Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55786 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\tilde{q}_2\tilde{q}_3$ 0.9378 1.1777 0.7963 [X:[], M:[0.7162, 0.7248, 0.7011, 0.7162], q:[0.6495, 0.6343, 0.6376], qb:[0.6376, 0.6495, 0.6343], phi:[0.5393]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0], [0, 0, 0, 0, -4, -4]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_4$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_1q_3$, $ q_3\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_3M_4$, $ M_2M_3$, $ M_1^2$, $ M_4^2$, $ M_1M_4$, $ M_1M_2$, $ M_2M_4$, $ M_2^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3q_2\tilde{q}_3$, $ M_3q_2q_3$, $ M_3q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_4q_3\tilde{q}_3$, $ M_4q_2q_3$, $ M_1q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$ $M_4q_1\tilde{q}_3$ -8 t^2.1 + 2*t^2.15 + t^2.17 + t^3.24 + t^3.81 + 4*t^3.82 + 2*t^3.85 + 4*t^3.86 + t^4.21 + 2*t^4.25 + t^4.28 + 3*t^4.3 + 2*t^4.32 + t^4.35 + t^5.34 + 2*t^5.38 + t^5.41 + 3*t^5.42 + 4*t^5.43 + 3*t^5.44 + 4*t^5.47 + 4*t^5.48 + 3*t^5.51 + t^5.91 + 4*t^5.92 + 8*t^5.96 + t^5.98 - 8*t^6. + 4*t^6.01 + 2*t^6.03 - 4*t^6.05 + t^6.31 + 2*t^6.35 + t^6.38 + 3*t^6.4 + 2*t^6.43 + 5*t^6.45 + 4*t^6.47 + 2*t^6.5 + t^6.52 + t^7.04 + 4*t^7.05 + 2*t^7.09 + 4*t^7.1 + t^7.44 + 2*t^7.49 + t^7.51 + 6*t^7.53 + 4*t^7.54 + 3*t^7.55 + 2*t^7.56 + 6*t^7.57 + 9*t^7.58 + 6*t^7.59 + 3*t^7.6 + t^7.61 + 7*t^7.62 + 13*t^7.63 + 4*t^7.64 + 4*t^7.66 + 8*t^7.67 + 12*t^7.68 + 3*t^7.69 + 2*t^7.7 + 4*t^7.71 + 9*t^7.72 + t^8.01 + 4*t^8.02 + 8*t^8.07 + t^8.08 - 10*t^8.1 + 8*t^8.11 - 17*t^8.15 + 4*t^8.16 - 5*t^8.17 - 8*t^8.19 - 2*t^8.2 - 3*t^8.21 - 4*t^8.22 - 4*t^8.23 - 4*t^8.24 - 3*t^8.28 + t^8.41 + 2*t^8.46 + t^8.48 + 3*t^8.5 + 2*t^8.53 + 4*t^8.55 + t^8.56 + 4*t^8.57 + 5*t^8.59 + 2*t^8.6 + 6*t^8.62 + t^8.63 + 4*t^8.65 + 3*t^8.66 + 6*t^8.67 + 3*t^8.68 + t^8.7 + 4*t^8.71 + 4*t^8.72 + 3*t^8.75 - t^4.62/y - t^6.72/y - (2*t^6.77)/y - t^6.79/y + (2*t^7.25)/y + t^7.28/y + t^7.3/y + (2*t^7.32)/y + t^7.38/y - t^7.85/y + t^8.34/y + (2*t^8.38)/y + t^8.41/y + t^8.44/y + (2*t^8.47)/y + t^8.51/y - t^8.82/y - (2*t^8.87)/y - t^8.9/y + t^8.91/y + t^8.92/y - (2*t^8.94)/y + (4*t^8.95)/y + (12*t^8.96)/y - t^8.97/y + t^8.98/y + (4*t^8.99)/y - t^4.62*y - t^6.72*y - 2*t^6.77*y - t^6.79*y + 2*t^7.25*y + t^7.28*y + t^7.3*y + 2*t^7.32*y + t^7.38*y - t^7.85*y + t^8.34*y + 2*t^8.38*y + t^8.41*y + t^8.44*y + 2*t^8.47*y + t^8.51*y - t^8.82*y - 2*t^8.87*y - t^8.9*y + t^8.91*y + t^8.92*y - 2*t^8.94*y + 4*t^8.95*y + 12*t^8.96*y - t^8.97*y + t^8.98*y + 4*t^8.99*y t^2.1/(g1^4*g5^4) + t^2.15/(g1^4*g2^4) + t^2.15/(g5^4*g6^4) + t^2.17/(g3^4*g4^4) + t^3.24/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g6^4*t^3.81 + g2^4*g3^4*t^3.82 + g2^4*g4^4*t^3.82 + g3^4*g6^4*t^3.82 + g4^4*g6^4*t^3.82 + g2^4*g5^4*t^3.85 + g1^4*g6^4*t^3.85 + g1^4*g3^4*t^3.86 + g1^4*g4^4*t^3.86 + g3^4*g5^4*t^3.86 + g4^4*g5^4*t^3.86 + t^4.21/(g1^8*g5^8) + t^4.25/(g1^8*g2^4*g5^4) + t^4.25/(g1^4*g5^8*g6^4) + t^4.28/(g1^4*g3^4*g4^4*g5^4) + t^4.3/(g1^8*g2^8) + t^4.3/(g5^8*g6^8) + t^4.3/(g1^4*g2^4*g5^4*g6^4) + t^4.32/(g1^4*g2^4*g3^4*g4^4) + t^4.32/(g3^4*g4^4*g5^4*g6^4) + t^4.35/(g3^8*g4^8) + t^5.34/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.38/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6) + t^5.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + t^5.41/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g2^7*t^5.42)/(g1*g3*g4*g5*g6) + (g2^3*g6^3*t^5.42)/(g1*g3*g4*g5) + (g6^7*t^5.42)/(g1*g2*g3*g4*g5) + (g2^3*g3^3*t^5.43)/(g1*g4*g5*g6) + (g2^3*g4^3*t^5.43)/(g1*g3*g5*g6) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.43)/(g1*g2*g3*g5) + (g3^7*t^5.44)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.44)/(g1*g2*g5*g6) + (g4^7*t^5.44)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.47)/(g3*g4*g5*g6) + (g2^3*g5^3*t^5.47)/(g1*g3*g4*g6) + (g1^3*g6^3*t^5.47)/(g2*g3*g4*g5) + (g5^3*g6^3*t^5.47)/(g1*g2*g3*g4) + (g1^3*g3^3*t^5.48)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.48)/(g2*g3*g5*g6) + (g3^3*g5^3*t^5.48)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.48)/(g1*g2*g3*g6) + (g1^7*t^5.51)/(g2*g3*g4*g5*g6) + (g1^3*g5^3*t^5.51)/(g2*g3*g4*g6) + (g5^7*t^5.51)/(g1*g2*g3*g4*g6) + (g2^4*g6^4*t^5.91)/(g1^4*g5^4) + (g2^4*g3^4*t^5.92)/(g1^4*g5^4) + (g2^4*g4^4*t^5.92)/(g1^4*g5^4) + (g3^4*g6^4*t^5.92)/(g1^4*g5^4) + (g4^4*g6^4*t^5.92)/(g1^4*g5^4) + (g3^4*t^5.96)/g1^4 + (g4^4*t^5.96)/g1^4 + (g3^4*t^5.96)/g5^4 + (g4^4*t^5.96)/g5^4 + (g2^4*g3^4*t^5.96)/(g5^4*g6^4) + (g2^4*g4^4*t^5.96)/(g5^4*g6^4) + (g3^4*g6^4*t^5.96)/(g1^4*g2^4) + (g4^4*g6^4*t^5.96)/(g1^4*g2^4) + (g2^4*g6^4*t^5.98)/(g3^4*g4^4) - 6*t^6. - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 + (g3^4*g5^4*t^6.01)/(g1^4*g2^4) + (g4^4*g5^4*t^6.01)/(g1^4*g2^4) + (g1^4*g3^4*t^6.01)/(g5^4*g6^4) + (g1^4*g4^4*t^6.01)/(g5^4*g6^4) + (g2^4*g5^4*t^6.03)/(g3^4*g4^4) + (g1^4*g6^4*t^6.03)/(g3^4*g4^4) - (g1^4*t^6.05)/g2^4 - (g5^4*t^6.05)/g2^4 - (g1^4*t^6.05)/g6^4 - (g5^4*t^6.05)/g6^4 + t^6.31/(g1^12*g5^12) + t^6.35/(g1^12*g2^4*g5^8) + t^6.35/(g1^8*g5^12*g6^4) + t^6.38/(g1^8*g3^4*g4^4*g5^8) + t^6.4/(g1^12*g2^8*g5^4) + t^6.4/(g1^4*g5^12*g6^8) + t^6.4/(g1^8*g2^4*g5^8*g6^4) + t^6.43/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.43/(g1^4*g3^4*g4^4*g5^8*g6^4) + t^6.45/(g1^12*g2^12) + t^6.45/(g1^4*g3^8*g4^8*g5^4) + t^6.45/(g5^12*g6^12) + t^6.45/(g1^4*g2^4*g5^8*g6^8) + t^6.45/(g1^8*g2^8*g5^4*g6^4) + t^6.47/(g1^8*g2^8*g3^4*g4^4) + t^6.47/(g3^4*g4^4*g5^8*g6^8) + (2*t^6.47)/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + t^6.5/(g1^4*g2^4*g3^8*g4^8) + t^6.5/(g3^8*g4^8*g5^4*g6^4) + t^6.52/(g3^12*g4^12) + (g2^2*g6^2*t^7.04)/(g1^2*g3^2*g4^2*g5^2) + (g2^2*g3^2*t^7.05)/(g1^2*g4^2*g5^2*g6^2) + (g2^2*g4^2*t^7.05)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g6^2*t^7.05)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.05)/(g1^2*g2^2*g3^2*g5^2) + (g2^2*g5^2*t^7.09)/(g1^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.09)/(g2^2*g3^2*g4^2*g5^2) + (g1^2*g3^2*t^7.1)/(g2^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.1)/(g2^2*g3^2*g5^2*g6^2) + (g3^2*g5^2*t^7.1)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.1)/(g1^2*g2^2*g3^2*g6^2) + t^7.44/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.49/(g1^6*g2^2*g3^2*g4^2*g5^10*g6^6) + t^7.49/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.51/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.53/(g1^2*g2^2*g3^2*g4^2*g5^10*g6^10) + t^7.53/(g1^6*g2^6*g3^2*g4^2*g5^6*g6^6) + t^7.53/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^7.53)/(g1^5*g3*g4*g5^5*g6) + (g2^3*g6^3*t^7.53)/(g1^5*g3*g4*g5^5) + (g6^7*t^7.53)/(g1^5*g2*g3*g4*g5^5) + (g2^3*g3^3*t^7.54)/(g1^5*g4*g5^5*g6) + (g2^3*g4^3*t^7.54)/(g1^5*g3*g5^5*g6) + (g3^3*g6^3*t^7.54)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.54)/(g1^5*g2*g3*g5^5) + (g3^7*t^7.55)/(g1^5*g2*g4*g5^5*g6) + (g3^3*g4^3*t^7.55)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.55)/(g1^5*g2*g3*g5^5*g6) + t^7.56/(g1^2*g2^2*g3^6*g4^6*g5^6*g6^6) + t^7.56/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + (g2^7*t^7.57)/(g1*g3*g4*g5^5*g6^5) + (g2^3*t^7.57)/(g1*g3*g4*g5^5*g6) + (g2^3*t^7.57)/(g1^5*g3*g4*g5*g6) + (g6^3*t^7.57)/(g1*g2*g3*g4*g5^5) + (g6^3*t^7.57)/(g1^5*g2*g3*g4*g5) + (g6^7*t^7.57)/(g1^5*g2^5*g3*g4*g5) + (g2^3*g3^3*t^7.58)/(g1*g4*g5^5*g6^5) + (g2^3*g4^3*t^7.58)/(g1*g3*g5^5*g6^5) + t^7.58/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + (g3^3*t^7.58)/(g1*g2*g4*g5^5*g6) + (g4^3*t^7.58)/(g1*g2*g3*g5^5*g6) + (g3^3*t^7.58)/(g1^5*g2*g4*g5*g6) + (g4^3*t^7.58)/(g1^5*g2*g3*g5*g6) + (g3^3*g6^3*t^7.58)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.58)/(g1^5*g2^5*g3*g5) + (g3^7*t^7.59)/(g1*g2*g4*g5^5*g6^5) + (g3^3*g4^3*t^7.59)/(g1*g2*g5^5*g6^5) + (g4^7*t^7.59)/(g1*g2*g3*g5^5*g6^5) + (g3^7*t^7.59)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.59)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.59)/(g1^5*g2^5*g3*g5*g6) + (g2^7*t^7.6)/(g1*g3^5*g4^5*g5*g6) + (g2^3*g6^3*t^7.6)/(g1*g3^5*g4^5*g5) + (g6^7*t^7.6)/(g1*g2*g3^5*g4^5*g5) + g2^8*g6^8*t^7.61 + (g1^3*g2^3*t^7.62)/(g3*g4*g5^5*g6^5) + (g1^3*t^7.62)/(g2*g3*g4*g5^5*g6) - t^7.62/(g1*g2*g3*g4*g5*g6) + (g5^3*t^7.62)/(g1^5*g2*g3*g4*g6) + (g5^3*g6^3*t^7.62)/(g1^5*g2^5*g3*g4) + g2^8*g3^4*g6^4*t^7.62 + g2^8*g4^4*g6^4*t^7.62 + g2^4*g3^4*g6^8*t^7.62 + g2^4*g4^4*g6^8*t^7.62 + g2^8*g3^8*t^7.63 + g2^8*g3^4*g4^4*t^7.63 + g2^8*g4^8*t^7.63 + (g1^3*g3^3*t^7.63)/(g2*g4*g5^5*g6^5) + (g1^3*g4^3*t^7.63)/(g2*g3*g5^5*g6^5) + (g3^3*g5^3*t^7.63)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.63)/(g1^5*g2^5*g3*g6) + g2^4*g3^8*g6^4*t^7.63 + g2^4*g3^4*g4^4*g6^4*t^7.63 + g2^4*g4^8*g6^4*t^7.63 + g3^8*g6^8*t^7.63 + g3^4*g4^4*g6^8*t^7.63 + g4^8*g6^8*t^7.63 + (g1^3*g2^3*t^7.64)/(g3^5*g4^5*g5*g6) + (g2^3*g5^3*t^7.64)/(g1*g3^5*g4^5*g6) + (g1^3*g6^3*t^7.64)/(g2*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.64)/(g1*g2*g3^5*g4^5) + (g1^7*t^7.66)/(g2*g3*g4*g5^5*g6^5) + (g5^7*t^7.66)/(g1^5*g2^5*g3*g4*g6) + g2^8*g5^4*g6^4*t^7.66 + g1^4*g2^4*g6^8*t^7.66 + g2^8*g3^4*g5^4*t^7.67 + g2^8*g4^4*g5^4*t^7.67 + g1^4*g2^4*g3^4*g6^4*t^7.67 + g1^4*g2^4*g4^4*g6^4*t^7.67 + g2^4*g3^4*g5^4*g6^4*t^7.67 + g2^4*g4^4*g5^4*g6^4*t^7.67 + g1^4*g3^4*g6^8*t^7.67 + g1^4*g4^4*g6^8*t^7.67 + g1^4*g2^4*g3^8*t^7.68 + g1^4*g2^4*g3^4*g4^4*t^7.68 + g1^4*g2^4*g4^8*t^7.68 + g2^4*g3^8*g5^4*t^7.68 + g2^4*g3^4*g4^4*g5^4*t^7.68 + g2^4*g4^8*g5^4*t^7.68 + g1^4*g3^8*g6^4*t^7.68 + g1^4*g3^4*g4^4*g6^4*t^7.68 + g1^4*g4^8*g6^4*t^7.68 + g3^8*g5^4*g6^4*t^7.68 + g3^4*g4^4*g5^4*g6^4*t^7.68 + g4^8*g5^4*g6^4*t^7.68 + (g1^7*t^7.69)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.69)/(g2*g3^5*g4^5*g6) + (g5^7*t^7.69)/(g1*g2*g3^5*g4^5*g6) + g2^8*g5^8*t^7.7 + g1^8*g6^8*t^7.7 + g2^4*g3^4*g5^8*t^7.71 + g2^4*g4^4*g5^8*t^7.71 + g1^8*g3^4*g6^4*t^7.71 + g1^8*g4^4*g6^4*t^7.71 + g1^8*g3^8*t^7.72 + g1^8*g3^4*g4^4*t^7.72 + g1^8*g4^8*t^7.72 + g1^4*g3^8*g5^4*t^7.72 + g1^4*g3^4*g4^4*g5^4*t^7.72 + g1^4*g4^8*g5^4*t^7.72 + g3^8*g5^8*t^7.72 + g3^4*g4^4*g5^8*t^7.72 + g4^8*g5^8*t^7.72 + (g2^4*g6^4*t^8.01)/(g1^8*g5^8) + (g2^4*g3^4*t^8.02)/(g1^8*g5^8) + (g2^4*g4^4*t^8.02)/(g1^8*g5^8) + (g3^4*g6^4*t^8.02)/(g1^8*g5^8) + (g4^4*g6^4*t^8.02)/(g1^8*g5^8) + (g3^4*t^8.07)/(g1^4*g5^8) + (g4^4*t^8.07)/(g1^4*g5^8) + (g3^4*t^8.07)/(g1^8*g5^4) + (g4^4*t^8.07)/(g1^8*g5^4) + (g2^4*g3^4*t^8.07)/(g1^4*g5^8*g6^4) + (g2^4*g4^4*t^8.07)/(g1^4*g5^8*g6^4) + (g3^4*g6^4*t^8.07)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^8.07)/(g1^8*g2^4*g5^4) + (g2^4*g6^4*t^8.08)/(g1^4*g3^4*g4^4*g5^4) - (6*t^8.1)/(g1^4*g5^4) - (g3^4*t^8.1)/(g1^4*g4^4*g5^4) - (g4^4*t^8.1)/(g1^4*g3^4*g5^4) - (g2^4*t^8.1)/(g1^4*g5^4*g6^4) - (g6^4*t^8.1)/(g1^4*g2^4*g5^4) + (g3^4*t^8.11)/(g1^8*g2^4) + (g4^4*t^8.11)/(g1^8*g2^4) + (g2^4*g3^4*t^8.11)/(g5^8*g6^8) + (g2^4*g4^4*t^8.11)/(g5^8*g6^8) + (g3^4*t^8.11)/(g5^8*g6^4) + (g4^4*t^8.11)/(g5^8*g6^4) + (g3^4*g6^4*t^8.11)/(g1^8*g2^8) + (g4^4*g6^4*t^8.11)/(g1^8*g2^8) - (6*t^8.15)/(g1^4*g2^4) - (g3^4*t^8.15)/(g1^4*g2^4*g4^4) - (g4^4*t^8.15)/(g1^4*g2^4*g3^4) - t^8.15/(g2^4*g5^4) - t^8.15/(g1^4*g6^4) - (6*t^8.15)/(g5^4*g6^4) - (g3^4*t^8.15)/(g4^4*g5^4*g6^4) - (g4^4*t^8.15)/(g3^4*g5^4*g6^4) + (g2^4*g6^4*t^8.15)/(g3^8*g4^8) + (g3^4*g5^4*t^8.16)/(g1^8*g2^8) + (g4^4*g5^4*t^8.16)/(g1^8*g2^8) + (g1^4*g3^4*t^8.16)/(g5^8*g6^8) + (g1^4*g4^4*t^8.16)/(g5^8*g6^8) - (5*t^8.17)/(g3^4*g4^4) - (g5^4*t^8.19)/(g1^4*g2^8) - (g1^4*t^8.19)/(g5^4*g6^8) - t^8.19/(g2^4*g6^4) - (g1^4*t^8.19)/(g2^4*g5^4*g6^4) - (g5^4*t^8.19)/(g1^4*g2^4*g6^4) - g1*g2^9*g3*g4*g5*g6*t^8.19 - g1*g2^5*g3*g4*g5*g6^5*t^8.19 - g1*g2*g3*g4*g5*g6^9*t^8.19 + (g2^4*g5^4*t^8.2)/(g3^8*g4^8) - g1*g2^5*g3^5*g4*g5*g6*t^8.2 - g1*g2^5*g3*g4^5*g5*g6*t^8.2 + (g1^4*g6^4*t^8.2)/(g3^8*g4^8) - g1*g2*g3^5*g4*g5*g6^5*t^8.2 - g1*g2*g3*g4^5*g5*g6^5*t^8.2 - g1*g2*g3^9*g4*g5*g6*t^8.21 - g1*g2*g3^5*g4^5*g5*g6*t^8.21 - g1*g2*g3*g4^9*g5*g6*t^8.21 - (g1^4*t^8.22)/(g2^4*g3^4*g4^4) - (g5^4*t^8.22)/(g2^4*g3^4*g4^4) - (g1^4*t^8.22)/(g3^4*g4^4*g6^4) - (g5^4*t^8.22)/(g3^4*g4^4*g6^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.23 - g1*g2^5*g3*g4*g5^5*g6*t^8.23 - g1^5*g2*g3*g4*g5*g6^5*t^8.23 - g1*g2*g3*g4*g5^5*g6^5*t^8.23 - g1^5*g2*g3^5*g4*g5*g6*t^8.24 - g1^5*g2*g3*g4^5*g5*g6*t^8.24 - g1*g2*g3^5*g4*g5^5*g6*t^8.24 - g1*g2*g3*g4^5*g5^5*g6*t^8.24 - g1^9*g2*g3*g4*g5*g6*t^8.28 - g1^5*g2*g3*g4*g5^5*g6*t^8.28 - g1*g2*g3*g4*g5^9*g6*t^8.28 + t^8.41/(g1^16*g5^16) + t^8.46/(g1^16*g2^4*g5^12) + t^8.46/(g1^12*g5^16*g6^4) + t^8.48/(g1^12*g3^4*g4^4*g5^12) + t^8.5/(g1^16*g2^8*g5^8) + t^8.5/(g1^8*g5^16*g6^8) + t^8.5/(g1^12*g2^4*g5^12*g6^4) + t^8.53/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.53/(g1^8*g3^4*g4^4*g5^12*g6^4) + t^8.55/(g1^16*g2^12*g5^4) + t^8.55/(g1^4*g5^16*g6^12) + t^8.55/(g1^8*g2^4*g5^12*g6^8) + t^8.55/(g1^12*g2^8*g5^8*g6^4) + t^8.56/(g1^8*g3^8*g4^8*g5^8) + t^8.57/(g1^12*g2^8*g3^4*g4^4*g5^4) + t^8.57/(g1^4*g3^4*g4^4*g5^12*g6^8) + (2*t^8.57)/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.59/(g1^16*g2^16) + t^8.59/(g5^16*g6^16) + t^8.59/(g1^4*g2^4*g5^12*g6^12) + t^8.59/(g1^8*g2^8*g5^8*g6^8) + t^8.59/(g1^12*g2^12*g5^4*g6^4) + t^8.6/(g1^8*g2^4*g3^8*g4^8*g5^4) + t^8.6/(g1^4*g3^8*g4^8*g5^8*g6^4) + t^8.62/(g1^12*g2^12*g3^4*g4^4) + t^8.62/(g3^4*g4^4*g5^12*g6^12) + (2*t^8.62)/(g1^4*g2^4*g3^4*g4^4*g5^8*g6^8) + (2*t^8.62)/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + t^8.63/(g1^4*g3^12*g4^12*g5^4) + t^8.65/(g1^8*g2^8*g3^8*g4^8) + t^8.65/(g3^8*g4^8*g5^8*g6^8) + (2*t^8.65)/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + (g2^5*t^8.66)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g6*t^8.66)/(g1^3*g3^3*g4^3*g5^3) + (g6^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.67/(g1^4*g2^4*g3^12*g4^12) + t^8.67/(g3^12*g4^12*g5^4*g6^4) + (g2*g3*t^8.67)/(g1^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.67)/(g1^3*g3^3*g5^3*g6^3) + (g3*g6*t^8.67)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.67)/(g1^3*g2^3*g3^3*g5^3) + (g3^5*t^8.68)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.68)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.68)/(g1^3*g2^3*g3^3*g5^3*g6^3) + t^8.7/(g3^16*g4^16) + (g1*g2*t^8.71)/(g3^3*g4^3*g5^3*g6^3) + (g2*g5*t^8.71)/(g1^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.71)/(g2^3*g3^3*g4^3*g5^3) + (g5*g6*t^8.71)/(g1^3*g2^3*g3^3*g4^3) + (g1*g3*t^8.72)/(g