Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55713 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_1q_3$ | 0.9386 | 1.1822 | 0.794 | [X:[], M:[0.7063, 0.7163, 0.7063, 0.6914], q:[0.6612, 0.6324, 0.6474], qb:[0.6363, 0.6324, 0.6159], phi:[0.5436]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0], [-4, 0, -4, 0, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_1$, $ M_3$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_4^2$, $ M_1M_4$, $ M_3M_4$, $ M_2M_4$, $ M_1^2$, $ M_3^2$, $ M_1M_3$, $ M_1M_2$, $ M_2M_3$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_4q_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_1\tilde{q}_3$, $ M_4q_3\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_4q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_4q_2q_3$, $ M_3q_2\tilde{q}_2$, $ M_4q_3\tilde{q}_2$, $ M_4q_1\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_3q_2q_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_3$ | . | -8 | t^2.07 + 2*t^2.12 + t^2.15 + t^3.26 + 2*t^3.74 + t^3.76 + 2*t^3.79 + 2*t^3.81 + t^3.83 + 2*t^3.84 + t^3.89 + t^4.15 + 2*t^4.19 + t^4.22 + 3*t^4.24 + 2*t^4.27 + t^4.3 + t^5.33 + t^5.34 + 4*t^5.38 + t^5.39 + t^5.41 + t^5.42 + 3*t^5.43 + 2*t^5.44 + t^5.45 + t^5.46 + 2*t^5.47 + t^5.48 + 2*t^5.51 + 2*t^5.52 + t^5.56 + t^5.6 + 2*t^5.82 + t^5.83 + 4*t^5.86 + t^5.87 + 4*t^5.88 + 2*t^5.89 + 5*t^5.91 + 3*t^5.93 + t^5.94 + 3*t^5.96 + t^5.98 - 8*t^6. - t^6.03 - 2*t^6.04 - 2*t^6.05 - t^6.06 - t^6.07 - 3*t^6.09 - t^6.14 + t^6.22 + 2*t^6.27 + t^6.3 + 3*t^6.31 + 2*t^6.34 + 4*t^6.36 + t^6.37 + 3*t^6.39 + 2*t^6.42 + t^6.45 + t^6.52 + 2*t^7.01 + t^7.02 + t^7.05 + t^7.06 + 2*t^7.07 + t^7.09 + 2*t^7.1 + t^7.15 + t^7.4 + t^7.41 + 2*t^7.44 + 4*t^7.45 + t^7.46 + t^7.47 + t^7.48 + 7*t^7.49 + 8*t^7.5 + 5*t^7.51 + 3*t^7.52 + 4*t^7.53 + 11*t^7.54 + 5*t^7.55 + 7*t^7.56 + 5*t^7.57 + 7*t^7.58 + 8*t^7.59 + 7*t^7.6 + 4*t^7.61 + t^7.62 + 5*t^7.63 + 2*t^7.64 + 4*t^7.65 + 3*t^7.66 + t^7.67 + t^7.68 - t^7.69 + 2*t^7.7 - t^7.73 + t^7.75 - t^7.77 + t^7.79 + 2*t^7.89 + t^7.9 + 5*t^7.94 + 4*t^7.95 + 2*t^7.97 + 7*t^7.98 + 5*t^7.99 + 3*t^8. + 3*t^8.01 + t^8.02 + 6*t^8.03 + 6*t^8.04 + t^8.05 - t^8.06 - 9*t^8.07 + 4*t^8.08 - t^8.09 - 3*t^8.11 - 18*t^8.12 - t^8.13 - t^8.14 - 10*t^8.15 - 10*t^8.16 - 4*t^8.17 - 4*t^8.18 - 3*t^8.19 - 3*t^8.2 - 6*t^8.21 - 2*t^8.22 - 2*t^8.24 - 3*t^8.25 - t^8.26 - t^8.28 + t^8.3 + t^8.34 + t^8.37 + 3*t^8.39 + 2*t^8.42 + 4*t^8.43 + t^8.45 + 3*t^8.46 + 5*t^8.48 + 2*t^8.49 + 4*t^8.51 + t^8.52 + 3*t^8.54 + 2*t^8.57 + t^8.59 + 2*t^8.6 + 4*t^8.64 + t^8.65 + t^8.67 + t^8.68 + 3*t^8.69 + 2*t^8.7 + t^8.71 + t^8.72 + 2*t^8.73 + t^8.74 + 2*t^8.77 + t^8.78 + t^8.79 + t^8.82 + t^8.86 - t^4.63/y - t^6.7/y - (2*t^6.75)/y - t^6.78/y + (2*t^7.19)/y + t^7.22/y + t^7.24/y + (2*t^7.27)/y + t^7.37/y - t^7.89/y + t^8.34/y + (2*t^8.38)/y + t^8.41/y + t^8.48/y + (2*t^8.51)/y + t^8.56/y - t^8.78/y + t^8.83/y - t^8.85/y + (5*t^8.86)/y - (2*t^8.87)/y + (4*t^8.88)/y + (2*t^8.89)/y - (2*t^8.9)/y + (8*t^8.91)/y + (3*t^8.93)/y + (2*t^8.94)/y + (2*t^8.95)/y + (6*t^8.96)/y + t^8.97/y + t^8.98/y + (2*t^8.99)/y - t^4.63*y - t^6.7*y - 2*t^6.75*y - t^6.78*y + 2*t^7.19*y + t^7.22*y + t^7.24*y + 2*t^7.27*y + t^7.37*y - t^7.89*y + t^8.34*y + 2*t^8.38*y + t^8.41*y + t^8.48*y + 2*t^8.51*y + t^8.56*y - t^8.78*y + t^8.83*y - t^8.85*y + 5*t^8.86*y - 2*t^8.87*y + 4*t^8.88*y + 2*t^8.89*y - 2*t^8.9*y + 8*t^8.91*y + 3*t^8.93*y + 2*t^8.94*y + 2*t^8.95*y + 6*t^8.96*y + t^8.97*y + t^8.98*y + 2*t^8.99*y | t^2.07/(g1^4*g3^4) + t^2.12/(g1^4*g2^4) + t^2.12/(g1^4*g5^4) + t^2.15/(g3^4*g4^4) + t^3.26/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g6^4*t^3.74 + g5^4*g6^4*t^3.74 + g4^4*g6^4*t^3.76 + g2^4*g5^4*t^3.79 + g3^4*g6^4*t^3.79 + g2^4*g4^4*t^3.81 + g4^4*g5^4*t^3.81 + g1^4*g6^4*t^3.83 + g2^4*g3^4*t^3.84 + g3^4*g5^4*t^3.84 + g1^4*g4^4*t^3.89 + t^4.15/(g1^8*g3^8) + t^4.19/(g1^8*g2^4*g3^4) + t^4.19/(g1^8*g3^4*g5^4) + t^4.22/(g1^4*g3^8*g4^4) + t^4.24/(g1^8*g2^8) + t^4.24/(g1^8*g5^8) + t^4.24/(g1^8*g2^4*g5^4) + t^4.27/(g1^4*g2^4*g3^4*g4^4) + t^4.27/(g1^4*g3^4*g4^4*g5^4) + t^4.3/(g3^8*g4^8) + (g6^7*t^5.33)/(g1*g2*g3*g4*g5) + t^5.34/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.38/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^3*g6^3*t^5.38)/(g1*g3*g4*g5) + (g5^3*g6^3*t^5.38)/(g1*g2*g3*g4) + (g4^3*g6^3*t^5.39)/(g1*g2*g3*g5) + t^5.41/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g6^3*t^5.42)/(g1*g2*g4*g5) + (g2^7*t^5.43)/(g1*g3*g4*g5*g6) + (g2^3*g5^3*t^5.43)/(g1*g3*g4*g6) + (g5^7*t^5.43)/(g1*g2*g3*g4*g6) + (g2^3*g4^3*t^5.44)/(g1*g3*g5*g6) + (g4^3*g5^3*t^5.44)/(g1*g2*g3*g6) + (g4^7*t^5.45)/(g1*g2*g3*g5*g6) + (g1^3*g6^3*t^5.46)/(g2*g3*g4*g5) + (g2^3*g3^3*t^5.47)/(g1*g4*g5*g6) + (g3^3*g5^3*t^5.47)/(g1*g2*g4*g6) + (g3^3*g4^3*t^5.48)/(g1*g2*g5*g6) + (g1^3*g2^3*t^5.51)/(g3*g4*g5*g6) + (g1^3*g5^3*t^5.51)/(g2*g3*g4*g6) + (g3^7*t^5.52)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.52)/(g2*g3*g5*g6) + (g1^3*g3^3*t^5.56)/(g2*g4*g5*g6) + (g1^7*t^5.6)/(g2*g3*g4*g5*g6) + (g2^4*g6^4*t^5.82)/(g1^4*g3^4) + (g5^4*g6^4*t^5.82)/(g1^4*g3^4) + (g4^4*g6^4*t^5.83)/(g1^4*g3^4) + (2*g6^4*t^5.86)/g1^4 + (g2^4*g6^4*t^5.86)/(g1^4*g5^4) + (g5^4*g6^4*t^5.86)/(g1^4*g2^4) + (g2^4*g5^4*t^5.87)/(g1^4*g3^4) + (g2^4*g4^4*t^5.88)/(g1^4*g3^4) + (g4^4*g5^4*t^5.88)/(g1^4*g3^4) + (g4^4*g6^4*t^5.88)/(g1^4*g2^4) + (g4^4*g6^4*t^5.88)/(g1^4*g5^4) + (g2^4*g6^4*t^5.89)/(g3^4*g4^4) + (g5^4*g6^4*t^5.89)/(g3^4*g4^4) + (g2^4*t^5.91)/g1^4 + (g5^4*t^5.91)/g1^4 + (g6^4*t^5.91)/g3^4 + (g3^4*g6^4*t^5.91)/(g1^4*g2^4) + (g3^4*g6^4*t^5.91)/(g1^4*g5^4) + (g4^4*t^5.93)/g1^4 + (g2^4*g4^4*t^5.93)/(g1^4*g5^4) + (g4^4*g5^4*t^5.93)/(g1^4*g2^4) + (g2^4*g5^4*t^5.94)/(g3^4*g4^4) + (g3^4*t^5.96)/g1^4 + (g2^4*g3^4*t^5.96)/(g1^4*g5^4) + (g3^4*g5^4*t^5.96)/(g1^4*g2^4) + (g1^4*g6^4*t^5.98)/(g3^4*g4^4) - 6*t^6. - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g3^4*t^6.03)/g4^4 - (g3^4*t^6.04)/g2^4 - (g3^4*t^6.04)/g5^4 - (g2^4*t^6.05)/g6^4 - (g5^4*t^6.05)/g6^4 - (g4^4*t^6.06)/g6^4 - (g1^4*t^6.07)/g4^4 - (g1^4*t^6.09)/g2^4 - (g1^4*t^6.09)/g5^4 - (g3^4*t^6.09)/g6^4 - (g1^4*t^6.14)/g6^4 + t^6.22/(g1^12*g3^12) + t^6.27/(g1^12*g2^4*g3^8) + t^6.27/(g1^12*g3^8*g5^4) + t^6.3/(g1^8*g3^12*g4^4) + t^6.31/(g1^12*g2^8*g3^4) + t^6.31/(g1^12*g3^4*g5^8) + t^6.31/(g1^12*g2^4*g3^4*g5^4) + t^6.34/(g1^8*g2^4*g3^8*g4^4) + t^6.34/(g1^8*g3^8*g4^4*g5^4) + t^6.36/(g1^12*g2^12) + t^6.36/(g1^12*g5^12) + t^6.36/(g1^12*g2^4*g5^8) + t^6.36/(g1^12*g2^8*g5^4) + t^6.37/(g1^4*g3^12*g4^8) + t^6.39/(g1^8*g2^8*g3^4*g4^4) + t^6.39/(g1^8*g3^4*g4^4*g5^8) + t^6.39/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.42/(g1^4*g2^4*g3^8*g4^8) + t^6.42/(g1^4*g3^8*g4^8*g5^4) + t^6.45/(g3^12*g4^12) + t^6.52/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g2^2*g6^2*t^7.01)/(g1^2*g3^2*g4^2*g5^2) + (g5^2*g6^2*t^7.01)/(g1^2*g2^2*g3^2*g4^2) + (g4^2*g6^2*t^7.02)/(g1^2*g2^2*g3^2*g5^2) + (g3^2*g6^2*t^7.05)/(g1^2*g2^2*g4^2*g5^2) + (g2^2*g5^2*t^7.06)/(g1^2*g3^2*g4^2*g6^2) + (g2^2*g4^2*t^7.07)/(g1^2*g3^2*g5^2*g6^2) + (g4^2*g5^2*t^7.07)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.09)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g3^2*t^7.1)/(g1^2*g4^2*g5^2*g6^2) + (g3^2*g5^2*t^7.1)/(g1^2*g2^2*g4^2*g6^2) + (g1^2*g4^2*t^7.15)/(g2^2*g3^2*g5^2*g6^2) + (g6^7*t^7.4)/(g1^5*g2*g3^5*g4*g5) + t^7.41/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + (g6^7*t^7.44)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.44)/(g1^5*g2^5*g3*g4*g5) + t^7.45/(g1^10*g2^2*g3^6*g4^2*g5^6*g6^2) + t^7.45/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + (g2^3*g6^3*t^7.45)/(g1^5*g3^5*g4*g5) + (g5^3*g6^3*t^7.45)/(g1^5*g2*g3^5*g4) + (g4^3*g6^3*t^7.46)/(g1^5*g2*g3^5*g5) + (g6^7*t^7.47)/(g1*g2*g3^5*g4^5*g5) + t^7.48/(g1^6*g2^2*g3^10*g4^6*g5^2*g6^2) + (g2^3*g6^3*t^7.49)/(g1^5*g3*g4*g5^5) + (2*g6^3*t^7.49)/(g1^5*g2*g3*g4*g5) + (g5^3*g6^3*t^7.49)/(g1^5*g2^5*g3*g4) + g2^8*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g5^8*g6^8*t^7.49 + t^7.5/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.5/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.5/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^7.5)/(g1^5*g3^5*g4*g5*g6) + (g2^3*g5^3*t^7.5)/(g1^5*g3^5*g4*g6) + (g5^7*t^7.5)/(g1^5*g2*g3^5*g4*g6) + g2^4*g4^4*g6^8*t^7.5 + g4^4*g5^4*g6^8*t^7.5 + (g2^3*g4^3*t^7.51)/(g1^5*g3^5*g5*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2*g3^5*g6) + (g4^3*g6^3*t^7.51)/(g1^5*g2*g3*g5^5) + (g4^3*g6^3*t^7.51)/(g1^5*g2^5*g3*g5) + g4^8*g6^8*t^7.51 + (g4^7*t^7.52)/(g1^5*g2*g3^5*g5*g6) + (g2^3*g6^3*t^7.52)/(g1*g3^5*g4^5*g5) + (g5^3*g6^3*t^7.52)/(g1*g2*g3^5*g4^5) + t^7.53/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.53/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + g2^4*g3^4*g6^8*t^7.53 + g3^4*g5^4*g6^8*t^7.53 + (g2^7*t^7.54)/(g1^5*g3*g4*g5^5*g6) + (2*g2^3*t^7.54)/(g1^5*g3*g4*g5*g6) + (2*g5^3*t^7.54)/(g1^5*g2*g3*g4*g6) + (g5^7*t^7.54)/(g1^5*g2^5*g3*g4*g6) + (g3^3*g6^3*t^7.54)/(g1^5*g2*g4*g5^5) + (g6^3*t^7.54)/(g1*g2*g3^5*g4*g5) + (g3^3*g6^3*t^7.54)/(g1^5*g2^5*g4*g5) + g2^8*g5^4*g6^4*t^7.54 + g2^4*g5^8*g6^4*t^7.54 + g2^8*g4^4*g6^4*t^7.55 + 2*g2^4*g4^4*g5^4*g6^4*t^7.55 + g4^4*g5^8*g6^4*t^7.55 + g3^4*g4^4*g6^8*t^7.55 + t^7.56/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + (g2^3*g4^3*t^7.56)/(g1^5*g3*g5^5*g6) + (2*g4^3*t^7.56)/(g1^5*g2*g3*g5*g6) + (g4^3*g5^3*t^7.56)/(g1^5*g2^5*g3*g6) + g2^4*g4^8*g6^4*t^7.56 + g4^8*g5^4*g6^4*t^7.56 + (g4^7*t^7.57)/(g1^5*g2*g3*g5^5*g6) + (g2^7*t^7.57)/(g1*g3^5*g4^5*g5*g6) + (g4^7*t^7.57)/(g1^5*g2^5*g3*g5*g6) + (g2^3*g5^3*t^7.57)/(g1*g3^5*g4^5*g6) + (g5^7*t^7.57)/(g1*g2*g3^5*g4^5*g6) + g2^8*g3^4*g6^4*t^7.58 + 2*g2^4*g3^4*g5^4*g6^4*t^7.58 + g3^4*g5^8*g6^4*t^7.58 + g1^4*g2^4*g6^8*t^7.58 + g3^8*g6^8*t^7.58 + g1^4*g5^4*g6^8*t^7.58 + g2^8*g5^8*t^7.59 + (g2^3*g3^3*t^7.59)/(g1^5*g4*g5^5*g6) + (g2^3*t^7.59)/(g1*g3^5*g4*g5*g6) + (2*g3^3*t^7.59)/(g1^5*g2*g4*g5*g6) + (g5^3*t^7.59)/(g1*g2*g3^5*g4*g6) + (g3^3*g5^3*t^7.59)/(g1^5*g2^5*g4*g6) + g1^4*g4^4*g6^8*t^7.59 + g2^8*g4^4*g5^4*t^7.6 + g2^4*g4^4*g5^8*t^7.6 + (g3^3*g4^3*t^7.6)/(g1^5*g2*g5^5*g6) + (g4^3*t^7.6)/(g1*g2*g3^5*g5*g6) + (g3^3*g4^3*t^7.6)/(g1^5*g2^5*g5*g6) + g2^4*g3^4*g4^4*g6^4*t^7.6 + g3^4*g4^4*g5^4*g6^4*t^7.6 + g2^8*g4^8*t^7.61 + g2^4*g4^8*g5^4*t^7.61 + g4^8*g5^8*t^7.61 + (g1^3*g6^3*t^7.61)/(g2*g3^5*g4^5*g5) + g1^4*g3^4*g6^8*t^7.62 + g2^8*g3^4*g5^4*t^7.63 + g2^4*g3^4*g5^8*t^7.63 + (g3^7*t^7.63)/(g1^5*g2*g4*g5^5*g6) - t^7.63/(g1*g2*g3*g4*g5*g6) + (g3^7*t^7.63)/(g1^5*g2^5*g4*g5*g6) + g2^4*g3^8*g6^4*t^7.63 + g3^8*g5^4*g6^4*t^7.63 + g1^4*g2^4*g4^4*g6^4*t^7.64 + g1^4*g4^4*g5^4*g6^4*t^7.64 + g2^8*g3^4*g4^4*t^7.65 + g2^4*g3^4*g4^4*g5^4*t^7.65 + g3^4*g4^4*g5^8*t^7.65 + g1^4*g4^8*g6^4*t^7.65 + (g1^3*g2^3*t^7.66)/(g3^5*g4^5*g5*g6) + (g1^3*g5^3*t^7.66)/(g2*g3^5*g4^5*g6) + g1^8*g6^8*t^7.66 + (g1^3*t^7.67)/(g2*g3^5*g4*g5*g6) + g2^8*g3^8*t^7.68 + g2^4*g3^8*g5^4*t^7.68 + g3^8*g5^8*t^7.68 - (g2^3*t^7.68)/(g1*g3*g4*g5*g6^5) - (g5^3*t^7.68)/(g1*g2*g3*g4*g6^5) - (g4^3*t^7.69)/(g1*g2*g3*g5*g6^5) + g1^4*g2^4*g4^8*t^7.7 + g1^4*g4^8*g5^4*t^7.7 - g1^4*g2^4*g3^4*g5^4*t^7.72 + g1^8*g4^4*g6^4*t^7.72 - (g3^3*t^7.73)/(g1*g2*g4*g5*g6^5) + (g1^7*t^7.75)/(g2*g3^5*g4^5*g5*g6) - (g1^3*t^7.77)/(g2*g3*g4*g5*g6^5) + g1^8*g4^8*t^7.79 + (g2^4*g6^4*t^7.89)/(g1^8*g3^8) + (g5^4*g6^4*t^7.89)/(g1^8*g3^8) + (g4^4*g6^4*t^7.9)/(g1^8*g3^8) + (g2^4*g5^4*t^7.94)/(g1^8*g3^8) + (2*g6^4*t^7.94)/(g1^8*g3^4) + (g2^4*g6^4*t^7.94)/(g1^8*g3^4*g5^4) + (g5^4*g6^4*t^7.94)/(g1^8*g2^4*g3^4) + (g2^4*g4^4*t^7.95)/(g1^8*g3^8) + (g4^4*g5^4*t^7.95)/(g1^8*g3^8) + (g4^4*g6^4*t^7.95)/(g1^8*g2^4*g3^4) + (g4^4*g6^4*t^7.95)/(g1^8*g3^4*g5^4) + (g2^4*g6^4*t^7.97)/(g1^4*g3^8*g4^4) + (g5^4*g6^4*t^7.97)/(g1^4*g3^8*g4^4) + (2*g6^4*t^7.98)/(g1^8*g2^4) + (g6^4*t^7.98)/(g1^4*g3^8) + (g2^4*g6^4*t^7.98)/(g1^8*g5^8) + (2*g6^4*t^7.98)/(g1^8*g5^4) + (g5^4*g6^4*t^7.98)/(g1^8*g2^8) + (g2^4*t^7.99)/(g1^8*g3^4) + (g5^4*t^7.99)/(g1^8*g3^4) + (g4^4*g6^4*t^7.99)/(g1^8*g2^8) + (g4^4*g6^4*t^7.99)/(g1^8*g5^8) + (g4^4*g6^4*t^7.99)/(g1^8*g2^4*g5^4) + (g4^4*t^8.)/(g1^8*g3^4) + (g2^4*g4^4*t^8.)/(g1^8*g3^4*g5^4) + (g4^4*g5^4*t^8.)/(g1^8*g2^4*g3^4) + (g6^4*t^8.01)/(g1^4*g3^4*g4^4) + (g2^4*g6^4*t^8.01)/(g1^4*g3^4*g4^4*g5^4) + (g5^4*g6^4*t^8.01)/(g1^4*g2^4*g3^4*g4^4) + (g2^4*g5^4*t^8.02)/(g1^4*g3^8*g4^4) + t^8.03/g1^8 + (g2^4*t^8.03)/(g1^8*g5^4) + (g5^4*t^8.03)/(g1^8*g2^4) + (g3^4*g6^4*t^8.03)/(g1^8*g2^8) + (g3^4*g6^4*t^8.03)/(g1^8*g5^8) + (g3^4*g6^4*t^8.03)/(g1^8*g2^4*g5^4) + (g4^4*t^8.04)/(g1^8*g2^4) + (g2^4*g4^4*t^8.04)/(g1^8*g5^8) + (g4^4*t^8.04)/(g1^8*g5^4) + (g4^4*g5^4*t^8.04)/(g1^8*g2^8) + (g2^4*g6^4*t^8.04)/(g3^8*g4^8) + (g5^4*g6^4*t^8.04)/(g3^8*g4^8) + (g6^4*t^8.05)/(g3^8*g4^4) - g1*g2*g3*g4*g5*g6^9*t^8.06 - (6*t^8.07)/(g1^4*g3^4) - (g2^4*t^8.07)/(g1^4*g3^4*g5^4) - (g5^4*t^8.07)/(g1^4*g2^4*g3^4) - (g6^4*t^8.07)/(g1^4*g2^4*g5^4) + (g3^4*t^8.08)/(g1^8*g2^4) + (g2^4*g3^4*t^8.08)/(g1^8*g5^8) + (g3^4*t^8.08)/(g1^8*g5^4) + (g3^4*g5^4*t^8.08)/(g1^8*g2^8) - (g4^4*t^8.09)/(g1^4*g2^4*g3^4) - (g4^4*t^8.09)/(g1^4*g3^4*g5^4) + (g2^4*g5^4*t^8.09)/(g3^8*g4^8) - t^8.11/(g1^4*g4^4) - g1*g2^5*g3*g4*g5*g6^5*t^8.11 - g1*g2*g3*g4*g5^5*g6^5*t^8.11 - (7*t^8.12)/(g1^4*g2^4) - (g2^4*t^8.12)/(g1^4*g5^8) - (7*t^8.12)/(g1^4*g5^4) - (g5^4*t^8.12)/(g1^4*g2^8) - (g2^4*t^8.12)/(g1^4*g3^4*g6^4) - (g5^4*t^8.12)/(g1^4*g3^4*g6^4) - (g4^4*t^8.13)/(g1^4*g2^4*g5^4) + (g1^4*g6^4*t^8.13)/(g3^8*g4^8) - g1*g2*g3*g4^5*g5*g6^5*t^8.13 - (g4^4*t^8.14)/(g1^4*g3^4*g6^4) - (6*t^8.15)/(g3^4*g4^4) - (g3^4*t^8.15)/(g1^4*g2^4*g4^4) - (g2^4*t^8.15)/(g3^4*g4^4*g5^4) - (g3^4*t^8.15)/(g1^4*g4^4*g5^4) - (g5^4*t^8.15)/(g2^4*g3^4*g4^4) - t^8.16/(g2^4*g3^4) - (g3^4*t^8.16)/(g1^4*g2^8) - (g3^4*t^8.16)/(g1^4*g5^8) - t^8.16/(g3^4*g5^4) - (2*g3^4*t^8.16)/(g1^4*g2^4*g5^4) - g1*g2^9*g3*g4*g5*g6*t^8.16 - g1*g2^5*g3*g4*g5^5*g6*t^8.16 - g1*g2*g3*g4*g5^9*g6*t^8.16 - g1*g2*g3^5*g4*g5*g6^5*t^8.16 - (2*t^8.17)/(g1^4*g6^4) - (g2^4*t^8.17)/(g1^4*g5^4*g6^4) - (g5^4*t^8.17)/(g1^4*g2^4*g6^4) - (g4^4*t^8.18)/(g1^4*g2^4*g6^4) - (g4^4*t^8.18)/(g1^4*g5^4*g6^4) - g1*g2^5*g3*g4^5*g5*g6*t^8.18 - g1*g2*g3*g4^5*g5^5*g6*t^8.18 - t^8.19/(g2^4*g4^4) - t^8.19/(g4^4*g5^4) - g1*g2*g3*g4^9*g5*g6*t^8.19 - (g2^4*t^8.2)/(g3^4*g4^4*g6^4) - (g5^4*t^8.2)/(g3^4*g4^4*g6^4) - g1^5*g2*g3*g4*g5*g6^5*t^8.2 - t^8.21/(g2^4*g5^4) - t^8.21/(g3^4*g6^4) - (g3^4*t^8.21)/(g1^4*g2^4*g6^4) - (g3^4*t^8.21)/(g1^4*g5^4*g6^4) - g1*g2^5*g3^5*g4*g5*g6*t^8.21 - g1*g2*g3^5*g4*g5^5*g6*t^8.21 - (g1^4*t^8.22)/(g3^4*g4^8) - g1*g2*g3^5*g4^5*g5*g6*t^8.22 - (g1^4*t^8.24)/(g2^4*g3^4*g4^4) - (g1^4*t^8.24)/(g3^4*g4^4*g5^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.25 - g1*g2*g3^9*g4*g5*g6*t^8.25 - g1^5*g2*g3*g4*g5^5*g6*t^8.25 - g1^5*g2*g3*g4^5*g5*g6*t^8.26 - (g1^4*t^8.28)/(g3^4*g4^4*g6^4) + t^8.3/(g1^16*g3^16) + t^8.3/g6^8 - g1^5*g2*g3^5*g4*g5*g6*t^8.3 + t^8.34/(g1^16*g2^4*g3^12) + t^8.34/(g1^16*g3^12*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.34 + t^8.37/(g1^12*g3^16*g4^4) + t^8.39/(g1^16*g2^8*g3^8) + t^8.39/(g1^16*g3^8*g5^8) + t^8.39/(g1^16*g2^4*g3^8*g5^4) + t^8.42/(g1^12*g2^4*g3^12*g4^4) + t^8.42/(g1^12*g3^12*g4^4*g5^4) + t^8.43/(g1^16*g2^12*g3^4) + t^8.43/(g1^16*g3^4*g5^12) + t^8.43/(g1^16*g2^4*g3^4*g5^8) + t^8.43/(g1^16*g2^8*g3^4*g5^4) + t^8.45/(g1^8*g3^16*g4^8) + t^8.46/(g1^12*g2^8*g3^8*g4^4) + t^8.46/(g1^12*g3^8*g4^4*g5^8) + t^8.46/(g1^12*g2^4*g3^8*g4^4*g5^4) + t^8.48/(g1^16*g2^16) + t^8.48/(g1^16*g5^16) + t^8.48/(g1^16*g2^4*g5^12) + t^8.48/(g1^16*g2^8*g5^8) + t^8.48/(g1^16*g2^12*g5^4) + t^8.49/(g1^8*g2^4*g3^12*g4^8) + t^8.49/(g1^8*g3^12*g4^8*g5^4) + t^8.51/(g1^12*g2^12*g3^4*g4^4) + t^8.51/(g1^12*g3^4*g4^4*g5^12) + t^8.51/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.51/(g1^12*g2^8*g3^4*g4^4*g5^4) + t^8.52/(g1^4*g3^16*g4^12) + t^8.54/(g1^8*g2^8*g3^8*g4^8) + t^8.54/(g1^8*g3^8*g4^8*g5^8) + t^8.54/(g1^8*g2^4*g3^8*g4^8*g5^4) + t^8.57/(g1^4*g2^4*g3^12*g4^12) + t^8.57/(g1^4*g3^12*g4^12*g5^4) + (g6^5*t^8.59)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.6/(g3^16*g4^16) + t^8.6/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.64/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.64/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g2*g6*t^8.64)/(g1^3*g3^3*g4^3*g5^3) + (g5*g6*t^8.64)/(g1^3*g2^3*g3^3*g4^3) + (g4*g6*t^8.65)/(g1^3*g2^3*g3^3*g5^3) + t^8.67/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + (g3*g6*t^8.68)/(g1^3*g2^3*g4^3*g5^3) + (g2^5*t^8.69)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g5*t^8.69)/(g1^3*g3^3*g4^3*g6^3) + (g5^5*t^8.69)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g2*g4*t^8.7)/(g1^3*g3^3*g5^3*g6^3) + (g4*g5*t^8.7)/(g1^3*g2^3*g3^3*g6^3) + (g4^5*t^8.71)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g6*t^8.72)/(g2^3*g3^3*g4^3*g5^3) + (g2*g3*t^8.73)/(g1^3*g4^3*g5^3*g6^3) + (g3*g5*t^8.73)/(g1^3*g2^3*g4