Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55774 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_3$ 0.9383 1.1802 0.795 [X:[], M:[0.7046, 0.7236, 0.7046, 0.7046], q:[0.6646, 0.6308, 0.6382], qb:[0.6382, 0.6308, 0.6308], phi:[0.5416]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0], [-4, 0, 0, 0, 0, -4]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_4$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_1q_3$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ M_4^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_2$, $ M_2M_3$, $ M_2M_4$, $ M_2^2$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ M_2\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_4q_2\tilde{q}_2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_4q_3\tilde{q}_3$, $ M_3q_2q_3$, $ M_1q_3\tilde{q}_2$, $ M_4q_2q_3$, $ M_4q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$ . -14 3*t^2.11 + t^2.17 + t^3.25 + 3*t^3.78 + 6*t^3.81 + 2*t^3.91 + 6*t^4.23 + 3*t^4.28 + t^4.34 + 3*t^5.36 + 6*t^5.41 + t^5.42 + 6*t^5.43 + 3*t^5.45 + 3*t^5.51 + 2*t^5.53 + t^5.61 + 6*t^5.9 + 16*t^5.92 + 3*t^5.96 - 14*t^6. - 3*t^6.1 + 10*t^6.34 + 6*t^6.4 + 3*t^6.46 + t^6.5 + t^6.51 + 3*t^7.03 + 6*t^7.06 + 2*t^7.16 + 6*t^7.48 + 15*t^7.52 + 3*t^7.53 + 16*t^7.55 + 15*t^7.57 + 6*t^7.58 + 17*t^7.59 + 18*t^7.61 - t^7.62 - t^7.67 + 3*t^7.68 + 9*t^7.72 + t^7.78 + 3*t^7.82 + 10*t^8.01 + 30*t^8.03 + 6*t^8.07 - 39*t^8.11 + 3*t^8.13 - 6*t^8.14 - 6*t^8.16 - 11*t^8.17 - 6*t^8.18 - 3*t^8.2 - 3*t^8.22 - 3*t^8.26 - 3*t^8.27 - 2*t^8.28 - t^8.36 + 15*t^8.45 + 10*t^8.51 + 6*t^8.57 + 3*t^8.61 + 3*t^8.63 + 6*t^8.66 + t^8.67 + 7*t^8.68 + 3*t^8.7 + 3*t^8.76 + 2*t^8.78 + t^8.86 - t^4.62/y - (3*t^6.74)/y - t^6.8/y + (3*t^7.23)/y + (3*t^7.28)/y + t^7.38/y - t^7.87/y + (3*t^8.36)/y + t^8.42/y + t^8.45/y + (3*t^8.51)/y - (6*t^8.85)/y + (9*t^8.9)/y - (3*t^8.91)/y + (18*t^8.92)/y + (3*t^8.96)/y - t^8.97/y + (6*t^8.98)/y - t^4.62*y - 3*t^6.74*y - t^6.8*y + 3*t^7.23*y + 3*t^7.28*y + t^7.38*y - t^7.87*y + 3*t^8.36*y + t^8.42*y + t^8.45*y + 3*t^8.51*y - 6*t^8.85*y + 9*t^8.9*y - 3*t^8.91*y + 18*t^8.92*y + 3*t^8.96*y - t^8.97*y + 6*t^8.98*y t^2.11/(g1^4*g2^4) + t^2.11/(g1^4*g5^4) + t^2.11/(g1^4*g6^4) + t^2.17/(g3^4*g4^4) + t^3.25/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g5^4*t^3.78 + g2^4*g6^4*t^3.78 + g5^4*g6^4*t^3.78 + g2^4*g3^4*t^3.81 + g2^4*g4^4*t^3.81 + g3^4*g5^4*t^3.81 + g4^4*g5^4*t^3.81 + g3^4*g6^4*t^3.81 + g4^4*g6^4*t^3.81 + g1^4*g3^4*t^3.91 + g1^4*g4^4*t^3.91 + t^4.23/(g1^8*g2^8) + t^4.23/(g1^8*g5^8) + t^4.23/(g1^8*g2^4*g5^4) + t^4.23/(g1^8*g6^8) + t^4.23/(g1^8*g2^4*g6^4) + t^4.23/(g1^8*g5^4*g6^4) + t^4.28/(g1^4*g2^4*g3^4*g4^4) + t^4.28/(g1^4*g3^4*g4^4*g5^4) + t^4.28/(g1^4*g3^4*g4^4*g6^4) + t^4.34/(g3^8*g4^8) + t^5.36/(g1^6*g2^2*g3^2*g4^2*g5^2*g6^6) + t^5.36/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^5.41)/(g1*g3*g4*g5*g6) + (g2^3*g5^3*t^5.41)/(g1*g3*g4*g6) + (g5^7*t^5.41)/(g1*g2*g3*g4*g6) + (g2^3*g6^3*t^5.41)/(g1*g3*g4*g5) + (g5^3*g6^3*t^5.41)/(g1*g2*g3*g4) + (g6^7*t^5.41)/(g1*g2*g3*g4*g5) + t^5.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g2^3*g3^3*t^5.43)/(g1*g4*g5*g6) + (g2^3*g4^3*t^5.43)/(g1*g3*g5*g6) + (g3^3*g5^3*t^5.43)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.43)/(g1*g2*g3*g6) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.43)/(g1*g2*g3*g5) + (g3^7*t^5.45)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.45)/(g1*g2*g5*g6) + (g4^7*t^5.45)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.51)/(g3*g4*g5*g6) + (g1^3*g5^3*t^5.51)/(g2*g3*g4*g6) + (g1^3*g6^3*t^5.51)/(g2*g3*g4*g5) + (g1^3*g3^3*t^5.53)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.53)/(g2*g3*g5*g6) + (g1^7*t^5.61)/(g2*g3*g4*g5*g6) + (g2^4*t^5.9)/g1^4 + (g5^4*t^5.9)/g1^4 + (g2^4*g5^4*t^5.9)/(g1^4*g6^4) + (g6^4*t^5.9)/g1^4 + (g2^4*g6^4*t^5.9)/(g1^4*g5^4) + (g5^4*g6^4*t^5.9)/(g1^4*g2^4) + (2*g3^4*t^5.92)/g1^4 + (2*g4^4*t^5.92)/g1^4 + (g2^4*g3^4*t^5.92)/(g1^4*g5^4) + (g2^4*g4^4*t^5.92)/(g1^4*g5^4) + (g3^4*g5^4*t^5.92)/(g1^4*g2^4) + (g4^4*g5^4*t^5.92)/(g1^4*g2^4) + (g2^4*g3^4*t^5.92)/(g1^4*g6^4) + (g2^4*g4^4*t^5.92)/(g1^4*g6^4) + (g3^4*g5^4*t^5.92)/(g1^4*g6^4) + (g4^4*g5^4*t^5.92)/(g1^4*g6^4) + (g3^4*g6^4*t^5.92)/(g1^4*g2^4) + (g4^4*g6^4*t^5.92)/(g1^4*g2^4) + (g3^4*g6^4*t^5.92)/(g1^4*g5^4) + (g4^4*g6^4*t^5.92)/(g1^4*g5^4) + (g2^4*g5^4*t^5.96)/(g3^4*g4^4) + (g2^4*g6^4*t^5.96)/(g3^4*g4^4) + (g5^4*g6^4*t^5.96)/(g3^4*g4^4) - 6*t^6. - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g2^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g2^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.1)/g2^4 - (g1^4*t^6.1)/g5^4 - (g1^4*t^6.1)/g6^4 + t^6.34/(g1^12*g2^12) + t^6.34/(g1^12*g5^12) + t^6.34/(g1^12*g2^4*g5^8) + t^6.34/(g1^12*g2^8*g5^4) + t^6.34/(g1^12*g6^12) + t^6.34/(g1^12*g2^4*g6^8) + t^6.34/(g1^12*g5^4*g6^8) + t^6.34/(g1^12*g2^8*g6^4) + t^6.34/(g1^12*g5^8*g6^4) + t^6.34/(g1^12*g2^4*g5^4*g6^4) + t^6.4/(g1^8*g2^8*g3^4*g4^4) + t^6.4/(g1^8*g3^4*g4^4*g5^8) + t^6.4/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.4/(g1^8*g3^4*g4^4*g6^8) + t^6.4/(g1^8*g2^4*g3^4*g4^4*g6^4) + t^6.4/(g1^8*g3^4*g4^4*g5^4*g6^4) + t^6.46/(g1^4*g2^4*g3^8*g4^8) + t^6.46/(g1^4*g3^8*g4^8*g5^4) + t^6.46/(g1^4*g3^8*g4^8*g6^4) + t^6.5/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + t^6.51/(g3^12*g4^12) + (g2^2*g5^2*t^7.03)/(g1^2*g3^2*g4^2*g6^2) + (g2^2*g6^2*t^7.03)/(g1^2*g3^2*g4^2*g5^2) + (g5^2*g6^2*t^7.03)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*g3^2*t^7.06)/(g1^2*g4^2*g5^2*g6^2) + (g2^2*g4^2*t^7.06)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g5^2*t^7.06)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.06)/(g1^2*g2^2*g3^2*g6^2) + (g3^2*g6^2*t^7.06)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.06)/(g1^2*g2^2*g3^2*g5^2) + (g1^2*g3^2*t^7.16)/(g2^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.16)/(g2^2*g3^2*g5^2*g6^2) + t^7.48/(g1^10*g2^2*g3^2*g4^2*g5^2*g6^10) + t^7.48/(g1^10*g2^2*g3^2*g4^2*g5^6*g6^6) + t^7.48/(g1^10*g2^6*g3^2*g4^2*g5^2*g6^6) + t^7.48/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.48/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.48/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^7.52)/(g1^5*g3*g4*g5*g6^5) + (g2^3*g5^3*t^7.52)/(g1^5*g3*g4*g6^5) + (g5^7*t^7.52)/(g1^5*g2*g3*g4*g6^5) + (g2^7*t^7.52)/(g1^5*g3*g4*g5^5*g6) + (2*g2^3*t^7.52)/(g1^5*g3*g4*g5*g6) + (2*g5^3*t^7.52)/(g1^5*g2*g3*g4*g6) + (g5^7*t^7.52)/(g1^5*g2^5*g3*g4*g6) + (g2^3*g6^3*t^7.52)/(g1^5*g3*g4*g5^5) + (2*g6^3*t^7.52)/(g1^5*g2*g3*g4*g5) + (g5^3*g6^3*t^7.52)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.52)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.52)/(g1^5*g2^5*g3*g4*g5) + t^7.53/(g1^6*g2^2*g3^6*g4^6*g5^2*g6^6) + t^7.53/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.53/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + (g2^3*g3^3*t^7.55)/(g1^5*g4*g5*g6^5) + (g2^3*g4^3*t^7.55)/(g1^5*g3*g5*g6^5) + (g3^3*g5^3*t^7.55)/(g1^5*g2*g4*g6^5) + (g4^3*g5^3*t^7.55)/(g1^5*g2*g3*g6^5) + (g2^3*g3^3*t^7.55)/(g1^5*g4*g5^5*g6) + (g2^3*g4^3*t^7.55)/(g1^5*g3*g5^5*g6) + (2*g3^3*t^7.55)/(g1^5*g2*g4*g5*g6) + (2*g4^3*t^7.55)/(g1^5*g2*g3*g5*g6) + (g3^3*g5^3*t^7.55)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.55)/(g1^5*g2^5*g3*g6) + (g3^3*g6^3*t^7.55)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.55)/(g1^5*g2*g3*g5^5) + (g3^3*g6^3*t^7.55)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.55)/(g1^5*g2^5*g3*g5) + g2^8*g5^8*t^7.57 + (g3^7*t^7.57)/(g1^5*g2*g4*g5*g6^5) + (g3^3*g4^3*t^7.57)/(g1^5*g2*g5*g6^5) + (g4^7*t^7.57)/(g1^5*g2*g3*g5*g6^5) + (g3^7*t^7.57)/(g1^5*g2*g4*g5^5*g6) + (g3^3*g4^3*t^7.57)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.57)/(g1^5*g2*g3*g5^5*g6) + (g3^7*t^7.57)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.57)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.57)/(g1^5*g2^5*g3*g5*g6) + g2^8*g5^4*g6^4*t^7.57 + g2^4*g5^8*g6^4*t^7.57 + g2^8*g6^8*t^7.57 + g2^4*g5^4*g6^8*t^7.57 + g5^8*g6^8*t^7.57 + (g2^7*t^7.58)/(g1*g3^5*g4^5*g5*g6) + (g2^3*g5^3*t^7.58)/(g1*g3^5*g4^5*g6) + (g5^7*t^7.58)/(g1*g2*g3^5*g4^5*g6) + (g2^3*g6^3*t^7.58)/(g1*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.58)/(g1*g2*g3^5*g4^5) + (g6^7*t^7.58)/(g1*g2*g3^5*g4^5*g5) + g2^8*g3^4*g5^4*t^7.59 + g2^8*g4^4*g5^4*t^7.59 + g2^4*g3^4*g5^8*t^7.59 + g2^4*g4^4*g5^8*t^7.59 + t^7.59/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + g2^8*g3^4*g6^4*t^7.59 + g2^8*g4^4*g6^4*t^7.59 + 2*g2^4*g3^4*g5^4*g6^4*t^7.59 + 2*g2^4*g4^4*g5^4*g6^4*t^7.59 + g3^4*g5^8*g6^4*t^7.59 + g4^4*g5^8*g6^4*t^7.59 + g2^4*g3^4*g6^8*t^7.59 + g2^4*g4^4*g6^8*t^7.59 + g3^4*g5^4*g6^8*t^7.59 + g4^4*g5^4*g6^8*t^7.59 + g2^8*g3^8*t^7.61 + g2^8*g3^4*g4^4*t^7.61 + g2^8*g4^8*t^7.61 + g2^4*g3^8*g5^4*t^7.61 + g2^4*g3^4*g4^4*g5^4*t^7.61 + g2^4*g4^8*g5^4*t^7.61 + g3^8*g5^8*t^7.61 + g3^4*g4^4*g5^8*t^7.61 + g4^8*g5^8*t^7.61 + g2^4*g3^8*g6^4*t^7.61 + g2^4*g3^4*g4^4*g6^4*t^7.61 + g2^4*g4^8*g6^4*t^7.61 + g3^8*g5^4*g6^4*t^7.61 + g3^4*g4^4*g5^4*g6^4*t^7.61 + g4^8*g5^4*g6^4*t^7.61 + g3^8*g6^8*t^7.61 + g3^4*g4^4*g6^8*t^7.61 + g4^8*g6^8*t^7.61 - t^7.62/(g1*g2*g3*g4*g5*g6) - g1^4*g2^4*g5^4*g6^4*t^7.67 + (g1^3*g2^3*t^7.68)/(g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.68)/(g2*g3^5*g4^5*g6) + (g1^3*g6^3*t^7.68)/(g2*g3^5*g4^5*g5) + g1^4*g2^4*g3^8*t^7.72 + g1^4*g2^4*g3^4*g4^4*t^7.72 + g1^4*g2^4*g4^8*t^7.72 + g1^4*g3^8*g5^4*t^7.72 + g1^4*g3^4*g4^4*g5^4*t^7.72 + g1^4*g4^8*g5^4*t^7.72 + g1^4*g3^8*g6^4*t^7.72 + g1^4*g3^4*g4^4*g6^4*t^7.72 + g1^4*g4^8*g6^4*t^7.72 + (g1^7*t^7.78)/(g2*g3^5*g4^5*g5*g6) + g1^8*g3^8*t^7.82 + g1^8*g3^4*g4^4*t^7.82 + g1^8*g4^8*t^7.82 + t^8.01/g1^8 + (g2^4*t^8.01)/(g1^8*g5^4) + (g5^4*t^8.01)/(g1^8*g2^4) + (g2^4*g5^4*t^8.01)/(g1^8*g6^8) + (g2^4*t^8.01)/(g1^8*g6^4) + (g5^4*t^8.01)/(g1^8*g6^4) + (g6^4*t^8.01)/(g1^8*g2^4) + (g2^4*g6^4*t^8.01)/(g1^8*g5^8) + (g6^4*t^8.01)/(g1^8*g5^4) + (g5^4*g6^4*t^8.01)/(g1^8*g2^8) + (2*g3^4*t^8.03)/(g1^8*g2^4) + (2*g4^4*t^8.03)/(g1^8*g2^4) + (g2^4*g3^4*t^8.03)/(g1^8*g5^8) + (g2^4*g4^4*t^8.03)/(g1^8*g5^8) + (2*g3^4*t^8.03)/(g1^8*g5^4) + (2*g4^4*t^8.03)/(g1^8*g5^4) + (g3^4*g5^4*t^8.03)/(g1^8*