Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55738 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_3\tilde{q}_3$ | 0.938 | 1.1784 | 0.796 | [X:[], M:[0.7131, 0.7131, 0.7131, 0.7131], q:[0.6535, 0.6333, 0.6535], qb:[0.6333, 0.6333, 0.6333], phi:[0.5399]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [-4, 0, 0, 0, -4, 0], [0, 0, -4, 0, 0, -4]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_1q_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_4^2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1q_2$, $ \phi_1q_2q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ M_4q_2\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$ | $M_3q_2q_3$, $ M_4q_1\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_3$, $ M_4q_1\tilde{q}_3$ | -4 | 4*t^2.14 + t^3.24 + 6*t^3.8 + 4*t^3.86 + t^3.92 + 10*t^4.28 + 4*t^5.38 + 10*t^5.42 + 8*t^5.48 + 3*t^5.54 + 16*t^5.94 - 4*t^6. - 4*t^6.06 + 20*t^6.42 + t^6.48 + 6*t^7.04 + 4*t^7.1 + t^7.16 + 10*t^7.52 + 32*t^7.56 + 20*t^7.6 + 13*t^7.62 + 16*t^7.66 + 4*t^7.68 + 10*t^7.72 + 4*t^7.78 + t^7.84 + 31*t^8.08 - 32*t^8.14 - 10*t^8.18 - 12*t^8.2 - 8*t^8.24 - 3*t^8.3 + 35*t^8.56 + 4*t^8.62 + 10*t^8.66 + 8*t^8.72 + 3*t^8.78 - t^4.62/y - (4*t^6.76)/y + (6*t^7.28)/y + t^7.38/y - t^7.86/y + (4*t^8.38)/y + (4*t^8.48)/y - (10*t^8.9)/y + (24*t^8.94)/y - t^4.62*y - 4*t^6.76*y + 6*t^7.28*y + t^7.38*y - t^7.86*y + 4*t^8.38*y + 4*t^8.48*y - 10*t^8.9*y + 24*t^8.94*y | t^2.14/(g1^4*g2^4) + t^2.14/(g3^4*g4^4) + t^2.14/(g1^4*g5^4) + t^2.14/(g3^4*g6^4) + t^3.24/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g4^4*t^3.8 + g2^4*g5^4*t^3.8 + g4^4*g5^4*t^3.8 + g2^4*g6^4*t^3.8 + g4^4*g6^4*t^3.8 + g5^4*g6^4*t^3.8 + g2^4*g3^4*t^3.86 + g1^4*g4^4*t^3.86 + g3^4*g5^4*t^3.86 + g1^4*g6^4*t^3.86 + g1^4*g3^4*t^3.92 + t^4.28/(g1^8*g2^8) + t^4.28/(g3^8*g4^8) + t^4.28/(g1^4*g2^4*g3^4*g4^4) + t^4.28/(g1^8*g5^8) + t^4.28/(g1^8*g2^4*g5^4) + t^4.28/(g1^4*g3^4*g4^4*g5^4) + t^4.28/(g3^8*g6^8) + t^4.28/(g1^4*g2^4*g3^4*g6^4) + t^4.28/(g3^8*g4^4*g6^4) + t^4.28/(g1^4*g3^4*g5^4*g6^4) + t^5.38/(g1^2*g2^2*g3^6*g4^2*g5^2*g6^6) + t^5.38/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.38/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + t^5.