Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55718 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.9178 1.1404 0.8048 [X:[], M:[0.7263, 0.7224, 0.7083], q:[0.6458, 0.6279, 0.6388], qb:[0.6388, 0.6458, 0.6279], phi:[0.5437]] [X:[], M:[[0, 0, 0, -2, -2], [0, -4, -4, 0, 0], [1, 0, 0, -4, -2]], q:[[-1, 0, 0, 2, 2], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 4, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 2]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ M_3\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_2q_3$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_3$ . -9 t^2.13 + t^2.17 + t^2.18 + t^3.26 + t^3.77 + 4*t^3.8 + 3*t^3.82 + 4*t^3.85 + t^4.25 + t^4.29 + t^4.3 + t^4.33 + t^4.35 + t^4.36 + t^5.39 + 3*t^5.4 + 5*t^5.43 + t^5.44 + 4*t^5.45 + 3*t^5.46 + 4*t^5.49 + 3*t^5.51 + t^5.89 + 5*t^5.93 + 4*t^5.98 + 3*t^5.99 - 9*t^6. - 4*t^6.05 + t^6.38 + t^6.42 + t^6.43 + t^6.46 + t^6.47 + t^6.48 + t^6.5 + t^6.51 + 2*t^6.52 + t^6.54 + t^7.03 + 4*t^7.06 + 3*t^7.08 + 4*t^7.12 + t^7.51 + 3*t^7.52 + t^7.53 + t^7.55 + 4*t^7.56 + 8*t^7.57 + 3*t^7.58 + 6*t^7.59 + 10*t^7.6 + 5*t^7.61 + 17*t^7.62 - t^7.63 + 8*t^7.64 + 12*t^7.65 + 3*t^7.67 + 8*t^7.68 - t^7.69 + 9*t^7.71 + t^8.02 + 4*t^8.05 + t^8.06 + 5*t^8.1 - 9*t^8.13 - 3*t^8.14 + 3*t^8.16 - 10*t^8.17 - 9*t^8.18 - 4*t^8.19 - 3*t^8.2 - 8*t^8.22 - t^8.23 - 3*t^8.24 + t^8.5 + t^8.54 + t^8.55 + t^8.58 + t^8.6 + t^8.61 + t^8.63 + t^8.64 + 2*t^8.65 + 4*t^8.66 + t^8.67 + t^8.68 + 6*t^8.69 + 2*t^8.7 + 4*t^8.71 + t^8.72 + 3*t^8.73 + 4*t^8.75 + 3*t^8.77 - t^4.63/y - t^6.76/y - t^6.8/y - t^6.81/y + t^7.29/y + t^7.3/y + t^7.35/y + t^7.37/y - t^7.89/y + t^8.39/y + t^8.43/y + t^8.44/y + t^8.45/y + t^8.46/y + t^8.51/y - t^8.88/y + t^8.89/y - t^8.92/y + (5*t^8.93)/y - t^8.94/y + (4*t^8.95)/y + (3*t^8.97)/y + (7*t^8.98)/y + (2*t^8.99)/y - t^4.63*y - t^6.76*y - t^6.8*y - t^6.81*y + t^7.29*y + t^7.3*y + t^7.35*y + t^7.37*y - t^7.89*y + t^8.39*y + t^8.43*y + t^8.44*y + t^8.45*y + t^8.46*y + t^8.51*y - t^8.88*y + t^8.89*y - t^8.92*y + 5*t^8.93*y - t^8.94*y + 4*t^8.95*y + 