g2^8) + (g4^4*g5^4*t^8.03)/(g1^8*g2^8) + (g2^4*g3^4*t^8.03)/(g1^8*g6^8) + (g2^4*g4^4*t^8.03)/(g1^8*g6^8) + (g3^4*g5^4*t^8.03)/(g1^8*g6^8) + (g4^4*g5^4*t^8.03)/(g1^8*g6^8) + (2*g3^4*t^8.03)/(g1^8*g6^4) + (2*g4^4*t^8.03)/(g1^8*g6^4) + (g2^4*g3^4*t^8.03)/(g1^8*g5^4*g6^4) + (g2^4*g4^4*t^8.03)/(g1^8*g5^4*g6^4) + (g3^4*g5^4*t^8.03)/(g1^8*g2^4*g6^4) + (g4^4*g5^4*t^8.03)/(g1^8*g2^4*g6^4) + (g3^4*g6^4*t^8.03)/(g1^8*g2^8) + (g4^4*g6^4*t^8.03)/(g1^8*g2^8) + (g3^4*g6^4*t^8.03)/(g1^8*g5^8) + (g4^4*g6^4*t^8.03)/(g1^8*g5^8) + (g3^4*g6^4*t^8.03)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^8.03)/(g1^8*g2^4*g5^4) + (g2^4*t^8.07)/(g1^4*g3^4*g4^4) + (g5^4*t^8.07)/(g1^4*g3^4*g4^4) + (g2^4*g5^4*t^8.07)/(g1^4*g3^4*g4^4*g6^4) + (g6^4*t^8.07)/(g1^4*g3^4*g4^4) + (g2^4*g6^4*t^8.07)/(g1^4*g3^4*g4^4*g5^4) + (g5^4*g6^4*t^8.07)/(g1^4*g2^4*g3^4*g4^4) - (7*t^8.11)/(g1^4*g2^4) - (g3^4*t^8.11)/(g1^4*g2^4*g4^4) - (g4^4*t^8.11)/(g1^4*g2^4*g3^4) - (g2^4*t^8.11)/(g1^4*g5^8) - (7*t^8.11)/(g1^4*g5^4) - (g3^4*t^8.11)/(g1^4*g4^4*g5^4) - (g4^4*t^8.11)/(g1^4*g3^4*g5^4) - (g5^4*t^8.11)/(g1^4*g2^8) - (g2^4*t^8.11)/(g1^4*g6^8) - (g5^4*t^8.11)/(g1^4*g6^8) - (7*t^8.11)/(g1^4*g6^4) - (g3^4*t^8.11)/(g1^4*g4^4*g6^4) - (g4^4*t^8.11)/(g1^4*g3^4*g6^4) - (2*g2^4*t^8.11)/(g1^4*g5^4*g6^4) - (2*g5^4*t^8.11)/(g1^4*g2^4*g6^4) - (g6^4*t^8.11)/(g1^4*g2^8) - (g6^4*t^8.11)/(g1^4*g5^8) - (2*g6^4*t^8.11)/(g1^4*g2^4*g5^4) + (g2^4*g5^4*t^8.13)/(g3^8*g4^8) + (g2^4*g6^4*t^8.13)/(g3^8*g4^8) + (g5^4*g6^4*t^8.13)/(g3^8*g4^8) - (g3^4*t^8.14)/(g1^4*g2^4*g5^4) - (g4^4*t^8.14)/(g1^4*g2^4*g5^4) - (g3^4*t^8.14)/(g1^4*g2^4*g6^4) - (g4^4*t^8.14)/(g1^4*g2^4*g6^4) - (g3^4*t^8.14)/(g1^4*g5^4*g6^4) - (g4^4*t^8.14)/(g1^4*g5^4*g6^4) - g1*g2^9*g3*g4*g5*g6*t^8.16 - g1*g2^5*g3*g4*g5^5*g6*t^8.16 - g1*g2*g3*g4*g5^9*g6*t^8.16 - g1*g2^5*g3*g4*g5*g6^5*t^8.16 - g1*g2*g3*g4*g5^5*g6^5*t^8.16 - g1*g2*g3*g4*g5*g6^9*t^8.16 - (5*t^8.17)/(g3^4*g4^4) - (g2^4*t^8.17)/(g3^4*g4^4*g5^4) - (g5^4*t^8.17)/(g2^4*g3^4*g4^4) - (g2^4*t^8.17)/(g3^4*g4^4*g6^4) - (g5^4*t^8.17)/(g3^4*g4^4*g6^4) - (g6^4*t^8.17)/(g2^4*g3^4*g4^4) - (g6^4*t^8.17)/(g3^4*g4^4*g5^4) - g1*g2^5*g3^5*g4*g5*g6*t^8.18 - g1*g2^5*g3*g4^5*g5*g6*t^8.18 - g1*g2*g3^5*g4*g5^5*g6*t^8.18 - g1*g2*g3*g4^5*g5^5*g6*t^8.18 - g1*g2*g3^5*g4*g5*g6^5*t^8.18 - g1*g2*g3*g4^5*g5*g6^5*t^8.18 - g1*g2*g3^9*g4*g5*g6*t^8.2 - g1*g2*g3^5*g4^5*g5*g6*t^8.2 - g1*g2*g3*g4^9*g5*g6*t^8.2 - t^8.22/(g2^4*g5^4) - t^8.22/(g2^4*g6^4) - t^8.22/(g5^4*g6^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.26 - g1^5*g2*g3*g4*g5^5*g6*t^8.26 - g1^5*g2*g3*g4*g5*g6^5*t^8.26 - (g1^4*t^8.27)/(g2^4*g3^4*g4^4) - (g1^4*t^8.27)/(g3^4*g4^4*g5^4) - (g1^4*t^8.27)/(g3^4*g4^4*g6^4) - g1^5*g2*g3^5*g4*g5*g6*t^8.28 - g1^5*g2*g3*g4^5*g5*g6*t^8.28 - g1^9*g2*g3*g4*g5*g6*t^8.36 + t^8.45/(g1^16*g2^16) + t^8.45/(g1^16*g5^16) + t^8.45/(g1^16*g2^4*g5^12) + t^8.45/(g1^16*g2^8*g5^8) + t^8.45/(g1^16*g2^12*g5^4) + t^8.45/(g1^16*g6^16) + t^8.45/(g1^16*g2^4*g6^12) + t^8.45/(g1^16*g5^4*g6^12) + t^8.45/(g1^16*g2^8*g6^8) + t^8.45/(g1^16*g5^8*g6^8) + t^8.45/(g1^16*g2^4*g5^4*g6^8) + t^8.45/(g1^16*g2^12*g6^4) + t^8.45/(g1^16*g5^12*g6^4) + t^8.45/(g1^16*g2^4*g5^8*g6^4) + t^8.45/(g1^16*g2^8*g5^4*g6^4) + t^8.51/(g1^12*g2^12*g3^4*g4^4) + t^8.51/(g1^12*g3^4*g4^4*g5^12) + t^8.51/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.51/(g1^12*g2^8*g3^4*g4^4*g5^4) + t^8.51/(g1^12*g3^4*g4^4*g6^12) + t^8.51/(g1^12*g2^4*g3^4*g4^4*g6^8) + t^8.51/(g1^12*g3^4*g4^4*g5^4*g6^8) + t^8.51/(g1^12*g2^8*g3^4*g4^4*g6^4) + t^8.51/(g1^12*g3^4*g4^4*g5^8*g6^4) + t^8.51/(g1^12*g2^4*g3^4*g4^4*g5^4*g6^4) + t^8.57/(g1^8*g2^8*g3^8*g4^8) + t^8.57/(g1^8*g3^8*g4^8*g5^8) + t^8.57/(g1^8*g2^4*g3^8*g4^8*g5^4) + t^8.57/(g1^8*g3^8*g4^8*g6^8) + t^8.57/(g1^8*g2^4*g3^8*g4^8*g6^4) + t^8.57/(g1^8*g3^8*g4^8*g5^4*g6^4) + t^8.61/(g1^8*g2^4*g3^4*g4^4*g5^4*g6^8) + t^8.61/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.61/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + t^8.63/(g1^4*g2^4*g3^12*g4^12) + t^8.63/(g1^4*g3^12*g4^12*g5^4) + t^8.63/(g1^4*g3^12*g4^12*g6^4) + (g2^5*t^8.66)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g5*t^8.66)/(g1^3*g3^3*g4^3*g6^3) + (g5^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g2*g6*t^8.66)/(g1^3*g3^3*g4^3*g5^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.67/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + t^8.68/(g3^16*g4^16) + (g2*g3*t^8.68)/(g1^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.68)/(g1^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.68)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.68)/(g1^3*g2^3*g3^3*g6^3) + (g3*g6*t^8.68)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.68)/(g1^3*g2^3*g3^3*g5^3) + (g3^5*t^8.7)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.7)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.7)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g2*t^8.76)/(g3^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.76)/(g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.76)/(g2^3*g3^3*g4^3*g5^3) + (g1*g3*t^8.78)/(g