Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55765 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ \phi_1\tilde{q}_3^2$ 0.9089 1.1242 0.8085 [X:[], M:[0.7319, 0.7477, 0.7319], q:[0.6475, 0.6207, 0.6261], qb:[0.6261, 0.6207, 0.7344], phi:[0.5311]] [X:[], M:[[0, 1, 1, 1, -7], [0, -1, -1, 0, 0], [1, 1, 1, 0, -7]], q:[[-1, -1, -1, -1, 7], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, 0, 0, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_1\tilde{q}_3$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_2M_3$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1q_1^2$, $ M_3q_2q_3$, $ M_3q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$ . -9 2*t^2.2 + t^2.24 + t^3.19 + t^3.72 + 4*t^3.74 + 2*t^3.82 + 2*t^4.07 + 2*t^4.08 + t^4.15 + 3*t^4.39 + 2*t^4.44 + t^4.49 + 3*t^5.32 + 4*t^5.33 + 3*t^5.35 + 2*t^5.38 + 2*t^5.4 + 2*t^5.41 + t^5.43 + t^5.48 + 6*t^5.94 + t^5.97 - 9*t^6. - 2*t^6.08 + 3*t^6.26 + 4*t^6.28 + 2*t^6.31 + t^6.37 + t^6.39 + 4*t^6.59 + 3*t^6.63 + 2*t^6.68 + t^6.73 + t^6.91 + 4*t^6.93 + 2*t^7.01 + t^7.45 + 4*t^7.46 + 9*t^7.48 + 4*t^7.51 + 6*t^7.53 + 6*t^7.55 + 9*t^7.56 + 3*t^7.58 - t^7.59 + 2*t^7.63 + 5*t^7.64 + t^7.67 + t^7.72 + 2*t^7.79 + 8*t^7.81 + 6*t^7.82 + 4*t^7.89 + 3*t^7.9 + 2*t^7.97 + 8*t^8.13 - 16*t^8.2 - t^8.21 - 6*t^8.24 - t^8.28 - 2*t^8.32 + 4*t^8.46 + 4*t^8.47 - 2*t^8.49 + 6*t^8.5 + 4*t^8.52 + 2*t^8.54 + t^8.55 + 2*t^8.57 + 2*t^8.58 + 2*t^8.6 + t^8.62 + t^8.63 + t^8.66 + 5*t^8.78 - t^8.81 + 4*t^8.83 + 3*t^8.88 + 2*t^8.93 + t^8.97 - t^4.59/y - (2*t^6.79)/y - t^6.84/y + t^7.39/y + t^7.41/y + (2*t^7.44)/y - t^7.78/y + t^8.35/y + (2*t^8.38)/y + (2*t^8.4)/y + t^8.43/y + (2*t^8.92)/y + (8*t^8.94)/y + t^8.97/y + t^8.98/y - t^4.59*y - 2*t^6.79*y - t^6.84*y + t^7.39*y + t^7.41*y + 2*t^7.44*y - t^7.78*y + t^8.35*y + 2*t^8.38*y + 2*t^8.4*y + t^8.43*y + 2*t^8.92*y + 8*t^8.94*y + t^8.97*y + t^8.98*y (g1*g2*g3*t^2.2)/g5^7 + (g2*g3*g4*t^2.2)/g5^7 + t^2.24/(g2*g3) + t^3.19/g5^4 + g1*g4*t^3.72 + g1*g2*t^3.74 + g1*g3*t^3.74 + g2*g4*t^3.74 + g3*g4*t^3.74 + (g5^7*t^3.82)/(g1*g2*g4) + (g5^7*t^3.82)/(g1*g3*g4) + g1*g5*t^4.07 + g4*g5*t^4.07 + g2*g5*t^4.08 + g3*g5*t^4.08 + (g5^8*t^4.15)/(g1*g2*g3*g4) + (g1^2*g2^2*g3^2*t^4.39)/g5^14 + (g1*g2^2*g3^2*g4*t^4.39)/g5^14 + (g2^2*g3^2*g4^2*t^4.39)/g5^14 + (g1*t^4.44)/g5^7 + (g4*t^4.44)/g5^7 + t^4.49/(g2^2*g3^2) + (g1^2*t^5.32)/g5^2 + (g1*g4*t^5.32)/g5^2 + (g4^2*t^5.32)/g5^2 + (g1*g2*t^5.33)/g5^2 + (g1*g3*t^5.33)/g5^2 + (g2*g4*t^5.33)/g5^2 + (g3*g4*t^5.33)/g5^2 + (g2^2*t^5.35)/g5^2 + (g2*g3*t^5.35)/g5^2 + (g3^2*t^5.35)/g5^2 + (g1*g2*g3*t^5.38)/g5^11 + (g2*g3*g4*t^5.38)/g5^11 + (g5^5*t^5.4)/(g1*g2*g3) + (g5^5*t^5.4)/(g2*g3*g4) + (g5^5*t^5.41)/(g1*g2*g4) + (g5^5*t^5.41)/(g1*g3*g4) + t^5.43/(g2*g3*g5^4) + (g5^12*t^5.48)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g2^2*g3*t^5.94)/g5^7 + (g1^2*g2*g3^2*t^5.94)/g5^7 + (g1*g2^2*g3*g4*t^5.94)/g5^7 + (g1*g2*g3^2*g4*t^5.94)/g5^7 + (g2^2*g3*g4^2*t^5.94)/g5^7 + (g2*g3^2*g4^2*t^5.94)/g5^7 + (g1*g4*t^5.97)/(g2*g3) - 5*t^6. - (g2*t^6.)/g3 - (g3*t^6.)/g2 - (g1*t^6.)/g4 - (g4*t^6.)/g1 - (g5^7*t^6.08)/(g1*g2*g3*g4^2) - (g5^7*t^6.08)/(g1^2*g2*g3*g4) + (g1^2*g2*g3*t^6.26)/g5^6 + (g1*g2*g3*g4*t^6.26)/g5^6 + (g2*g3*g4^2*t^6.26)/g5^6 + (g1*g2^2*g3*t^6.28)/g5^6 + (g1*g2*g3^2*t^6.28)/g5^6 + (g2^2*g3*g4*t^6.28)/g5^6 + (g2*g3^2*g4*t^6.28)/g5^6 + (g1*g5*t^6.31)/(g2*g3) + (g4*g5*t^6.31)/(g2*g3) + t^6.37/g5^8 + (g5^8*t^6.39)/(g1*g2^2*g3^2*g4) + (g1^3*g2^3*g3^3*t^6.59)/g5^21 + (g1^2*g2^3*g3^3*g4*t^6.59)/g5^21 + (g1*g2^3*g3^3*g4^2*t^6.59)/g5^21 + (g2^3*g3^3*g4^3*t^6.59)/g5^21 + (g1^2*g2*g3*t^6.63)/g5^14 + (g1*g2*g3*g4*t^6.63)/g5^14 + (g2*g3*g4^2*t^6.63)/g5^14 + (g1*t^6.68)/(g2*g3*g5^7) + (g4*t^6.68)/(g2*g3*g5^7) + t^6.73/(g2^3*g3^3) + (g1*g4*t^6.91)/g5^4 + (g1*g2*t^6.93)/g5^4 + (g1*g3*t^6.93)/g5^4 + (g2*g4*t^6.93)/g5^4 + (g3*g4*t^6.93)/g5^4 + (g5^3*t^7.01)/(g1*g2*g4) + (g5^3*t^7.01)/(g1*g3*g4) + g1^2*g4^2*t^7.45 + g1^2*g2*g4*t^7.46 + g1^2*g3*g4*t^7.46 + g1*g2*g4^2*t^7.46 + g1*g3*g4^2*t^7.46 + g1^2*g2^2*t^7.48 + g1^2*g2*g3*t^7.48 + g1^2*g3^2*t^7.48 + g1*g2^2*g4*t^7.48 + g1*g2*g3*g4*t^7.48 + g1*g3^2*g4*t^7.48 + g2^2*g4^2*t^7.48 + g2*g3*g4^2*t^7.48 + g3^2*g4^2*t^7.48 + (g1^3*g2*g3*t^7.51)/g5^9 + (g1^2*g2*g3*g4*t^7.51)/g5^9 + (g1*g2*g3*g4^2*t^7.51)/g5^9 + (g2*g3*g4^3*t^7.51)/g5^9 + (g1^2*g2^2*g3*t^7.53)/g5^9 + (g1^2*g2*g3^2*t^7.53)/g5^9 + (g1*g2^2*g3*g4*t^7.53)/g5^9 + (g1*g2*g3^2*g4*t^7.53)/g5^9 + (g2^2*g3*g4^2*t^7.53)/g5^9 + (g2*g3^2*g4^2*t^7.53)/g5^9 + (g1*g2^3*g3*t^7.55)/g5^9 + (g1*g2^2*g3^2*t^7.55)/g5^9 + (g1*g2*g3^3*t^7.55)/g5^9 + (g2^3*g3*g4*t^7.55)/g5^9 + (g2^2*g3^2*g4*t^7.55)/g5^9 + (g2*g3^3*g4*t^7.55)/g5^9 + (g1^2*t^7.56)/(g2*g3*g5^2) + (g1*g4*t^7.56)/(g2*g3*g5^2) + (g4^2*t^7.56)/(g2*g3*g5^2) + (g5^7*t^7.56)/g1 + (g2*g5^7*t^7.56)/(g1*g3) + (g3*g5^7*t^7.56)/(g1*g2) + (g5^7*t^7.56)/g4 + (g2*g5^7*t^7.56)/(g3*g4) + (g3*g5^7*t^7.56)/(g2*g4) + (g1^2*g2^2*g3^2*t^7.58)/g5^18 + (g1*g2^2*g3^2*g4*t^7.58)/g5^18 + (g2^2*g3^2*g4^2*t^7.58)/g5^18 - t^7.59/g5^2 + (g1*t^7.63)/g5^11 + (g4*t^7.63)/g5^11 + (g5^5*t^7.64)/(g1*g2^2*g3^2) + (g5^5*t^7.64)/(g2^2*g3^2*g4) + (g5^14*t^7.64)/(g1^2*g2^2*g4^2) + (g5^14*t^7.64)/(g1^2*g3^2*g4^2) + (g5^14*t^7.64)/(g1^2*g2*g3*g4^2) + t^7.67/(g2^2*g3^2*g5^4) + (g5^12*t^7.72)/(g1^2*g2^3*g3^3*g4^2) + g1^2*g4*g5*t^7.79 + g1*g4^2*g5*t^7.79 + g1^2*g2*g5*t^7.81 + g1^2*g3*g5*t^7.81 + 2*g1*g2*g4*g5*t^7.81 + 2*g1*g3*g4*g5*t^7.81 + g2*g4^2*g5*t^7.81 + g3*g4^2*g5*t^7.81 + g1*g2^2*g5*t^7.82 + g1*g2*g3*g5*t^7.82 + g1*g3^2*g5*t^7.82 + g2^2*g4*g5*t^7.82 + g2*g3*g4*g5*t^7.82 + g3^2*g4*g5*t^7.82 + (g5^8*t^7.89)/(g1*g2) + (g5^8*t^7.89)/(g1*g3) + (g5^8*t^7.89)/(g2*g4) + (g5^8*t^7.89)/(g3*g4) + (g5^8*t^7.9)/(g1*g4) + (g2*g5^8*t^7.9)/(g1*g3*g4) + (g3*g5^8*t^7.9)/(g1*g2*g4) + (g5^15*t^7.97)/(g1^2*g2*g3^2*g4^2) + (g5^15*t^7.97)/(g1^2*g2^2*g3*g4^2) + (g1^3*g2^3*g3^2*t^8.13)/g5^14 + (g1^3*g2^2*g3^3*t^8.13)/g5^14 + (g1^2*g2^3*g3^2*g4*t^8.13)/g5^14 + (g1^2*g2^2*g3^3*g4*t^8.13)/g5^14 + (g1*g2^3*g3^2*g4^2*t^8.13)/g5^14 + (g1*g2^2*g3^3*g4^2*t^8.13)/g5^14 + (g2^3*g3^2*g4^3*t^8.13)/g5^14 + (g2^2*g3^3*g4^3*t^8.13)/g5^14 - (g1*g2^2*t^8.2)/g5^7 - (5*g1*g2*g3*t^8.2)/g5^7 - (g1*g3^2*t^8.2)/g5^7 - (g1^2*g2*g3*t^8.2)/(g4*g5^7) - (g2^2*g4*t^8.2)/g5^7 - (5*g2*g3*g4*t^8.2)/g5^7 - (g3^2*g4*t^8.2)/g5^7 - (g2*g3*g4^2*t^8.2)/(g1*g5^7) + (g1*g4*t^8.21)/(g2^2*g3^2) - (g2^2*g3*t^8.21)/g5^7 - (g2*g3^2*t^8.21)/g5^7 - (4*t^8.24)/(g2*g3) - (g1*t^8.24)/(g2*g3*g4) - (g4*t^8.24)/(g1*g2*g3) - t^8.28/(g1*g4) - (g5^7*t^8.32)/(g1*g2^2*g3^2*g4^2) - (g5^7*t^8.32)/(g1^2*g2^2*g3^2*g4) + (g1^3*g2^2*g3^2*t^8.46)/g5^13 + (g1^2*g2^2*g3^2*g4*t^8.46)/g5^13 + (g1*g2^2*g3^2*g4^2*t^8.46)/g5^13 + (g2^2*g3^2*g4^3*t^8.46)/g5^13 + (g1^2*g2^3*g3^2*t^8.47)/g5^13 + (g1^2*g2^2*g3^3*t^8.47)/g5^13 + (g1*g2^3*g3^2*g4*t^8.47)/g5^13 + (g1*g2^2*g3^3*g4*t^8.47)/g5^13 + (g2^3*g3^2*g4^2*t^8.47)/g5^13 + (g2^2*g3^3*g4^2*t^8.47)/g5^13 - g1*g5^3*t^8.47 - g4*g5^3*t^8.47 - g2*g5^3*t^8.49 - g3*g5^3*t^8.49 + (2*g1^2*t^8.5)/g5^6 + (2*g1*g4*t^8.5)/g5^6 + (2*g4^2*t^8.5)/g5^6 + (g1*g2*t^8.52)/g5^6 + (g1*g3*t^8.52)/g5^6 + (g2*g4*t^8.52)/g5^6 + (g3*g4*t^8.52)/g5^6 + (g2^2*t^8.54)/g5^6 + (g3^2*t^8.54)/g5^6 + (g1*g5*t^8.55)/(g2^2*g3^2) + (g4*g5*t^8.55)/(g2^2*g3^2) - (g5^10*t^8.55)/(g1*g2*g3*g4) + (g1*g2*g3*t^8.57)/g5^15 + (g2*g3*g4*t^8.57)/g5^15 + (g5*t^8.58)/(g1*g2*g3) + (g5*t^8.58)/(g2*g3*g4) + (g5*t^8.6)/(g1*g2*g4) + (g5*t^8.6)/(g1*g3*g4) + t^8.62/(g2*g3*g5^8) + (g5^8*t^8.63)/(g1*g2^3*g3^3*g4) + (g5^8*t^8.66)/(g1^2*g2^2*g3^2*g4^2) + (g1^4*g2^4*g3^4*t^8.78)/g5^28 + (g1^3*g2^4*g3^4*g4*t^8.78)/g5^28 + (g1^2*g2^4*g3^4*g4^2*t^8.78)/g5^28 + (g1*g2^4*g3^4*g4^3*t^8.78)/g5^28 + (g2^4*g3^4*g4^4*t^8.78)/g5^28 - g5^4*t^8.81 + (g1^3*g2^2*g3^2*t^8.83)/g5^21 + (g1^2*g2^2*g3^2*g4*t^8.83)/g5^21 + (g1*g2^2*g3^2*g4^2*t^8.83)/g5^21 + (g2^2*g3^2*g4^3*t^8.83)/g5^21 + (g1^2*t^8.88)/g5^14 + (g1*g4*t^8.88)/g5^14 + (g4^2*t^8.88)/g5^14 + (g1*t^8.93)/(g2^2*g3^2*g5^7) + (g4*t^8.93)/(g2^2*g3^2*g5^7) + t^8.97/(g2^4*g3^4) - t^4.59/(g5^2*y) - (g1*g2*g3*t^6.79)/(g5^9*y) - (g2*g3*g4*t^6.79)/(g5^9*y) - t^6.84/(g2*g3*g5^2*y) + (g1*g2^2*g3^2*g4*t^7.39)/(g5^14*y) + (g5^2*t^7.41)/y + (g1*t^7.44)/(g5^7*y) + (g4*t^7.44)/(g5^7*y) - t^7.78/(g5^6*y) + (g2*g3*t^8.35)/(g5^2*y) + (g1*g2*g3*t^8.38)/(g5^11*y) + (g2*g3*g4*t^8.38)/(g5^11*y) + (g5^5*t^8.4)/(g1*g2*g3*y) + (g5^5*t^8.4)/(g2*g3*g4*y) + t^8.43/(g2*g3*g5^4*y) + (g1^2*g2*g3*g4*t^8.92)/(g5^7*y) + (g1*g2*g3*g4^2*t^8.92)/(g5^7*y) + (g1^2*g2^2*g3*t^8.94)/(g5^7*y) + (g1^2*g2*g3^2*t^8.94)/(g5^7*y) + (2*g1*g2^2*g3*g4*t^8.94)/(g5^7*y) + (2*g1*g2*g3^2*g4*t^8.94)/(g5^7*y) + (g2^2*g3*g4^2*t^8.94)/(g5^7*y) + (g2*g3^2*g4^2*t^8.94)/(g5^7*y) + (g1*g4*t^8.97)/(g2*g3*y) + (g1*t^8.98)/(g2*y) + (g1*t^8.98)/(g3*y) + (g4*t^8.98)/(g2*y) + (g4*t^8.98)/(g3*y) - (g1^2*g2^2*g3^2*t^8.98)/(g5^16*y) - (g1*g2^2*g3^2*g4*t^8.98)/(g5^16*y) - (g2^2*g3^2*g4^2*t^8.98)/(g5^16*y) - (t^4.59*y)/g5^2 - (g1*g2*g3*t^6.79*y)/g5^9 - (g2*g3*g4*t^6.79*y)/g5^9 - (t^6.84*y)/(g2*g3*g5^2) + (g1*g2^2*g3^2*g4*t^7.39*y)/g5^14 + g5^2*t^7.41*y + (g1*t^7.44*y)/g5^7 + (g4*t^7.44*y)/g5^7 - (t^7.78*y)/g5^6 + (g2*g3*t^8.35*y)/g5^2 + (g1*g2*g3*t^8.38*y)/g5^11 + (g2*g3*g4*t^8.38*y)/g5^11 + (g5^5*t^8.4*y)/(g1*g2*g3) + (g5^5*t^8.4*y)/(g2*g3*g4) + (t^8.43*y)/(g2*g3*g5^4) + (g1^2*g2*g3*g4*t^8.92*y)/g5^7 + (g1*g2*g3*g4^2*t^8.92*y)/g5^7 + (g1^2*g2^2*g3*t^8.94*y)/g5^7 + (g1^2*g2*g3^2*t^8.94*y)/g5^7 + (2*g1*g2^2*g3*g4*t^8.94*y)/g5^7 + (2*g1*g2*g3^2*g4*t^8.94*y)/g5^7 + (g2^2*g3*g4^2*t^8.94*y)/g5^7 + (g2*g3^2*g4^2*t^8.94*y)/g5^7 + (g1*g4*t^8.97*y)/(g2*g3) + (g1*t^8.98*y)/g2 + (g1*t^8.98*y)/g3 + (g4*t^8.98*y)/g2 + (g4*t^8.98*y)/g3 - (g1^2*g2^2*g3^2*t^8.98*y)/g5^16 - (g1*g2^2*g3^2*g4*t^8.98*y)/g5^16 - (g2^2*g3^2*g4^2*t^8.98*y)/g5^16


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55676 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.9181 1.142 0.8039 [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y detail