3*t^8.97*y + 7*t^8.98*y + 2*t^8.99*y (g1*t^2.13)/(g4^4*g5^2) + t^2.17/(g2^4*g3^4) + t^2.18/(g4^2*g5^2) + t^3.26/(g2^2*g3^2*g4^2*g5^2) + g1*g5^2*t^3.77 + g1*g2^4*t^3.8 + g1*g3^4*t^3.8 + g2^4*g5^2*t^3.8 + g3^4*g5^2*t^3.8 + g1*g4^2*t^3.82 + g4^2*g5^2*t^3.82 + (g4^2*g5^4*t^3.82)/g1 + g2^4*g4^2*t^3.85 + g3^4*g4^2*t^3.85 + (g2^4*g4^2*g5^2*t^3.85)/g1 + (g3^4*g4^2*g5^2*t^3.85)/g1 + (g1^2*t^4.25)/(g4^8*g5^4) + (g1*t^4.29)/(g2^4*g3^4*g4^4*g5^2) + (g1*t^4.3)/(g4^6*g5^4) + t^4.33/(g2^8*g3^8) + t^4.35/(g2^4*g3^4*g4^2*g5^2) + t^4.36/(g4^4*g5^4) + (g1*t^5.39)/(g2^2*g3^2*g4^6*g5^4) + (g1^2*t^5.4)/(g2*g3*g4*g5) + (g1*g5*t^5.4)/(g2*g3*g4) + (g5^3*t^5.4)/(g2*g3*g4) + t^5.43/(g2^6*g3^6*g4^2*g5^2) + (g1*g2^3*t^5.43)/(g3*g4*g5) + (g1*g3^3*t^5.43)/(g2*g4*g5) + (g2^3*g5*t^5.43)/(g3*g4) + (g3^3*g5*t^5.43)/(g2*g4) + t^5.44/(g2^2*g3^2*g4^4*g5^4) + (g1*g4*t^5.45)/(g2*g3*g5) + (2*g4*g5*t^5.45)/(g2*g3) + (g4*g5^3*t^5.45)/(g1*g2*g3) + (g2^7*t^5.46)/(g3*g4*g5) + (g2^3*g3^3*t^5.46)/(g4*g5) + (g3^7*t^5.46)/(g2*g4*g5) + (g2^3*g4*t^5.49)/(g3*g5) + (g3^3*g4*t^5.49)/(g2*g5) + (g2^3*g4*g5*t^5.49)/(g1*g3) + (g3^3*g4*g5*t^5.49)/(g1*g2) + (g4^3*t^5.51)/(g2*g3*g5) + (g4^3*g5*t^5.51)/(g1*g2*g3) + (g4^3*g5^3*t^5.51)/(g1^2*g2*g3) + (g1^2*t^5.89)/g4^4 + (g1*g2^4*t^5.93)/g4^4 + (g1*g3^4*t^5.93)/g4^4 + (g1^2*g2^4*t^5.93)/(g4^4*g5^2) + (g1^2*g3^4*t^5.93)/(g4^4*g5^2) + (g1*g5^2*t^5.93)/(g2^4*g3^4) + (g2^4*t^5.98)/g4^2 + (g3^4*t^5.98)/g4^2 + (g1*g2^4*t^5.98)/(g4^2*g5^2) + (g1*g3^4*t^5.98)/(g4^2*g5^2) + (g1*g4^2*t^5.99)/(g2^4*g3^4) + (g4^2*g5^2*t^5.99)/(g2^4*g3^4) + (g4^2*g5^4*t^5.99)/(g1*g2^4*g3^4) - 5*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1*t^6.)/g5^2 - (g5^2*t^6.)/g1 - (2*g4^2*t^6.05)/g1 - (g4^2*t^6.05)/g5^2 - (g4^2*g5^2*t^6.05)/g1^2 + (g1^3*t^6.38)/(g4^12*g5^6) + (g1^2*t^6.42)/(g2^4*g3^4*g4^8*g5^4) + (g1^2*t^6.43)/(g4^10*g5^6) + (g1*t^6.46)/(g2^8*g3^8*g4^4*g5^2) + (g1*t^6.47)/(g2^4*g3^4*g4^6*g5^4) + (g1*t^6.48)/(g4^8*g5^6) + t^6.5/(g2^12*g3^12) + t^6.51/(g2^8*g3^8*g4^2*g5^2) + (2*t^6.52)/(g2^4*g3^4*g4^4*g5^4) + t^6.54/(g4^6*g5^6) + (g1*t^7.03)/(g2^2*g3^2*g4^