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.78)/(g2^3*g3^3*g5^3*g6^3) + (g1^5*t^8.86)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.62/(g1*g2*g3*g4*g5*g6*y) - t^6.74/(g1^5*g2*g3*g4*g5*g6^5*y) - t^6.74/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.74/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.8/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.23/(g1^8*g2^4*g5^4*y) + t^7.23/(g1^8*g2^4*g6^4*y) + t^7.23/(g1^8*g5^4*g6^4*y) + t^7.28/(g1^4*g2^4*g3^4*g4^4*y) + t^7.28/(g1^4*g3^4*g4^4*g5^4*y) + t^7.28/(g1^4*g3^4*g4^4*g6^4*y) + (g1*g2*g3*g4*g5*g6*t^7.38)/y - t^7.87/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.36/(g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*y) + t^8.36/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + (g3^3*g4^3*t^8.45)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.51)/(g3*g4*g5*g6*y) + (g1^3*g5^3*t^8.51)/(g2*g3*g4*g6*y) + (g1^3*g6^3*t^8.51)/(g2*g3*g4*g5*y) - t^8.85/(g1^9*g2*g3*g4*g5*g6^9*y) - t^8.85/(g1^9*g2*g3*g4*g5^5*g6^5*y) - t^8.85/(g1^9*g2^5*g3*g4*g5*g6^5*y) - t^8.85/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.85/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.85/(g1^9*g2^9*g3*g4*g5*g6*y) + (2*g2^4*t^8.9)/(g1^4*y) + (2*g5^4*t^8.9)/(g1^4*y) + (g2^4*g5^4*t^8.9)/(g1^4*g6^4*y) + (2*g6^4*t^8.9)/(g1^4*y) + (g2^4*g6^4*t^8.9)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.9)/(g1^4*g2^4*y) - t^8.91/(g1^5*g2*g3^5*g4^5*g5*g6^5*y) - t^8.91/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) - t^8.91/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) + (3*g3^4*t^8.92)/(g1^4*y) + (3*g4^4*t^8.92)/(g1^4*y) + (g2^4*g3^4*t^8.92)/(g1^4*g5^4*y) + (g2^4*g4^4*t^8.92)/(g1^4*g5^4*y) + (g3^4*g5^4*t^8.92)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.92)/(g1^4*g2^4*y) + (g2^4*g3^4*t^8.92)/(g1^4*g6^4*y) + (g2^4*g4^4*t^8.92)/(g1^4*g6^4*y) + (g3^4*g5^4*t^8.92)/(g1^4*g6^4*y) + (g4^4*g5^4*t^8.92)/(g1^4*g6^4*y) + (g3^4*g6^4*t^8.92)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.92)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.92)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.92)/(g1^4*g5^4*y) + (g2^4*g5^4*t^8.96)/(g3^4*g4^4*y) + (g2^4*g6^4*t^8.96)/(g3^4*g4^4*y) + (g5^4*g6^4*t^8.96)/(g3^4*g4^4*y) - t^8.97/(g1*g2*g3^9*g4^9*g5*g6*y) + (g2^4*t^8.98)/(g3^4*y) + (g2^4*t^8.98)/(g4^4*y) + (g5^4*t^8.98)/(g3^4*y) + (g5^4*t^8.98)/(g4^4*y) + (g6^4*t^8.98)/(g3^4*y) + (g6^4*t^8.98)/(g4^4*y) - (t^4.62*y)/(g1*g2*g3*g4*g5*g6) - (t^6.74*y)/(g1^5*g2*g3*g4*g5*g6^5) - (t^6.74*