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.72)/(g2^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.72)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.72)/(g1^3*g2^3*g3^3*g6^3) + (g1^5*t^8.75)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.75)/(g2^3*g3^3*g4^3*g6^3) + (g5^5*t^8.75)/(g1^3*g2^3*g3^3*g4^3*g6^3) - t^4.62/(g1*g2*g3*g4*g5*g6*y) - t^6.72/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.77/(g1*g2*g3*g4*g5^5*g6^5*y) - t^6.77/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.79/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.25/(g1^8*g2^4*g5^4*y) + t^7.25/(g1^4*g5^8*g6^4*y) + t^7.28/(g1^4*g3^4*g4^4*g5^4*y) + t^7.3/(g1^4*g2^4*g5^4*g6^4*y) + t^7.32/(g1^4*g2^4*g3^4*g4^4*y) + t^7.32/(g3^4*g4^4*g5^4*g6^4*y) + (g1*g2*g3*g4*g5*g6*t^7.38)/y - t^7.85/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.34/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.38/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*y) + t^8.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.41/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + (g3^3*g4^3*t^8.44)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.47)/(g3*g4*g5*g6*y) + (g5^3*g6^3*t^8.47)/(g1*g2*g3*g4*y) + (g1^3*g5^3*t^8.51)/(g2*g3*g4*g6*y) - t^8.82/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.87/(g1^5*g2*g3*g4*g5^9*g6^5*y) - t^8.87/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.9/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) + (g2^4*g6^4*t^8.91)/(g1^4*g5^4*y) + (g2^4*g3^4*t^8.92)/(g1^4*g5^4*y) + (g2^4*g4^4*t^8.92)/(g1^4*g5^4*y) - t^8.92/(g1*g2*g3*g4*g5^9*g6^9*y) - t^8.92/(g1^5*g2^5*g3*g4*g5^5*g6^5*y) - t^8.92/(g1^9*g2^9*g3*g4*g5*g6*y) + (g3^4*g6^4*t^8.92)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.92)/(g1^4*g5^4*y) - t^8.94/(g1*g2*g3^5*g4^5*g5^5*g6^5*y) - t^8.94/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) + (g2^4*t^8.95)/(g1^4*y) + (g2^4*t^8.95)/(g5^4*y) + (g6^4*t^8.95)/(g1^4*y) + (g6^4*t^8.95)/(g5^4*y) + (2*g3^4*t^8.96)/(g1^4*y) + (2*g4^4*t^8.96)/(g1^4*y) + (2*g3^4*t^8.96)/(g5^4*y) + (2*g4^4*t^8.96)/(g5^4*y) + (g2^4*g3^4*t^8.96)/(g5^4*g6^4*y) + (g2^4*g4^4*t^8.96)/(g5^4*g6^4*y) + (g3^4*g6^4*t^8.96)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.96)/(g1^4*g2^4*y) - t^8.97/(g1*g2*g3^9*g4^9*g5*g6*y) + (g2^4*g6^4*t^8.98)/(g3^4*g4^4*y) + (g2^4*t^8.99)/(g3^4*y) + (g2^4*t^8.99)/(g4^4*y) + (g6^