*g2^8) + (g1^4*g5^4*t^8.09)/(g3^8*g4^8) + (g2^4*g5^4*t^8.09)/(g3^8*g4^8) + (g4^4*g5^4*t^8.09)/(g1^8*g2^8) + (g3^4*g6^4*t^8.09)/(g1^8*g2^8) + (g1^4*g6^4*t^8.09)/(g3^8*g4^8) + (g2^4*g6^4*t^8.09)/(g3^8*g4^8) + (g4^4*g6^4*t^8.09)/(g1^8*g2^8) - g1^5*g2*g3*g4*g5^5*g6*t^8.13 - g1*g2^5*g3*g4*g5^5*g6*t^8.13 - g1*g2*g3^5*g4*g5^5*g6*t^8.13 - g1*g2*g3*g4^5*g5^5*g6*t^8.13 - g1^5*g2*g3*g4*g5*g6^5*t^8.13 - g1*g2^5*g3*g4*g5*g6^5*t^8.13 - g1*g2*g3^5*g4*g5*g6^5*t^8.13 - g1*g2*g3*g4^5*g5*g6^5*t^8.13 - (5*t^8.16)/(g1^4*g2^4) - (5*t^8.16)/(g3^4*g4^4) - (g1^4*t^8.16)/(g2^4*g3^4*g4^4) - (g2^4*t^8.16)/(g1^4*g3^4*g4^4) - (g3^4*t^8.16)/(g1^4*g2^4*g4^4) - (g4^4*t^8.16)/(g1^4*g2^4*g3^4) - (g5^4*t^8.16)/(g1^4*g2^4*g6^4) - (g5^4*t^8.16)/(g3^4*g4^4*g6^4) - (g6^4*t^8.16)/(g1^4*g2^4*g5^4) - (g6^4*t^8.16)/(g3^4*g4^4*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.19 - g1^5*g2^5*g3*g4*g5*g6*t^8.19 - g1*g2^9*g3*g4*g5*g6*t^8.19 - g1^5*g2*g3^5*g4*g5*g6*t^8.19 - g1*g2^5*g3^5*g4*g5*g6*t^8.19 - g1*g2*g3^9*g4*g5*g6*t^8.19 - g1^5*g2*g3*g4^5*g5*g6*t^8.19 - g1*g2^5*g3*g4^5*g5*g6*t^8.19 - g1*g2*g3^5*g4^5*g5*g6*t^8.19 - g1*g2*g3*g4^9*g5*g6*t^8.19 - (g3^4*t^8.22)/(g1^4*g2^4*g5^4) - (g1^4*t^8.22)/(g3^4*g4^4*g5^4) - (g2^4*t^8.22)/(g3^4*g4^4*g5^4) - (g4^4*t^8.22)/(g1^4*g2^4*g5^4) - (g3^4*t^8.22)/(g1^4*g2^4*g6^4) - (g1^4*t^8.22)/(g3^4*g4^4*g6^4) - (g2^4*t^8.22)/(g3^4*g4^4*g6^4) - (g4^4*t^8.22)/(g1^4*g2^4*g6^4) + t^8.29/g5^8 + t^8.29/g6^8 + t^8.29/(g5^4*g6^4) + t^8.63/(g1^16*g2^16) + t^8.63/(g3^16*g4^16) + t^8.63/(g1^4*g2^4*g3^12*g4^12) + t^8.63/(g1^8*g2^8*g3^8*g4^8) + t^8.63/(g1^12*g2^12*g3^4*g4^4) + (g5^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (g1*g5*t^8.73)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.73)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.73)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.73)/(g1^3*g2^3*g3^3*g6^3) + (g1*g6*t^8.73)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.73)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.73)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.73)/(g1^3*g2^3*g3^3*g5^3) + t^8.76/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + t^8.76/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g1^5*t^8.79)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.79)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.79)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.79)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.79)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.79)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.79)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.79)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.79)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.79)/(g1^3*g2^3*g3^3*g5^3*g6^3) - t^4.65/(g1*g2*g3*g4*g5*g6*y) - t^6.81/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.81/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.31/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*g6*t^7.35)/y - t^7.95/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.46/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + t^8.46/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.49)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.49)/(g1*g2*g5*g6*y) + (g5^4*g6^4*t^8.87)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.87)/(g3^4*g4^4*y) + (g5^4*t^8.93)/(g1^4*y) + (g5^4*t^8.93)/(g2^4*y) + (g5^4*t^8.93)/(g3^4*y) + (g3^4*g5^4*t^8.93)/(g1^4*g2^4*y) + (g5^4*t^8.93)/(g4^4*y) + (g1^4*g5^4*t^8.93)/(g3^4*g4^4*y) + (g2^4*g5^4*t^8.93)/(g3^4*g4^4*y) + (g4^4*g5^4*t^8.93)/(g1^4*g2^4*y) + (g6^4*t^8.93)/(g1^4*y) + (g6^4*t^8.93)/(g2^4*y) + (g6^4*t^8.93)/(g3^4*y) + (g3^4*g6^4*t^8.93)/(g1^4*g2^4*y) + (g6^4*t^8.93)/(g4^4*y) + (g1^4*g6^4*t^8.93)/(g3^4*g4^4*y) + (g2^4*g6^4*t^8.93)/(g3^4*g4^4*y) + (g4^4*g6^4*t^8.93)/(g1^4*g2^4*y) - t^8.96/(g1*g2*g3^9*g4^9*g5*g6*y) - t^8.96/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.96/(g1^9*g2^9*g3*g4*g5*g6*y) - (t^4.65*y)/(g1*g2*g3*g4*g5*g6) - (t^6.81*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.81*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.31*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*g5*g6*t^7.35*y - (t^7.95*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.46*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (t^8.46*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.49*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.49*y)/(g1*g2*g5*g6) + (g5^4*g6^4*t^8.87*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.87*y)/(g3^4*g4^4) + (g5^4*t^8.93*y)/g1^4 + (g5^4*t^8.93*y)/g2^4 + (g5^4*t^8.93*y)/g3^4 + (g3^4*g5^4*t^8.93*y)/(g1^4*g2^4) + (g5^4*t^8.93*y)/g4^4 + (g1^4*g5^4*t^8.93*y)/(g3^4*g4^4) + (g2^4*g5^4*t^8.93*y)/(g3^4*g4^4) + (g4^4*g5^4*t^8.93*y)/(g1^4*g2^4) + (g6^4*t^8.93*y)/g1^4 + (g6^4*t^8.93*y)/g2^4 + (g6^4*t^8.93*y)/g3^4 + (g3^4*g6^4*t^8.93*y)/(g1^4*g2^4) + (g6^4*t^8.93*y)/g4^4 + (g1^4*g6^4*t^8.93*y)/(g3^4*g4^4) + (g2^4*g6^4*t^8.93*y)/(g3^4*g4^4) + (g4^4*g6^4*t^8.93*y)/(g1^4*g2^4) - (t^8.96*y)/(g1*g2*g3^9*g4^9*g5*g6) - (t^8.96*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.96*y)/(g1^9*g2^9*g3*g4*g5*g6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55683 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.8977 | 1.103 | 0.8139 | [X:[], M:[0.7364, 0.72], q:[0.6318, 0.6318, 0.64], qb:[0.64, 0.6318, 0.6318], phi:[0.5482]] | t^2.16 + t^2.21 + t^3.29 + 5*t^3.79 + 8*t^3.82 + t^4.32 + t^4.37 + t^4.42 + 10*t^5.44 + t^5.45 + 8*t^5.46 + 3*t^5.48 + t^5.5 + 5*t^5.95 - 15*t^6. - t^4.64/y - t^4.64*y | detail | |
55684 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.9091 | 1.129 | 0.8052 | [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] | 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - t^4.72/y - t^4.72*y | detail | |
55676 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y | detail | |
55695 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ | 0.9175 | 1.1389 | 0.8056 | [X:[], M:[0.7232, 0.7232, 0.7232], q:[0.6384, 0.6384, 0.6384], qb:[0.6384, 0.6384, 0.6384], phi:[0.5424]] | 3*t^2.17 + t^3.25 + 12*t^3.83 + 6*t^4.34 + 3*t^5.42 + 21*t^5.46 - t^4.63/y - t^4.63*y | detail | {a: 51103/55696, c: 31717/27848, M1: 128/177, M2: 128/177, M3: 128/177, q1: 113/177, q2: 113/177, q3: 113/177, qb1: 113/177, qb2: 113/177, qb3: 113/177, phi1: 32/59} |
55601 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ | 0.881 | 1.0826 | 0.8138 | [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] | t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y | detail | |
55692 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ | 0.8899 | 1.0904 | 0.8161 | [X:[], M:[0.7425, 0.7425], q:[0.6288, 0.6288, 0.6288], qb:[0.6288, 0.7307, 0.5997], phi:[0.5386]] | 2*t^2.23 + t^3.23 + 4*t^3.69 + 4*t^3.77 + t^3.99 + 4*t^4.08 + 3*t^4.45 + t^5.21 + 4*t^5.3 + 10*t^5.39 + 2*t^5.46 + 4*t^5.91 - 9*t^6. - t^4.62/y - t^4.62*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55431 | SU2adj1nf3 | $M_1q_1q_2$ | 0.8785 | 1.0704 | 0.8208 | [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] | t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - t^4.67/y - t^4.67*y | detail |