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.74*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.8*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.23*y)/(g1^8*g2^4*g5^4) + (t^7.23*y)/(g1^8*g2^4*g6^4) + (t^7.23*y)/(g1^8*g5^4*g6^4) + (t^7.28*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.28*y)/(g1^4*g3^4*g4^4*g5^4) + (t^7.28*y)/(g1^4*g3^4*g4^4*g6^4) + g1*g2*g3*g4*g5*g6*t^7.38*y - (t^7.87*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.36*y)/(g1^6*g2^2*g3^2*g4^2*g5^2*g6^6) + (t^8.36*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.36*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.42*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g4^3*t^8.45*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.51*y)/(g3*g4*g5*g6) + (g1^3*g5^3*t^8.51*y)/(g2*g3*g4*g6) + (g1^3*g6^3*t^8.51*y)/(g2*g3*g4*g5) - (t^8.85*y)/(g1^9*g2*g3*g4*g5*g6^9) - (t^8.85*y)/(g1^9*g2*g3*g4*g5^5*g6^5) - (t^8.85*y)/(g1^9*g2^5*g3*g4*g5*g6^5) - (t^8.85*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.85*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.85*y)/(g1^9*g2^9*g3*g4*g5*g6) + (2*g2^4*t^8.9*y)/g1^4 + (2*g5^4*t^8.9*y)/g1^4 + (g2^4*g5^4*t^8.9*y)/(g1^4*g6^4) + (2*g6^4*t^8.9*y)/g1^4 + (g2^4*g6^4*t^8.9*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.9*y)/(g1^4*g2^4) - (t^8.91*y)/(g1^5*g2*g3^5*g4^5*g5*g6^5) - (t^8.91*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) - (t^8.91*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) + (3*g3^4*t^8.92*y)/g1^4 + (3*g4^4*t^8.92*y)/g1^4 + (g2^4*g3^4*t^8.92*y)/(g1^4*g5^4) + (g2^4*g4^4*t^8.92*y)/(g1^4*g5^4) + (g3^4*g5^4*t^8.92*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.92*y)/(g1^4*g2^4) + (g2^4*g3^4*t^8.92*y)/(g1^4*g6^4) + (g2^4*g4^4*t^8.92*y)/(g1^4*g6^4) + (g3^4*g5^4*t^8.92*y)/(g1^4*g6^4) + (g4^4*g5^4*t^8.92*y)/(g1^4*g6^4) + (g3^4*g6^4*t^8.92*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.92*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.92*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.92*y)/(g1^4*g5^4) + (g2^4*g5^4*t^8.96*y)/(g3^4*g4^4) + (g2^4*g6^4*t^8.96*y)/(g3^4*g4^4) + (g5^4*g6^4*t^8.96*y)/(g3^4*g4^4) - (t^8.97*y)/(g1*g2*g3^9*g4^9*g5*g6) + (g2^4*t^8.98*y)/g3^4 + (g2^4*t^8.98*y)/g4^4 + (g5^4*t^8.98*y)/g3^4 + (g5^4*t^8.98*y)/g4^4 + (g6^4*t^8.98*y)/g3^4 + (g6^4*t^8.98*y)/g4^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55676 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.9181 1.142 0.8039 [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y detail