Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55763 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ | 0.9383 | 1.1801 | 0.7951 | [X:[], M:[0.7049, 0.7236, 0.7049, 0.7049], q:[0.6475, 0.6475, 0.6382], qb:[0.6382, 0.6475, 0.6149], phi:[0.5415]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0], [0, -4, 0, 0, -4, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_3$, $ M_4$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_1q_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ M_1^2$, $ M_3^2$, $ M_4^2$, $ M_3M_4$, $ M_1M_4$, $ M_1M_3$, $ M_1M_2$, $ M_2M_3$, $ M_2M_4$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_3$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_4q_3\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_4q_2\tilde{q}_3$, $ M_4q_1\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_4q_3\tilde{q}_2$, $ M_4q_2q_3$, $ M_4q_1q_3$, $ M_3q_2q_3$, $ M_1q_3\tilde{q}_2$ | . | -14 | 3*t^2.11 + t^2.17 + t^3.25 + 2*t^3.76 + 3*t^3.79 + 6*t^3.86 + 6*t^4.23 + 3*t^4.29 + t^4.34 + t^5.31 + 3*t^5.36 + 2*t^5.38 + 3*t^5.41 + t^5.42 + 3*t^5.45 + 6*t^5.48 + 6*t^5.51 + 6*t^5.87 + 6*t^5.9 + 3*t^5.96 + 12*t^5.97 - 14*t^6. - 2*t^6.07 - 3*t^6.1 + 10*t^6.34 + 6*t^6.4 + 3*t^6.46 + t^6.5 + t^6.51 + 2*t^7.01 + 3*t^7.04 + 6*t^7.11 + 3*t^7.43 + 6*t^7.48 + t^7.49 + 6*t^7.5 + 3*t^7.52 + 9*t^7.53 + 6*t^7.55 + 15*t^7.57 + 3*t^7.58 + t^7.59 + 12*t^7.6 + 17*t^7.62 + 12*t^7.64 - t^7.67 + 6*t^7.68 - 2*t^7.69 + 18*t^7.71 - 3*t^7.72 - 2*t^7.74 + 12*t^7.99 + 9*t^8.02 + 5*t^8.07 + 18*t^8.09 - 36*t^8.11 + t^8.13 - 3*t^8.16 - 11*t^8.17 - 6*t^8.18 - 3*t^8.2 - 6*t^8.21 - 6*t^8.23 - 6*t^8.26 - 3*t^8.27 + t^8.31 + 15*t^8.46 + 10*t^8.52 + t^8.56 + 6*t^8.57 + 3*t^8.61 + 5*t^8.63 + 3*t^8.66 + t^8.67 + t^8.68 + 3*t^8.7 + 6*t^8.73 + 6*t^8.76 - t^4.62/y - (3*t^6.74)/y - t^6.8/y + (3*t^7.23)/y + (3*t^7.29)/y + t^7.38/y - t^7.87/y + (3*t^8.36)/y + t^8.42/y + t^8.45/y + (3*t^8.51)/y - (6*t^8.85)/y + (6*t^8.87)/y + (9*t^8.9)/y - (3*t^8.91)/y + (2*t^8.93)/y + (3*t^8.96)/y + (17*t^8.97)/y - t^4.62*y - 3*t^6.74*y - t^6.8*y + 3*t^7.23*y + 3*t^7.29*y + t^7.38*y - t^7.87*y + 3*t^8.36*y + t^8.42*y + t^8.45*y + 3*t^8.51*y - 6*t^8.85*y + 6*t^8.87*y + 9*t^8.9*y - 3*t^8.91*y + 2*t^8.93*y + 3*t^8.96*y + 17*t^8.97*y | t^2.11/(g1^4*g2^4) + t^2.11/(g1^4*g5^4) + t^2.11/(g2^4*g5^4) + t^2.17/(g3^4*g4^4) + t^3.25/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g3^4*g6^4*t^3.76 + g4^4*g6^4*t^3.76 + g1^4*g6^4*t^3.79 + g2^4*g6^4*t^3.79 + g5^4*g6^4*t^3.79 + g1^4*g3^4*t^3.86 + g2^4*g3^4*t^3.86 + g1^4*g4^4*t^3.86 + g2^4*g4^4*t^3.86 + g3^4*g5^4*t^3.86 + g4^4*g5^4*t^3.86 + t^4.23/(g1^8*g2^8) + t^4.23/(g1^8*g5^8) + t^4.23/(g2^8*g5^8) + t^4.23/(g1^4*g2^4*g5^8) + t^4.23/(g1^4*g2^8*g5^4) + t^4.23/(g1^8*g2^4*g5^4) + t^4.29/(g1^4*g2^4*g3^4*g4^4) + t^4.29/(g1^4*g3^4*g4^4*g5^4) + t^4.29/(g2^4*g3^4*g4^4*g5^4) + t^4.34/(g3^8*g4^8) + (g6^7*t^5.31)/(g1*g2*g3*g4*g5) + t^5.36/(g1^2*g2^6*g3^2*g4^2*g5^6*g6^2) + t^5.36/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g3^3*g6^3*t^5.38)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.38)/(g1*g2*g3*g5) + (g1^3*g6^3*t^5.41)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.41)/(g1*g3*g4*g5) + (g5^3*g6^3*t^5.41)/(g1*g2*g3*g4) + t^5.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^7*t^5.45)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.45)/(g1*g2*g5*g6) + (g4^7*t^5.45)/(g1*g2*g3*g5*g6) + (g1^3*g3^3*t^5.48)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.48)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.48)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.48)/(g1*g3*g5*g6) + (g3^3*g5^3*t^5.48)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.48)/(g1*g2*g3*g6) + (g1^7*t^5.51)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.51)/(g3*g4*g5*g6) + (g2^7*t^5.51)/(g1*g3*g4*g5*g6) + (g1^3*g5^3*t^5.51)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.51)/(g1*g3*g4*g6) + (g5^7*t^5.51)/(g1*g2*g3*g4*g6) + (g3^4*g6^4*t^5.87)/(g1^4*g2^4) + (g4^4*g6^4*t^5.87)/(g1^4*g2^4) + (g3^4*g6^4*t^5.87)/(g1^4*g5^4) + (g3^4*g6^4*t^5.87)/(g2^4*g5^4) + (g4^4*g6^4*t^5.87)/(g1^4*g5^4) + (g4^4*g6^4*t^5.87)/(g2^4*g5^4) + (g6^4*t^5.9)/g1^4 + (g6^4*t^5.9)/g2^4 + (g6^4*t^5.9)/g5^4 + (g1^4*g6^4*t^5.9)/(g2^4*g5^4) + (g2^4*g6^4*t^5.9)/(g1^4*g5^4) + (g5^4*g6^4*t^5.9)/(g1^4*g2^4) + (g1^4*g6^4*t^5.96)/(g3^4*g4^4) + (g2^4*g6^4*t^5.96)/(g3^4*g4^4) + (g5^4*g6^4*t^5.96)/(g3^4*g4^4) + (g3^4*t^5.97)/g1^4 + (g3^4*t^5.97)/g2^4 + (g4^4*t^5.97)/g1^4 + (g4^4*t^5.97)/g2^4 + (g3^4*t^5.97)/g5^4 + (g1^4*g3^4*t^5.97)/(g2^4*g5^4) + (g2^4*g3^4*t^5.97)/(g1^4*g5^4) + (g4^4*t^5.97)/g5^4 + (g1^4*g4^4*t^5.97)/(g2^4*g5^4) + (g2^4*g4^4*t^5.97)/(g1^4*g5^4) + (g3^4*g5^4*t^5.97)/(g1^4*g2^4) + (g4^4*g5^4*t^5.97)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g1^4*t^6.)/g5^4 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g1^4 - (g5^4*t^6.)/g2^4 - (g3^4*t^6.07)/g6^4 - (g4^4*t^6.07)/g6^4 - (g1^4*t^6.1)/g6^4 - (g2^4*t^6.1)/g6^4 - (g5^4*t^6.1)/g6^4 + t^6.34/(g1^12*g2^12) + t^6.34/(g1^12*g5^12) + t^6.34/(g2^12*g5^12) + t^6.34/(g1^4*g2^8*g5^12) + t^6.34/(g1^8*g2^4*g5^12) + t^6.34/(g1^4*g2^12*g5^8) + t^6.34/(g1^8*g2^8*g5^8) + t^6.34/(g1^12*g2^4*g5^8) + t^6.34/(g1^8*g2^12*g5^4) + t^6.34/(g1^12*g2^8*g5^4) + t^6.4/(g1^8*g2^8*g3^4*g4^4) + t^6.4/(g1^8*g3^4*g4^4*g5^8) + t^6.4/(g2^8*g3^4*g4^4*g5^8) + t^6.4/(g1^4*g2^4*g3^4*g4^4*g5^8) + t^6.4/(g1^4*g2^8*g3^4*g4^4*g5^4) + t^6.4/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.46/(g1^4*g2^4*g3^8*g4^8) + t^6.46/(g1^4*g3^8*g4^8*g5^4) + t^6.46/(g2^4*g3^8*g4^8*g5^4) + t^6.5/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + t^6.51/(g3^12*g4^12) + (g3^2*g6^2*t^7.01)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.01)/(g1^2*g2^2*g3^2*g5^2) + (g1^2*g6^2*t^7.04)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.04)/(g1^2*g3^2*g4^2*g5^2) + (g5^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g3^2*t^7.11)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.11)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.11)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.11)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g5^2*t^7.11)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.11)/(g1^2*g2^2*g3^2*g6^2) + (g6^7*t^7.43)/(g1*g2^5*g3*g4*g5^5) + (g6^7*t^7.43)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.43)/(g1^5*g2^5*g3*g4*g5) + t^7.48/(g1^2*g2^10*g3^2*g4^2*g5^10*g6^2) + t^7.48/(g1^6*g2^6*g3^2*g4^2*g5^10*g6^2) + t^7.48/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.48/(g1^6*g2^10*g3^2*g4^2*g5^6*g6^2) + t^7.48/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.48/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g6^7*t^7.49)/(g1*g2*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.5)/(g1*g2^5*g4*g5^5) + (g3^3*g6^3*t^7.5)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.5)/(g1*g2^5*g3*g5^5) + (g4^3*g6^3*t^7.5)/(g1^5*g2*g3*g5^5) + (g3^3*g6^3*t^7.5)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.5)/(g1^5*g2^5*g3*g5) + g3^8*g6^8*t^7.52 + g3^4*g4^4*g6^8*t^7.52 + g4^8*g6^8*t^7.52 + t^7.53/(g1^2*g2^6*g3^6*g4^6*g5^6*g6^2) + t^7.53/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.53/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + (g1^3*g6^3*t^7.53)/(g2^5*g3*g4*g5^5) + (g6^3*t^7.53)/(g1*g2*g3*g4*g5^5) + (g2^3*g6^3*t^7.53)/(g1^5*g3*g4*g5^5) + (g6^3*t^7.53)/(g1*g2^5*g3*g4*g5) + (g6^3*t^7.53)/(g1^5*g2*g3*g4*g5) + (g5^3*g6^3*t^7.53)/(g1^5*g2^5*g3*g4) + g1^4*g3^4*g6^8*t^7.55 + g2^4*g3^4*g6^8*t^7.55 + g1^4*g4^4*g6^8*t^7.55 + g2^4*g4^4*g6^8*t^7.55 + g3^4*g5^4*g6^8*t^7.55 + g4^4*g5^4*g6^8*t^7.55 + (g3^7*t^7.57)/(g1*g2^5*g4*g5^5*g6) + (g3^7*t^7.57)/(g1^5*g2*g4*g5^5*g6) + (g3^3*g4^3*t^7.57)/(g1*g2^5*g5^5*g6) + (g3^3*g4^3*t^7.57)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.57)/(g1*g2^5*g3*g5^5*g6) + (g4^7*t^7.57)/(g1^5*g2*g3*g5^5*g6) + (g3^7*t^7.57)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.57)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.57)/(g1^5*g2^5*g3*g5*g6) + g1^8*g6^8*t^7.57 + g1^4*g2^4*g6^8*t^7.57 + g2^8*g6^8*t^7.57 + g1^4*g5^4*g6^8*t^7.57 + g2^4*g5^4*g6^8*t^7.57 + g5^8*g6^8*t^7.57 + (g1^3*g6^3*t^7.58)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.58)/(g1*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.58)/(g1*g2*g3^5*g4^5) + t^7.59/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + (g1^3*g3^3*t^7.6)/(g2^5*g4*g5^5*g6) + (g3^3*t^7.6)/(g1*g2*g4*g5^5*g6) + (g2^3*g3^3*t^7.6)/(g1^5*g4*g5^5*g6) + (g1^3*g4^3*t^7.6)/(g2^5*g3*g5^5*g6) + (g4^3*t^7.6)/(g1*g2*g3*g5^5*g6) + (g2^3*g4^3*t^7.6)/(g1^5*g3*g5^5*g6) + (g3^3*t^7.6)/(g1*g2^5*g4*g5*g6) + (g3^3*t^7.6)/(g1^5*g2*g4*g5*g6) + (g4^3*t^7.6)/(g1*g2^5*g3*g5*g6) + (g4^3*t^7.6)/(g1^5*g2*g3*g5*g6) + (g3^3*g5^3*t^7.6)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.6)/(g1^5*g2^5*g3*g6) + (g1^7*t^7.62)/(g2^5*g3*g4*g5^5*g6) + (g1^3*t^7.62)/(g2*g3*g4*g5^5*g6) + (g2^3*t^7.62)/(g1*g3*g4*g5^5*g6) + (g2^7*t^7.62)/(g1^5*g3*g4*g5^5*g6) + (g1^3*t^7.62)/(g2^5*g3*g4*g5*g6) - t^7.62/(g1*g2*g3*g4*g5*g6) + (g2^3*t^7.62)/(g1^5*g3*g4*g5*g6) + (g5^3*t^7.62)/(g1*g2^5*g3*g4*g6) + (g5^3*t^7.62)/(g1^5*g2*g3*g4*g6) + (g5^7*t^7.62)/(g1^5*g2^5*g3*g4*g6) + g1^4*g3^8*g6^4*t^7.62 + g2^4*g3^8*g6^4*t^7.62 + g1^4*g3^4*g4^4*g6^4*t^7.62 + g2^4*g3^4*g4^4*g6^4*t^7.62 + g1^4*g4^8*g6^4*t^7.62 + g2^4*g4^8*g6^4*t^7.62 + g3^8*g5^4*g6^4*t^7.62 + g3^4*g4^4*g5^4*g6^4*t^7.62 + g4^8*g5^4*g6^4*t^7.62 + g1^8*g3^4*g6^4*t^7.64 + g1^4*g2^4*g3^4*g6^4*t^7.64 + g2^8*g3^4*g6^4*t^7.64 + g1^8*g4^4*g6^4*t^7.64 + g1^4*g2^4*g4^4*g6^4*t^7.64 + g2^8*g4^4*g6^4*t^7.64 + g1^4*g3^4*g5^4*g6^4*t^7.64 + g2^4*g3^4*g5^4*g6^4*t^7.64 + g1^4*g4^4*g5^4*g6^4*t^7.64 + g2^4*g4^4*g5^4*g6^4*t^7.64 + g3^4*g5^8*g6^4*t^7.64 + g4^4*g5^8*g6^4*t^7.64 - g1^4*g2^4*g5^4*g6^4*t^7.67 + (g1^7*t^7.68)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.68)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.68)/(g1*g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.68)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.68)/(g1*g3^5*g4^5*g6) + (g5^7*t^7.68)/(g1*g2*g3^5*g4^5*g6) - (g3^3*t^7.69)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.69)/(g1*g2*g3*g5*g6^5) + g1^8*g3^8*t^7.71 + g1^4*g2^4*g3^8*t^7.71 + g2^8*g3^8*t^7.71 + g1^8*g3^4*g4^4*t^7.71 + g1^4*g2^4*g3^4*g4^4*t^7.71 + g2^8*g3^4*g4^4*t^7.71 + g1^8*g4^8*t^7.71 + g1^4*g2^4*g4^8*t^7.71 + g2^8*g4^8*t^7.71 + g1^4*g3^8*g5^4*t^7.71 + g2^4*g3^8*g5^4*t^7.71 + g1^4*g3^4*g4^4*g5^4*t^7.71 + g2^4*g3^4*g4^4*g5^4*t^7.71 + g1^4*g4^8*g5^4*t^7.71 + g2^4*g4^8*g5^4*t^7.71 + g3^8*g5^8*t^7.71 + g3^4*g4^4*g5^8*t^7.71 + g4^8*g5^8*t^7.71 - (g1^3*t^7.72)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.72)/(g1*g3*g4*g5*g6^5) - (g5^3*t^7.72)/(g1*g2*g3*g4*g6^5) - g1^4*g2^4*g3^4*g5^4*t^7.74 - g1^4*g2^4*g4^4*g5^4*t^7.74 + (g3^4*g6^4*t^7.99)/(g1^8*g2^8) + (g4^4*g6^4*t^7.99)/(g1^8*g2^8) + (g3^4*g6^4*t^7.99)/(g1^8*g5^8) + (g3^4*g6^4*t^7.99)/(g2^8*g5^8) + (g3^4*g6^4*t^7.99)/(g1^4*g2^4*g5^8) + (g4^4*g6^4*t^7.99)/(g1^8*g5^8) + (g4^4*g6^4*t^7.99)/(g2^8*g5^8) + (g4^4*g6^4*t^7.99)/(g1^4*g2^4*g5^8) + (g3^4*g6^4*t^7.99)/(g1^4*g2^8*g5^4) + (g3^4*g6^4*t^7.99)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^7.99)/(g1^4*g2^8*g5^4) + (g4^4*g6^4*t^7.99)/(g1^8*g2^4*g5^4) + (g6^4*t^8.02)/(g1^4*g2^8) + (g6^4*t^8.02)/(g1^8*g2^4) + (g6^4*t^8.02)/(g1^4*g5^8) + (g1^4*g6^4*t^8.02)/(g2^8*g5^8) + (g6^4*t^8.02)/(g2^4*g5^8) + (g2^4*g6^4*t^8.02)/(g1^8*g5^8) + (g6^4*t^8.02)/(g1^8*g5^4) + (g6^4*t^8.02)/(g2^8*g5^4) + (g5^4*g6^4*t^8.02)/(g1^8*g2^8) + (g6^4*t^8.07)/(g1^4*g3^4*g4^4) + (g6^4*t^8.07)/(g2^4*g3^4*g4^4) + (g6^4*t^8.07)/(g3^4*g4^4*g5^4) + (g1^4*g6^4*t^8.07)/(g2^4*g3^4*g4^4*g5^4) + (g2^4*g6^4*t^8.07)/(g1^4*g3^4*g4^4*g5^4) + (g5^4*g6^4*t^8.07)/(g1^4*g2^4*g3^4*g4^4) - g1*g2*g3*g4*g5*g6^9*t^8.07 + (g3^4*t^8.09)/(g1^4*g2^8) + (g3^4*t^8.09)/(g1^8*g2^4) + (g4^4*t^8.09)/(g1^4*g2^8) + (g4^4*t^8.09)/(g1^8*g2^4) + (g3^4*t^8.09)/(g1^4*g5^8) + (g1^4*g3^4*t^8.09)/(g2^8*g5^8) + (g3^4*t^8.09)/(g2^4*g5^8) + (g2^4*g3^4*t^8.09)/(g1^8*g5^8) + (g4^4*t^8.09)/(g1^4*g5^8) + (g1^4*g4^4*t^8.09)/(g2^8*g5^8) + (g4^4*t^8.09)/(g2^4*g5^8) + (g2^4*g4^4*t^8.09)/(g1^8*g5^8) + (g3^4*t^8.09)/(g1^8*g5^4) + (g3^4*t^8.09)/(g2^8*g5^4) + (g4^4*t^8.09)/(g1^8*g5^4) + (g4^4*t^8.09)/(g2^8*g5^4) + (g3^4*g5^4*t^8.09)/(g1^8*g2^8) + (g4^4*g5^4*t^8.09)/(g1^8*g2^8) - t^8.11/g1^8 - t^8.11/g2^8 - (7*t^8.11)/(g1^4*g2^4) - (g3^4*t^8.11)/(g1^4*g2^4*g4^4) - (g4^4*t^8.11)/(g1^4*g2^4*g3^4) - t^8.11/g5^8 - (g1^4*t^8.11)/(g2^4*g5^8) - (g2^4*t^8.11)/(g1^4*g5^8) - (7*t^8.11)/(g1^4*g5^4) - (g1^4*t^8.11)/(g2^8*g5^4) - (7*t^8.11)/(g2^4*g5^4) - (g2^4*t^8.11)/(g1^8*g5^4) - (g3^4*t^8.11)/(g1^4*g4^4*g5^4) - (g3^4*t^8.11)/(g2^4*g4^4*g5^4) - (g4^4*t^8.11)/(g1^4*g3^4*g5^4) - (g4^4*t^8.11)/(g2^4*g3^4*g5^4) - (g5^4*t^8.11)/(g1^4*g2^8) - (g5^4*t^8.11)/(g1^8*g2^4) + (g1^4*g6^4*t^8.13)/(g3^8*g4^8) + (g2^4*g6^4*t^8.13)/(g3^8*g4^8) + (g5^4*g6^4*t^8.13)/(g3^8*g4^8) - g1*g2*g3^5*g4*g5*g6^5*t^8.13 - g1*g2*g3*g4^5*g5*g6^5*t^8.13 - g1^5*g2*g3*g4*g5*g6^5*t^8.16 - g1*g2^5*g3*g4*g5*g6^5*t^8.16 - g1*g2*g3*g4*g5^5*g6^5*t^8.16 - (5*t^8.17)/(g3^4*g4^4) - (g1^4*t^8.17)/(g2^4*g3^4*g4^4) - (g2^4*t^8.17)/(g1^4*g3^4*g4^4) - (g1^4*t^8.17)/(g3^4*g4^4*g5^4) - (g2^4*t^8.17)/(g3^4*g4^4*g5^4) - (g5^4*t^8.17)/(g1^4*g3^4*g4^4) - (g5^4*t^8.17)/(g2^4*g3^4*g4^4) - (g3^4*t^8.18)/(g1^4*g2^4*g6^4) - (g4^4*t^8.18)/(g1^4*g2^4*g6^4) - (g3^4*t^8.18)/(g1^4*g5^4*g6^4) - (g3^4*t^8.18)/(g2^4*g5^4*g6^4) - (g4^4*t^8.18)/(g1^4*g5^4*g6^4) - (g4^4*t^8.18)/(g2^4*g5^4*g6^4) - g1*g2*g3^9*g4*g5*g6*t^8.2 - g1*g2*g3^5*g4^5*g5*g6*t^8.2 - g1*g2*g3*g4^9*g5*g6*t^8.2 - t^8.21/(g1^4*g6^4) - t^8.21/(g2^4*g6^4) - t^8.21/(g5^4*g6^4) - (g1^4*t^8.21)/(g2^4*g5^4*g6^4) - (g2^4*t^8.21)/(g1^4*g5^4*g6^4) - (g5^4*t^8.21)/(g1^4*g2^4*g6^4) - g1^5*g2*g3^5*g4*g5*g6*t^8.23 - g1*g2^5*g3^5*g4*g5*g6*t^8.23 - g1^5*g2*g3*g4^5*g5*g6*t^8.23 - g1*g2^5*g3*g4^5*g5*g6*t^8.23 - g1*g2*g3^5*g4*g5^5*g6*t^8.23 - g1*g2*g3*g4^5*g5^5*g6*t^8.23 - g1^9*g2*g3*g4*g5*g6*t^8.26 - g1^5*g2^5*g3*g4*g5*g6*t^8.26 - g1*g2^9*g3*g4*g5*g6*t^8.26 - g1^5*g2*g3*g4*g5^5*g6*t^8.26 - g1*g2^5*g3*g4*g5^5*g6*t^8.26 - g1*g2*g3*g4*g5^9*g6*t^8.26 - (g1^4*t^8.27)/(g3^4*g4^4*g6^4) - (g2^4*t^8.27)/(g3^4*g4^4*g6^4) - (g5^4*t^8.27)/(g3^4*g4^4*g6^4) + t^8.31/g6^8 + t^8.46/(g1^16*g2^16) + t^8.46/(g1^16*g5^16) + t^8.46/(g2^16*g5^16) + t^8.46/(g1^4*g2^12*g5^16) + t^8.46/(g1^8*g2^8*g5^16) + t^8.46/(g1^12*g2^4*g5^16) + t^8.46/(g1^4*g2^16*g5^12) + t^8.46/(g1^8*g2^12*g5^12) + t^8.46/(g1^12*g2^8*g5^12) + t^8.46/(g1^16*g2^4*g5^12) + t^8.46/(g1^8*g2^16*g5^8) + t^8.46/(g1^12*g2^12*g5^8) + t^8.46/(g1^16*g2^8*g5^8) + t^8.46/(g1^12*g2^16*g5^4) + t^8.46/(g1^16*g2^12*g5^4) + t^8.52/(g1^12*g2^12*g3^4*g4^4) + t^8.52/(g1^12*g3^4*g4^4*g5^12) + t^8.52/(g2^12*g3^4*g4^4*g5^12) + t^8.52/(g1^4*g2^8*g3^4*g4^4*g5^12) + t^8.52/(g1^8*g2^4*g3^4*g4^4*g5^12) + t^8.52/(g1^4*g2^12*g3^4*g4^4*g5^8) + t^8.52/(g1^8*g2^8*g3^4*g4^4*g5^8) + t^8.52/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.52/(g1^8*g2^12*g3^4*g4^4*g5^4) + t^8.52/(g1^12*g2^8*g3^4*g4^4*g5^4) + (g6^5*t^8.56)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.57/(g1^8*g2^8*g3^8*g4^8) + t^8.57/(g1^8*g3^8*g4^8*g5^8) + t^8.57/(g2^8*g3^8*g4^8*g5^8) + t^8.57/(g1^4*g2^4*g3^8*g4^8*g5^8) + t^8.57/(g1^4*g2^8*g3^8*g4^8*g5^4) + t^8.57/(g1^8*g2^4*g3^8*g4^8*g5^4) + t^8.61/(g1^4*g2^8*g3^4*g4^4*g5^8*g6^4) + t^8.61/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.61/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + t^8.63/(g1^4*g2^4*g3^12*g4^12) + t^8.63/(g1^4*g3^12*g4^12*g5^4) + t^8.63/(g2^4*g3^12*g4^12*g5^4) + (g3*g6*t^8.63)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.63)/(g1^3*g2^3*g3^3*g5^3) + (g1*g6*t^8.66)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.66)/(g1^3*g3^3*g4^3*g5^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + t^8.67/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + t^8.68/(g3^16*g4^16) + (g3^5*t^8.7)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.7)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.7)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g3*t^8.73)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.73)/(g1^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.73)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.73)/(g1^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.73)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.73)/(g1^3*g2^3*g3^3*g6^3) + (g1^5*t^8.76)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.76)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.76)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.76)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.76)/(g1^3*g3^3*g4^3*g6^3) + (g5^5*t^8.76)/(g1^3*g2^3*g3^3*g4^3*g6^3) - t^4.62/(g1*g2*g3*g4*g5*g6*y) - t^6.74/(g1*g2^5*g3*g4*g5^5*g6*y) - t^6.74/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.74/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.8/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.23/(g1^4*g2^4*g5^8*y) + t^7.23/(g1^4*g2^8*g5^4*y) + t^7.23/(g1^8*g2^4*g5^4*y) + t^7.29/(g1^4*g2^4*g3^4*g4^4*y) + t^7.29/(g1^4*g3^4*g4^4*g5^4*y) + t^7.29/(g2^4*g3^4*g4^4*g5^4*y) + (g1*g2*g3*g4*g5*g6*t^7.38)/y - t^7.87/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.36/(g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*y) + t^8.36/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + (g3^3*g4^3*t^8.45)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.51)/(g3*g4*g5*g6*y) + (g1^3*g5^3*t^8.51)/(g2*g3*g4*g6*y) + (g2^3*g5^3*t^8.51)/(g1*g3*g4*g6*y) - t^8.85/(g1*g2^9*g3*g4*g5^9*g6*y) - t^8.85/(g1^5*g2^5*g3*g4*g5^9*g6*y) - t^8.85/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.85/(g1^5*g2^9*g3*g4*g5^5*g6*y) - t^8.85/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.85/(g1^9*g2^9*g3*g4*g5*g6*y) + (g3^4*g6^4*t^8.87)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.87)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.87)/(g1^4*g5^4*y) + (g3^4*g6^4*t^8.87)/(g2^4*g5^4*y) + (g4^4*g6^4*t^8.87)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.87)/(g2^4*g5^4*y) + (2*g6^4*t^8.9)/(g1^4*y) + (2*g6^4*t^8.9)/(g2^4*y) + (2*g6^4*t^8.9)/(g5^4*y) + (g1^4*g6^4*t^8.9)/(g2^4*g5^4*y) + (g2^4*g6^4*t^8.9)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.9)/(g1^4*g2^4*y) - t^8.91/(g1*g2^5*g3^5*g4^5*g5^5*g6*y) - t^8.91/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) - t^8.91/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) + (g6^4*t^8.93)/(g3^4*y) + (g6^4*t^8.93)/(g4^4*y) + (g1^4*g6^4*t^8.96)/(g3^4*g4^4*y) + (g2^4*g6^4*t^8.96)/(g3^4*g4^4*y) + (g5^4*g6^4*t^8.96)/(g3^4*g4^4*y) + (2*g3^4*t^8.97)/(g1^4*y) + (2*g3^4*t^8.97)/(g2^4*y) + (2*g4^4*t^8.97)/(g1^4*y) + (2*g4^4*t^8.97)/(g2^4*y) + (2*g3^4*t^8.97)/(g5^4*y) + (g1^4*g3^4*t^8.97)/(g2^4*g5^4*y) + (g2^4*g3^4*t^8.97)/(g1^4*g5^4*y) + (2*g4^4*t^8.97)/(g5^4*y) + (g1^4*g4^4*t^8.97)/(g2^4*g5^4*y) + (g2^4*g4^4*t^8.97)/(g1^4*g5^4*y) + (g3^4*g5^4*