2) + (g2^2*t^7.06)/(g3^2*g4^2) + (g3^2*t^7.06)/(g2^2*g4^2) + (g1*g2^2*t^7.06)/(g3^2*g4^2*g5^2) + (g1*g3^2*t^7.06)/(g2^2*g4^2*g5^2) + t^7.08/(g2^2*g3^2) + (g1*t^7.08)/(g2^2*g3^2*g5^2) + (g5^2*t^7.08)/(g1*g2^2*g3^2) + (g2^2*t^7.12)/(g1*g3^2) + (g3^2*t^7.12)/(g1*g2^2) + (g2^2*t^7.12)/(g3^2*g5^2) + (g3^2*t^7.12)/(g2^2*g5^2) + (g1^2*t^7.51)/(g2^2*g3^2*g4^10*g5^6) + (g1^3*t^7.52)/(g2*g3*g4^5*g5^3) + (g1^2*t^7.52)/(g2*g3*g4^5*g5) + (g1*g5*t^7.52)/(g2*g3*g4^5) + g1^2*g5^4*t^7.53 + (g1*t^7.55)/(g2^6*g3^6*g4^6*g5^4) + (g1^2*g2^3*t^7.56)/(g3*g4^5*g5^3) + (g1^2*g3^3*t^7.56)/(g2*g4^5*g5^3) + (g1*g2^3*t^7.56)/(g3*g4^5*g5) + (g1*g3^3*t^7.56)/(g2*g4^5*g5) + (g1*t^7.57)/(g2^2*g3^2*g4^8*g5^6) + (g1^2*t^7.57)/(g2^5*g3^5*g4*g5) + (g1*g5*t^7.57)/(g2^5*g3^5*g4) + g1^2*g2^4*g5^2*t^7.57 + g1^2*g3^4*g5^2*t^7.57 + (g5^3*t^7.57)/(g2^5*g3^5*g4) + g1*g2^4*g5^4*t^7.57 + g1*g3^4*g5^4*t^7.57 + (g1^2*t^7.58)/(g2*g3*g4^3*g5^3) + (g1*t^7.58)/(g2*g3*g4^3*g5) + (g5*t^7.58)/(g2*g3*g4^3) + (g1*g2^7*t^7.59)/(g3*g4^5*g5^3) + (g1*g2^3*g3^3*t^7.59)/(g4^5*g5^3) + (g1*g3^7*t^7.59)/(g2*g4^5*g5^3) + g1^2*g4^2*g5^2*t^7.59 + g1*g4^2*g5^4*t^7.59 + g4^2*g5^6*t^7.59 + g1^2*g2^8*t^7.6 + g1^2*g2^4*g3^4*t^7.6 + g1^2*g3^8*t^7.6 + t^7.6/(g2^10*g3^10*g4^2*g5^2) + g1*g2^8*g5^2*t^7.6 + g1*g2^4*g3^4*g5^2*t^7.6 + g1*g3^8*g5^2*t^7.6 + g2^8*g5^4*t^7.6 + g2^4*g3^4*g5^4*t^7.6 + g3^8*g5^4*t^7.6 + t^7.61/(g2^6*g3^6*g4^4*g5^4) + (g1*g2^3*t^7.61)/(g3*g4^3*g5^3) + (g1*g3^3*t^7.61)/(g2*g4^3*g5^3) + (g2^3*t^7.61)/(g3*g4^3*g5) + (g3^3*t^7.61)/(g2*g4^3*g5) + g1^2*g2^4*g4^2*t^7.62 + g1^2*g3^4*g4^2*t^7.62 + t^7.62/(g2^2*g3^2*g4^6*g5^6) + (g1*g4*t^7.62)/(g2^5*g3^5*g5) + (2*g4*g5*t^7.62)/(g2^5*g3^5) + 2*g1*g2^4*g4^2*g5^2*t^7.62 + 2*g1*g3^4*g4^2*g5^2*t^7.62 + (g4*g5^3*t^7.62)/(g1*g2^5*g3^5) + 2*g2^4*g4^2*g5^4*t^7.62 + 2*g3^4*g4^2*g5^4*t^7.62 + (g2^4*g4^2*g5^6*t^7.62)/g1 + (g3^4*g4^2*g5^6*t^7.62)/g1 - t^7.63/(g2*g3*g4*g5) + g1^2*g4^4*t^7.64 + (g2^7*t^7.64)/(g3*g4^3*g5^3) + (g2^3*g3^3*t^7.64)/(g4^3*g5^3) + (g3^7*t^7.64)/(g2*g4^3*g5^3) + g1*g4^4*g5^2*t^7.64 + g4^4*g5^4*t^7.64 + (g4^4*g5^6*t^7.64)/g1 + (g4^4*g5^8*t^7.64)/g1^2 + g1*g2^8*g4^2*t^7.65 + g1*g2^4*g3^4*g4^2*t^7.65 + g1*g3^8*g4^2*t^7.65 + 2*g2^8*g4^2*g5^2*t^7.65 + 2*g2^4*g3^4*g4^2*g5^2*t^7.65 + 2*g3^8*g4^2*g5^2*t^7.65 + (g2^8*g4^2*g5^4*t^7.65)/g1 + (g2^4*g3^4*g4^2*g5^4*t^7.65)/g1 + (g3^8*g4^2*g5^4*t^7.65)/g1 + (g4^3*t^7.67)/(g2^5*g3^5*g5) + (g4^3*g5*t^7.67)/(g1*g2^5*g3^5) + (g4^3*g5^3*t^7.67)/(g1^2*g2^5*g3^5) + g1*g2^4*g4^4*t^7.68 + g1*g3^4*g4^4*t^7.68 + g2^4*g4^4*g5^2*t^7.68 + g3^4*g4^4*g5^2*t^7.68 + (g2^4*g4^4*g5^4*t^7.68)/g1 + (g3^4*g4^4*g5^4*t^7.68)/g1 + (g2^4*g4^4*g5^6*t^7.68)/g1^2 + (g3^4*g4^4*g5^6*t^7.68)/g1^2 - (g4*t^7.69)/(g1*g2*g3*g5) + g2^8*g4^4*t^7.71 + g2^4*g3^4*g4^4*t^7.71 + g3^8*g4^4*t^7.71 + (g2^8*g4^4*g5^2*t^7.71)/g1 + (g2^4*g3^4*g4^4*g5^2*t^7.71)/g1 + (g3^8*g4^4*g5^2*t^7.71)/g1 + (g2^8*g4^4*g5^4*t^7.71)/g1^2 + (g2^4*g3^4*g4^4*g5^4*t^7.71)/g1^2 + (g3^8*g4^4*g5^4*t^7.71)/g1^2 + (g1^3*t^8.02)/(g4^8*g5^2) + (g1^3*g2^4*t^8.05)/(g4^8*g5^4) + (g1^3*g3^4*t^8.05)/(g4^8*g5^4) + (g1^2*g2^4*t^8.05)/(g4^8*g5^2) + (g1^2*g3^4*t^8.05)/(g4^8*g5^2) + (g1^2*t^8.06)/(g2^4*g3^4*g4^4) + (g1^2*g2^4*t^8.1)/(g4^6*g5^4) + (g1^2*g3^4*t^8.1)/(g4^6*g5^4) + (g1*g2^4*t^8.1)/(g4^6*g5^2) + (g1*g3^4*t^8.1)/(g4^6*g5^2) + (g1*g5^2*t^8.1)/(g2^8*g3^8) - t^8.13/g4^4 - (g1^2*t^8.13)/(g4^4*g5^4) - (5*g1*t^8.13)/(g4^4*g5^2) - (g1*g2^4*t^8.13)/(g3^4*g4^4*g5^2) - (g1*g3^4*t^8.13)/(g2^4*g4^4*g5^2) - g1^2*g2*g3*g4*g5*t^8.14 - g1*g2*g3*g4*g5^3*t^8.14 - g2*g3*g4*g5^5*t^8.14 + (g1*g4^2*t^8.16)/(g2^8*g3^8) + (g4^2*g5^2*t^8.16)/(g2^8*g3^8) + (g4^2*g5^4*t^8.16)/(g1*g2^8*g3^8) - (4*t^8.17)/(g2^4*g3^4) - (g1*t^8.17)/(g2^4*g3^4*g5^2) - g1*g2^5*g3*g4*g5*t^8.17 - g1*g2*g3^5*g4*g5*t^8.17 - (g5^2*t^8.17)/(g1*g2^4*g3^4) - g2^5*g3*g4*g5^3*t^8.17 - g2*g3^5*g4*g5^3*t^8.17 - t^8.18/(g1*g4^2) - (g1*t^8.18)/(g4^2*g5^4) - (5*t^8.18)/(g4^2*g5^2) - (g2^4*t^8.18)/(g3^4*g4^2*g5^2) - (g3^4*t^8.18)/(g2^4*g4^2*g5^2) - g1*g2*g3*g4^3*g5*t^8.19 - 2*g2*g3*g4^3*g5^3*t^8.19 - (g2*g3*g4^3*g5^5*t^8.19)/g1 - g2^9*g3*g4*g5*t^8.2 - g2^5*g3^5*g4*g5*t^8.2 - g2*g3^9*g4*g5*t^8.2 - (2*g4^2*t^8.22)/(g1*g2^4*g3^4) - (g4^2*t^8.22)/(g2^4*g3^4*g5^2) - g2^5*g3*g4^3*g5*t^8.22 - g2*g3^5*g4^3*g5*t^8.22 - (g4^2*g5^2*t^8.22)/(g1^2*g2^4*g3^4) - (g2^5*g3*g4^3*g5^3*t^8.22)/g1 - (g2*g3^5*g4^3*g5^3*t^8.22)/g1 - t^8.23/(g1*g5^2) - g2*g3*g4^5*g5*t^8.24 - (g2*g3*g4^5*g5^3*t^8.24)/g1 - (g2*g3*g4^5*g5^5*t^8.24)/g1^2 + (g1^4*t^8.5)/(g4^16*g5^8) + (g1^3*t^8.54)/(g2^4*g3^4*g4^12*g5^6) + (g1^3*t^8.55)/(g4^14*g5^8) + (g1^2*t^8.58)/(g2^8*g3^8*g4^8*g5^4) + (g1^2*t^8.6)/(g2^4*g3^4*g4^10*g5^6) + (g1^2*t^8.61)/(g4^12*g5^8) + (g1*t^8.63)/(g2^12*g3^12*g4^4*g5^2) + (g1*t^8.64)/(g2^8*g3^8*g4^6*g5^4) + (2*g1*t^8.65)/(g2^4*g3^4*g4^8*g5^6) + (g1*t^8.66)/(g4^10*g5^8) + (g1^2*t^8.66)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.66)/(g2^3*g3^3*g4^3*g5) + (g5*t^8.66)/(g2^3*g3^3*g4^3) + t^8.67/(g2^16*g3^16) + t^8.68/(g2^12*g3^12*g4^2*g5^2) + (2*t^8.69)/(g2^8*g3^8*g4^4*g5^4) + (g1*g2*t^8.69)/(g3^3*g4^3*g5^3) + (g1*g3*t^8.69)/(g2^3*g4^3*g5^3) + (g2*t^8.69)/(g3^3*g4^3*g5) + (g3*t^8.69)/(g2^3*g4^3*g5) + (2*t^8.7)/(g2^4*g3^4*g4^6*g5^6) + (g1*t^8.71)/(g2^3*g3^3*g4*g5^3) + (2*t^8.71)/(g2^3*g3^3*g4*g5) + (g5*t^8.71)/(g1*g2^3*g3^3*g4) + t^8.72/(g4^8*g5^8) + (g2^5*t^8.73)/(g3^3*g4^3*g5^3) + (g2*g3*t^8.73)/(g4^3*g5^3) + (g3^5*t^8.73)/(g2^3*g4^3*g5^3) + (g2*t^8.75)/(g3^3*g4*g5^3) + (g3*t^8.75)/(g2^3*g4*g5^3) + (g2*t^8.75)/(g1*g3^3*g4*g5) + (g3*t^8.75)/(g1*g2^3*g4*g5) + (g4*t^8.77)/(g2^3*g3^3*g5^3) + (g4*t^8.77)/(g1*g2^3*g3^3*g5) + (g4*g5*t^8.77)/(g1^2*g2^3*g3^3) - t^4.63/(g2*g3*g4*g5*y) - (g1*t^6.76)/(g2*g3*g4^5*g5^3*y) - t^6.8/(g2^5*g3^5*g4*g5*y) - t^6.81/(g2*g3*g4^3*g5^3*y) + (g1*t^7.29)/(g2^4*g3^4*g4^4*g5^2*y) + (g1*t^7.3)/(g4^6*g5^4*y) + t^7.35/(g2^4*g3^4*g4^2*g5^2*y) + (g2*g3*g4*g5*t^7.37)/y - t^7.89/(g2^3*g3^3*g4^3*g5^3*y) + (g1*t^8.39)/(g2^2*g3^2*g4^6*g5^4*y) + t^8.43/(g2^6*g3^6*g4^2*g5^2*y) + t^8.44/(g2^2*g3^2*g4^4*g5^4*y) + (g4*g5*t^8.45)/(g2*g3*y) + (g2^3*g3^3*t^8.46)/(g4*g5*y) + (g4^3*g5*t^8.51)/(g1*g2*g3*y) - (g1^2*t^8.88)/(g2*g3*g4^9*g5^5*y) + (g1^2*t^8.89)/(g4^4*y) - (g1*t^8.92)/(g2^5*g3^5*g4^5*g5^3*y) + (g1*g2^4*t^8.93)/(g4^4*y) + (g1*g3^4*t^8.93)/(g4^4*y) + (g1^2*g2^4*t^8.93)/(g4^4*g5^2*y) + (g1^2*g3^4*t^8.93)/(g4^4*g5^2*y) + (g1*g5^2*t^8.93)/(g2^4*g3^4*y) - (g1*t^8.94)/(g2*g3*g4^7*g5^5*y) + (2*g1*t^8.95)/(g4^2*y) + (g1^2*t^8.95)/(g4^2*g5^2*y) + (g5^2*t^8.95)/(g4^2*y) + (g1*t^8.97)/(g2^4*y) + (g1*t^8.97)/(g3^4*y) - t^8.97/(g2^9*g3^9*g4*g5*y) + (g5^2*t^8.97)/(g2^4*y) + (g5^2*t^8.97)/(g3^4*y) + (2*g2^4*t^8.98)/(g4^2*y) + (2*g3^4*t^8.98)/(g4^2*y) - t^8.98/(g2^5*g3^5*g4^3*g5^3*y) + (2*g1*g2^4*t^8.98)/(g4^2*g5^2*y) + (2*g1*g3^4*t^8.98)/(g4^2*g5^2*y) + (g1*g4^2*t^8.99)/(g2^4*g3^4*y) - t^8.99/(g2*g3*g4^5*g5^5*y) + (g4^2*g5^2*t^8.99)/(g2^4*g3^4*y) + (g4^2*g5^4*t^8.99)/(g1*g2^4*g3^4*y) - (t^4.63*y)/(g2*g3*g4*g5) - (g1*t^6.76*y)/(g2*g3*g4^5*g5^3) - (t^6.8*y)/(g2^5*g3^5*g4*g5) - (t^6.81*y)/(g2*g3*g4^3*g5^3) + (g1*t^7.29*y)/(g2^4*g3^4*g4^4*g5^2) + (g1*t^7.3*y)/(g4^6*g5^4) + (t^7.35*y)/(g2^4*g3^4*g4^2*g5^2) + g2*g3*g4*g5*t^7.37*y - (t^7.89*y)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.39*y)/(g2^2*g3^2*g4^6*g5^4) + (t^8.43*y)/(g2^6*g3^6*g4^2*g5^2) + (t^8.44*y)/(g2^2*g3^2*g4^4*g5^4) + (g4*g5*t^8.45*y)/(g2*g3) + (g2^3*g3^3*t^8.46*y)/(g4*g5) + (g4^3*g5*t^8.51*y)/(g1*g2*g3) - (g1^2*t^8.88*y)/(g2*g3*g4^9*g5^5) + (g1^2*t^8.89*y)/g4^4 - (g1*t^8.92*y)/(g2^5*g3^5*g4^5*g5^3) + (g1*g2^4*t^8.93*y)/g4^4 + (g1*g3^4*t^8.93*y)/g4^4 + (g1^2*g2^4*t^8.93*y)/(g4^4*g5^2) + (g1^2*g3^4*t^8.93*y)/(g4^4*g5^2) + (g1*g5^2*t^8.93*y)/(g2^4*g3^4) - (g1*t^8.94*y)/(g2*g3*g4^7*g5^5) + (2*g1*t^8.95*y)/g4^2 + (g1^2*t^8.95*y)/(g4^2*g5^2) + (g5^2*t^8.95*y)/g4^2 + (g1*t^8.97*y)/g2^4 + (g1*t^8.97*y)/g3^4 - (t^8.97*y)/(g2^9*g3^9*g4*g5) + (g5^2*t^8.97*y)/g2^4 + (g5^2*t^8.97*y)/g3^4 + (2*g2^4*t^8.98*y)/g4^2 + (2*g3^4*t^8.98*y)/g4^2 - (t^8.98*y)/(g2^5*g3^5*g4^3*g5^3) + (2*g1*g2^4*t^8.98*y)/(g4^2*g5^2) + (2*g1*g3^4*t^8.98*y)/(g4^2*g5^2) + (g1*g4^2*t^8.99*y)/(g2^4*g3^4) - (t^8.99*y)/(g2*g3*g4^5*g5^5) + (g4^2*g5^2*t^8.99*y)/(g2^4*g3^4) + (g4^2*g5^4*t^8.99*y)/(g1*g2^4*g3^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55676 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.9181 1.142 0.8039 [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y detail