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^5.42)/(g1*g3*g4*g5*g6) + (g2^3*g4^3*t^5.42)/(g1*g3*g5*g6) + (g4^7*t^5.42)/(g1*g2*g3*g5*g6) + (g2^3*g5^3*t^5.42)/(g1*g3*g4*g6) + (g4^3*g5^3*t^5.42)/(g1*g2*g3*g6) + (g5^7*t^5.42)/(g1*g2*g3*g4*g6) + (g2^3*g6^3*t^5.42)/(g1*g3*g4*g5) + (g4^3*g6^3*t^5.42)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.42)/(g1*g2*g3*g4) + (g6^7*t^5.42)/(g1*g2*g3*g4*g5) + (g1^3*g2^3*t^5.48)/(g3*g4*g5*g6) + (g2^3*g3^3*t^5.48)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.48)/(g2*g3*g5*g6) + (g3^3*g4^3*t^5.48)/(g1*g2*g5*g6) + (g1^3*g5^3*t^5.48)/(g2*g3*g4*g6) + (g3^3*g5^3*t^5.48)/(g1*g2*g4*g6) + (g1^3*g6^3*t^5.48)/(g2*g3*g4*g5) + (g3^3*g6^3*t^5.48)/(g1*g2*g4*g5) + (g1^7*t^5.54)/(g2*g3*g4*g5*g6) + (g1^3*g3^3*t^5.54)/(g2*g4*g5*g6) + (g3^7*t^5.54)/(g1*g2*g4*g5*g6) + (g2^4*t^5.94)/g3^4 + (g4^4*t^5.94)/g1^4 + (g2^4*g4^4*t^5.94)/(g1^4*g5^4) + (g5^4*t^5.94)/g3^4 + (g2^4*g5^4*t^5.94)/(g3^4*g4^4) + (g4^4*g5^4*t^5.94)/(g1^4*g2^4) + (g2^4*g4^4*t^5.94)/(g3^4*g6^4) + (g2^4*g5^4*t^5.94)/(g3^4*g6^4) + (g4^4*g5^4*t^5.94)/(g3^4*g6^4) + (g6^4*t^5.94)/g1^4 + (g2^4*g6^4*t^5.94)/(g3^4*g4^4) + (g4^4*g6^4*t^5.94)/(g1^4*g2^4) + (g2^4*g6^4*t^5.94)/(g1^4*g5^4) + (g4^4*g6^4*t^5.94)/(g1^4*g5^4) + (g5^4*g6^4*t^5.94)/(g1^4*g2^4) + (g5^4*g6^4*t^5.94)/(g3^4*g4^4) - 6*t^6. + (g1^4*t^6.)/g3^4 + (g3^4*t^6.)/g1^4 - (g2^4*t^6.)/g5^4 + (g2^4*g3^4*t^6.)/(g1^4*g5^4) - (g5^4*t^6.)/g2^4 + (g3^4*g5^4*t^6.)/(g1^4*g2^4) - (g4^4*t^6.)/g6^4 + (g1^4*g4^4*t^6.)/(g3^4*g6^4) - (g6^4*t^6.)/g4^4 + (g1^4*g6^4*t^6.)/(g3^4*g4^4) - (g1^4*t^6.06)/g2^4 - (g3^4*t^6.06)/g4^4 - (g1^4*t^6.06)/g5^4 - (g3^4*t^6.06)/g6^4 + t^6.42/(g1^12*g2^12) + t^6.42/(g3^12*g4^12) + t^6.42/(g1^4*g2^4*g3^8*g4^8) + t^6.42/(g1^8*g2^8*g3^4*g4^4) + t^6.42/(g1^12*g5^12) + t^6.42/(g1^12*g2^4*g5^8) + t^6.42/(g1^8*g3^4*g4^4*g5^8) + t^6.42/(g1^12*g2^8*g5^4) + t^6.42/(g1^4*g3^8*g4^8*g5^4) + t^6.42/(g1^8*g2^4*g3^4*g4^4*g5^4) + t^6.42/(g3^12*g6^12) + t^6.42/(g1^4*g2^4*g3^8*g6^8) + t^6.42/(g3^12*g4^4*g6^8) + t^6.42/(g1^4*g3^8*g5^4*g6^8) + t^6.42/(g1^8*g2^8*g3^4*g6^4) + t^6.42/(g3^12*g4^8*g6^4) + t^6.42/(g1^4*g2^4*g3^8*g4^4*g6^4) + t^6.42/(g1^8*g3^4*g5^8*g6^4) + t^6.42/(g1^8*g2^4*g3^4*g5^4*g6^4) + t^6.42/(g1^4*g3^8*g4^4*g5^4*g6^4) + t^6.48/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g2^2*g4^2*t^7.04)/(g1^2*g3^2*g5^2*g6^2) + (g2^2*g5^2*t^7.04)/(g1^2*g3^2*g4^2*g6^2) + (g4^2*g5^2*t^7.04)/(g1^2*g2^2*g3^2*g6^2) + (g2^2*g6^2*t^7.04)/(g1^2*g3^2*g4^2*g5^2) + (g4^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*g3^2*t^7.1)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