4*t^8.99)/(g3^4*y) + (g6^4*t^8.99)/(g4^4*y) - (t^4.62*y)/(g1*g2*g3*g4*g5*g6) - (t^6.72*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.77*y)/(g1*g2*g3*g4*g5^5*g6^5) - (t^6.77*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.79*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.25*y)/(g1^8*g2^4*g5^4) + (t^7.25*y)/(g1^4*g5^8*g6^4) + (t^7.28*y)/(g1^4*g3^4*g4^4*g5^4) + (t^7.3*y)/(g1^4*g2^4*g5^4*g6^4) + (t^7.32*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.32*y)/(g3^4*g4^4*g5^4*g6^4) + g1*g2*g3*g4*g5*g6*t^7.38*y - (t^7.85*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.34*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.38*y)/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6) + (t^8.38*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.41*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g4^3*t^8.44*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.47*y)/(g3*g4*g5*g6) + (g5^3*g6^3*t^8.47*y)/(g1*g2*g3*g4) + (g1^3*g5^3*t^8.51*y)/(g2*g3*g4*g6) - (t^8.82*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.87*y)/(g1^5*g2*g3*g4*g5^9*g6^5) - (t^8.87*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.9*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) + (g2^4*g6^4*t^8.91*y)/(g1^4*g5^4) + (g2^4*g3^4*t^8.92*y)/(g1^4*g5^4) + (g2^4*g4^4*t^8.92*y)/(g1^4*g5^4) - (t^8.92*y)/(g1*g2*g3*g4*g5^9*g6^9) - (t^8.92*y)/(g1^5*g2^5*g3*g4*g5^5*g6^5) - (t^8.92*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g3^4*g6^4*t^8.92*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.92*y)/(g1^4*g5^4) - (t^8.94*y)/(g1*g2*g3^5*g4^5*g5^5*g6^5) - (t^8.94*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) + (g2^4*t^8.95*y)/g1^4 + (g2^4*t^8.95*y)/g5^4 + (g6^4*t^8.95*y)/g1^4 + (g6^4*t^8.95*y)/g5^4 + (2*g3^4*t^8.96*y)/g1^4 + (2*g4^4*t^8.96*y)/g1^4 + (2*g3^4*t^8.96*y)/g5^4 + (2*g4^4*t^8.96*y)/g5^4 + (g2^4*g3^4*t^8.96*y)/(g5^4*g6^4) + (g2^4*g4^4*t^8.96*y)/(g5^4*g6^4) + (g3^4*g6^4*t^8.96*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.96*y)/(g1^4*g2^4) - (t^8.97*y)/(g1*g2*g3^9*g4^9*g5*g6) + (g2^4*g6^4*t^8.98*y)/(g3^4*g4^4) + (g2^4*t^8.99*y)/g3^4 + (g2^4*t^8.99*y)/g4^4 + (g6^4*t^8.99*y)/g3^4 + (g6^4*t^8.99*y)/g4^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55676 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.9181 1.142 0.8039 [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y detail