t^8.97)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.97)/(g1^4*g2^4*y) - t^8.97/(g1*g2*g3^9*g4^9*g5*g6*y) - (t^4.62*y)/(g1*g2*g3*g4*g5*g6) - (t^6.74*y)/(g1*g2^5*g3*g4*g5^5*g6) - (t^6.74*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.74*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.8*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.23*y)/(g1^4*g2^4*g5^8) + (t^7.23*y)/(g1^4*g2^8*g5^4) + (t^7.23*y)/(g1^8*g2^4*g5^4) + (t^7.29*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.29*y)/(g1^4*g3^4*g4^4*g5^4) + (t^7.29*y)/(g2^4*g3^4*g4^4*g5^4) + g1*g2*g3*g4*g5*g6*t^7.38*y - (t^7.87*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.36*y)/(g1^2*g2^6*g3^2*g4^2*g5^6*g6^2) + (t^8.36*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.36*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.42*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g4^3*t^8.45*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.51*y)/(g3*g4*g5*g6) + (g1^3*g5^3*t^8.51*y)/(g2*g3*g4*g6) + (g2^3*g5^3*t^8.51*y)/(g1*g3*g4*g6) - (t^8.85*y)/(g1*g2^9*g3*g4*g5^9*g6) - (t^8.85*y)/(g1^5*g2^5*g3*g4*g5^9*g6) - (t^8.85*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.85*y)/(g1^5*g2^9*g3*g4*g5^5*g6) - (t^8.85*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.85*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g3^4*g6^4*t^8.87*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.87*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.87*y)/(g1^4*g5^4) + (g3^4*g6^4*t^8.87*y)/(g2^4*g5^4) + (g4^4*g6^4*t^8.87*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.87*y)/(g2^4*g5^4) + (2*g6^4*t^8.9*y)/g1^4 + (2*g6^4*t^8.9*y)/g2^4 + (2*g6^4*t^8.9*y)/g5^4 + (g1^4*g6^4*t^8.9*y)/(g2^4*g5^4) + (g2^4*g6^4*t^8.9*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.9*y)/(g1^4*g2^4) - (t^8.91*y)/(g1*g2^5*g3^5*g4^5*g5^5*g6) - (t^8.91*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) - (t^8.91*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) + (g6^4*t^8.93*y)/g3^4 + (g6^4*t^8.93*y)/g4^4 + (g1^4*g6^4*t^8.96*y)/(g3^4*g4^4) + (g2^4*g6^4*t^8.96*y)/(g3^4*g4^4) + (g5^4*g6^4*t^8.96*y)/(g3^4*g4^4) + (2*g3^4*t^8.97*y)/g1^4 + (2*g3^4*t^8.97*y)/g2^4 + (2*g4^4*t^8.97*y)/g1^4 + (2*g4^4*t^8.97*y)/g2^4 + (2*g3^4*t^8.97*y)/g5^4 + (g1^4*g3^4*t^8.97*y)/(g2^4*g5^4) + (g2^4*g3^4*t^8.97*y)/(g1^4*g5^4) + (2*g4^4*t^8.97*y)/g5^4 + (g1^4*g4^4*t^8.97*y)/(g2^4*g5^4) + (g2^4*g4^4*t^8.97*y)/(g1^4*g5^4) + (g3^4*g5^4*t^8.97*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.97*y)/(g1^4*g2^4) - (t^8.97*y)/(g1*g2*g3^9*g4^9*g5*g6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55676 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y | detail |