^3*g6^3) + (g3*g4*t^8.74)/(g1^3*g2^3*g5^3*g6^3) + (g1*g2*t^8.77)/(g3^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.77)/(g2^3*g3^3*g4^3*g6^3) + (g3^5*t^8.78)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.79)/(g2^3*g3^3*g5^3*g6^3) + (g1*g3*t^8.82)/(g2^3*g4^3*g5^3*g6^3) + (g1^5*t^8.86)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.63/(g1*g2*g3*g4*g5*g6*y) - t^6.7/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.75/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.75/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.78/(g1*g2*g3^5*g4^5*g5*g6*y) + t^7.19/(g1^8*g2^4*g3^4*y) + t^7.19/(g1^8*g3^4*g5^4*y) + t^7.22/(g1^4*g3^8*g4^4*y) + t^7.24/(g1^8*g2^4*g5^4*y) + t^7.27/(g1^4*g2^4*g3^4*g4^4*y) + t^7.27/(g1^4*g3^4*g4^4*g5^4*y) + (g1*g2*g3*g4*g5*g6*t^7.37)/y - t^7.89/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.34/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.38/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.41/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + (g3^3*g4^3*t^8.48)/(g1*g2*g5*g6*y) + (g1^3*g2^3*t^8.51)/(g3*g4*g5*g6*y) + (g1^3*g5^3*t^8.51)/(g2*g3*g4*g6*y) + (g1^3*g3^3*t^8.56)/(g2*g4*g5*g6*y) - t^8.78/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.82/(g1^9*g2*g3^5*g4*g5^5*g6*y) - t^8.82/(g1^9*g2^5*g3^5*g4*g5*g6*y) + (g2^4*g6^4*t^8.82)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.82)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.83)/(g1^4*g3^4*y) - t^8.85/(g1^5*g2*g3^9*g4^5*g5*g6*y) + (3*g6^4*t^8.86)/(g1^4*y) + (g2^4*g6^4*t^8.86)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g2^4*g5^4*t^8.87)/(g1^4*g3^4*y) - t^8.87/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.87/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.87/(g1^9*g2^9*g3*g4*g5*g6*y) + (g2^4*g4^4*t^8.88)/(g1^4*g3^4*y) + (g4^4*g5^4*t^8.88)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.88)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.88)/(g1^4*g5^4*y) + (g2^4*g6^4*t^8.89)/(g3^4*g4^4*y) + (g5^4*g6^4*t^8.89)/(g3^4*g4^4*y) - t^8.9/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) - t^8.9/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) + (2*g2^4*t^8.91)/(g1^4*y) + (2*g5^4*t^8.91)/(g1^4*y) + (2*g6^4*t^8.91)/(g3^4*y) + (g3^4*g6^4*t^8.91)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.91)/(g1^4*g5^4*y) + (2*g4^4*t^8.93)/(g1^4*y) + (g2^4*g4^4*t^8.93)/(g1^4*g5^4*y) + (g4^4*g5^4*t^8.93)/(g1^4*g2^4*y) - t^8.93/(g1*g2*g3^9*g4^9*g5*g6*y) + (g2^4*g5^4*t^8.94)/(g3^4*g4^4*y) + (g6^4*t^8.94)/(g4^4*y) + (g6^4*t^8.95)/(g2^4*y) + (g6^4*t^8.95)/(g5^4*y) + (g2^4*t^8.96)/(g3^4*y) + (2*g3^4*t^8.96)/(g1^4*y) + (g2^4*g3^4*t^8.96)/(g1^4*g5^4*y) + (g5^4*t^8.96)/(g3^4*y) + (g3^4*g5^4*t^8.96)/(g1^4*g2^4*y) + (g4^4*t^8.97)/(g3^4*y) + (g1^4*g6^4*t^8.98)/(g3^4*g4^4*y) + (g2^4*t^8.99)/(g4^4*y) + (g5^4*t^8.99)/(g4^4*y) - (t^4.63*y)/(g1*g2*g3*g4*g5*g6) - (t^6.7*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.75*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.75*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.78*y)/(g1*g2*g3^5*g4^5*g5*g6) + (t^7.19*y)/(g1^8*g2^4*g3^4) + (t^7.19*y)/(g1^8*g3^4*g5^4) + (t^7.22*y)/(g1^4*g3^8*g4^4) + (t^7.24*y)/(g1^8*g2^4*g5^4) + (t^7.27*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.27*y)/(g1^4*g3^4*g4^4*g5^4) + g1*g2*g3*g4*g5*g6*t^7.37*y - (t^7.89*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.34*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.38*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.38*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.41*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (g3^3*g4^3*t^8.48*y)/(g1*g2*g5*g6) + (g1^3*g2^3*t^8.51*y)/(g3*g4*g5*g6) + (g1^3*g5^3*t^8.51*y)/(g2*g3*g4*g6) + (g1^3*g3^3*t^8.56*y)/(g2*g4*g5*g6) - (t^8.78*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.82*y)/(g1^9*g2*g3^5*g4*g5^5*g6) - (t^8.82*y)/(g1^9*g2^5*g3^5*g4*g5*g6) + (g2^4*g6^4*t^8.82*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.82*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.83*y)/(g1^4*g3^4) - (t^8.85*y)/(g1^5*g2*g3^9*g4^5*g5*g6) + (3*g6^4*t^8.86*y)/g1^4 + (g2^4*g6^4*t^8.86*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g2^4*g5^4*t^8.87*y)/(g1^4*g3^4) - (t^8.87*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.87*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.87*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g2^4*g4^4*t^8.88*y)/(g1^4*g3^4) + (g4^4*g5^4*t^8.88*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.88*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.88*y)/(g1^4*g5^4) + (g2^4*g6^4*t^8.89*y)/(g3^4*g4^4) + (g5^4*g6^4*t^8.89*y)/(g3^4*g4^4) - (t^8.9*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) - (t^8.9*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) + (2*g2^4*t^8.91*y)/g1^4 + (2*g5^4*t^8.91*y)/g1^4 + (2*g6^4*t^8.91*y)/g3^4 + (g3^4*g6^4*t^8.91*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.91*y)/(g1^4*g5^4) + (2*g4^4*t^8.93*y)/g1^4 + (g2^4*g4^4*t^8.93*y)/(g1^4*g5^4) + (g4^4*g5^4*t^8.93*y)/(g1^4*g2^4) - (t^8.93*y)/(g1*g2*g3^9*g4^9*g5*g6) + (g2^4*g5^4*t^8.94*y)/(g3^4*g4^4) + (g6^4*t^8.94*y)/g4^4 + (g6^4*t^8.95*y)/g2^4 + (g6^4*t^8.95*y)/g5^4 + (g2^4*t^8.96*y)/g3^4 + (2*g3^4*t^8.96*y)/g1^4 + (g2^4*g3^4*t^8.96*y)/(g1^4*g5^4) + (g5^4*t^8.96*y)/g3^4 + (g3^4*g5^4*t^8.96*y)/(g1^4*g2^4) + (g4^4*t^8.97*y)/g3^4 + (g1^4*g6^4*t^8.98*y)/(g3^4*g4^4) + (g2^4*t^8.99*y)/g4^4 + (g5^4*t^8.99*y)/g4^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55676 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y | detail |