.1)/(g2^2*g3^2*g5^2*g6^2) + (g3^2*g5^2*t^7.1)/(g1^2*g2^2*g4^2*g6^2) + (g1^2*g6^2*t^7.1)/(g2^2*g3^2*g4^2*g5^2) + (g1^2*g3^2*t^7.16)/(g2^2*g4^2*g5^2*g6^2) + t^7.52/(g1^2*g2^2*g3^10*g4^2*g5^2*g6^10) + t^7.52/(g1^6*g2^2*g3^6*g4^2*g5^6*g6^6) + t^7.52/(g1^2*g2^2*g3^10*g4^6*g5^2*g6^6) + t^7.52/(g1^6*g2^6*g3^6*g4^2*g5^2*g6^6) + t^7.52/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.52/(g1^6*g2^2*g3^6*g4^6*g5^6*g6^2) + t^7.52/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.52/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + t^7.52/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.52/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^7.56)/(g1*g3^5*g4*g5*g6^5) + (g2^3*g4^3*t^7.56)/(g1*g3^5*g5*g6^5) + (g4^7*t^7.56)/(g1*g2*g3^5*g5*g6^5) + (g2^3*g5^3*t^7.56)/(g1*g3^5*g4*g6^5) + (g4^3*g5^3*t^7.56)/(g1*g2*g3^5*g6^5) + (g5^7*t^7.56)/(g1*g2*g3^5*g4*g6^5) + (g2^7*t^7.56)/(g1^5*g3*g4*g5^5*g6) + (g2^3*g4^3*t^7.56)/(g1^5*g3*g5^5*g6) + (g4^7*t^7.56)/(g1^5*g2*g3*g5^5*g6) + (g2^7*t^7.56)/(g1*g3^5*g4^5*g5*g6) + (g2^3*t^7.56)/(g1*g3^5*g4*g5*g6) + (g2^3*t^7.56)/(g1^5*g3*g4*g5*g6) + (g4^3*t^7.56)/(g1*g2*g3^5*g5*g6) + (g4^3*t^7.56)/(g1^5*g2*g3*g5*g6) + (g4^7*t^7.56)/(g1^5*g2^5*g3*g5*g6) + (g2^3*g5^3*t^7.56)/(g1*g3^5*g4^5*g6) + (g5^3*t^7.56)/(g1*g2*g3^5*g4*g6) + (g5^3*t^7.56)/(g1^5*g2*g3*g4*g6) + (g4^3*g5^3*t^7.56)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.56)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.56)/(g1^5*g2^5*g3*g4*g6) + (g2^3*g6^3*t^7.56)/(g1^5*g3*g4*g5^5) + (g4^3*g6^3*t^7.56)/(g1^5*g2*g3*g5^5) + (g2^3*g6^3*t^7.56)/(g1*g3^5*g4^5*g5) + (g6^3*t^7.56)/(g1*g2*g3^5*g4*g5) + (g6^3*t^7.56)/(g1^5*g2*g3*g4*g5) + (g4^3*g6^3*t^7.56)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.56)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.56)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.56)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.56)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.56)/(g1^5*g2^5*g3*g4*g5) + g2^8*g4^8*t^7.6 + g2^8*g4^4*g5^4*t^7.6 + g2^4*g4^8*g5^4*t^7.6 + g2^8*g5^8*t^7.6 + g2^4*g4^4*g5^8*t^7.6 + g4^8*g5^8*t^7.6 + g2^8*g4^4*g6^4*t^7.6 + g2^4*g4^8*g6^4*t^7.6 + g2^8*g5^4*g6^4*t^7.6 + 2*g2^4*g4^4*g5^4*g6^4*t^7.6 + g4^8*g5^4*g6^4*t^7.6 + g2^4*g5^8*g6^4*t^7.6 + g4^4*g5^8*g6^4*t^7.6 + g2^8*g6^8*t^7.6 + g2^4*g4^4*g6^8*t^7.6 + g4^8*g6^8*t^7.6 + g2^4*g5^4*g6^8*t^7.6 + g4^4*g5^4*g6^8*t^7.6 + g5^8*g6^8*t^7.6 + (g1^3*g2^3*t^7.62)/(g3^5*g4*g5*g6^5) + (g1^3*g4^3*t^7.62)/(g2*g3^5*g5*g6^5) + (g1^3*g5^3*t^7.62)/(g2*g3^5*g4*g6^5) + (g2^3*g3^3*t^7.62)/(g1^5*g4*g5^5*g6) + (g3^3*g4^3*t^7.62)/(g1^5*g2*g5^5*g6) + (g1^3*g2^3*t^7.62)/(g3^5*g4^5*g5*g6) + (g1^3*t^7.62)/(g2*g3^5*g4*g5*g6) - t^7.62/(g1*g2*g3*g4*g5*g6) + (g3^3*t^7.62)/(g1^5*g2*g4*g5*g6) + (g3^3*g4^3*t^7.62)/(g1^5*g2^5*g5*g6) + (g1^3*g5^3*t^7.62)/(g2*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.62)/(g1^5*g2^5*g4*g6) + (g3^3*g6^3*t^7.62)/(g1^5*g2*g4*g5^5) + (g1^3*g6^3*t^7.62)/(g2*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.62)/(g1^5*g2^5*g4*g5) + g2^8*g3^4*g4^4*t^7.66 + g1^4*g2^4*g4^8*t^7.66 + g2^8*g3^4*g5^4*t^7.66 + g2^4*g3^4*g4^4*g5^4*t^7.66 + g1^4*g4^8*g5^4*t^7.66 + g2^4*g3^4*g5^8*t^7.66 + g3^4*g4^4*g5^8*t^7.66 + g2^8*g3^4*g6^4*t^7.66 + g1^4*g2^4*g4^4*g6^4*t^7.66 + g1^4*g4^8*g6^4*t^7.66 + g2^4*g3^4*g5^4*g6^4*t^7.66 + g1^4*g4^4*g5^4*g6^4*t^7.66 + g3^4*g5^8*g6^4*t^7.66 + g1^4*g2^4*g6^8*t^7.66 + g1^4*g4^4*g6^8*t^7.66 + g1^4*g5^4*g6^8*t^7.66 + (g1^7*t^7.68)/(g2*g3^5*g4*g5*g6^5) + (g3^7*t^7.68)/(g1^5*g2*g4*g5^5*g6) + (g1^7*t^7.68)/(g2*g3^5*g4^5*g5*g6) + (g3^7*t^7.68)/(g1^5*g2^5*g4*g5*g6) + g2^8*g3^8*t^7.72 + g1^4*g2^4*g3^4*g4^4*t^7.72 + g1^8*g4^8*t^7.72 + g2^4*g3^8*g5^4*t^7.72 + g1^4*g3^4*g4^4*g5^4*t^7.72 + g3^8*g5^8*t^7.72 + g1^4*g2^4*g3^4*g6^4*t^7.72 + g1^8*g4^4*g6^4*t^7.72 + g1^4*g3^4*g5^4*g6^4*t^7.72 + g1^8*g6^8*t^7.72 + g1^4*g2^4*g3^8*t^7.78 + g1^8*g3^4*g4^4*t^7.78 + g1^4*g3^8*g5^4*t^7.78 + g1^8*g3^4*g6^4*t^7.78 + g1^8*g3^8*t^7.84 + t^8.08/(g1^4*g3^4) + (g2^4*t^8.08)/(g3^8*g4^4) + (g4^4*t^8.08)/(g1^8*g2^4) + (g2^4*g4^4*t^8.08)/(g1^8*g5^8) + (g2^4*t^8.08)/(g1^4*g3^4*g5^4) + (g4^4*t^8.08)/(g1^8*g5^4) + (g5^4*t^8.08)/(g1^4*g2^4*g3^4) + (g2^4*g5^4*t^8.08)/(g3^8*g4^8) + (g5^4*t^8.08)/(g3^8*g4^4) + (g4^4*g5^4*t^8.08)/(g1^8*g2^8) + (g2^4*g4^4*t^8.08)/(g3^8*g6^8) + (g2^4*g5^4*t^8.08)/(g3^8*g6^8) + (g4^4*g5^4*t^8.08)/(g3^8*g6^8) + (g2^4*t^8.08)/(g3^8*g6^4) + (g4^4*t^8.08)/(g1^4*g3^4*g6^4) + (g2^4*g4^4*t^8.08)/(g1^4*g3^4*g5^4*g6^4) + (g5^4*t^8.08)/(g3^8*g6^4) + (g2^4*g5^4*t^8.08)/(g3^8*g4^4*g6^4) + (g4^4*g5^4*t^8.08)/(g1^4*g2^4*g3^4*g6^4) + (g6^4*t^8.08)/(g1^8*g2^4) + (g2^4*g6^4*t^8.08)/(g3^8*g4^8) + (g6^4*t^8.08)/(g1^4*g3^4*g4^4) + (g4^4*g6^4*t^8.08)/(g1^8*g2^8) + (g2^4*g6^4*t^8.08)/(g1^8*g5^8) + (g4^4*g6^4*t^8.08)/(g1^8*g5^8) + (g6^4*t^8.08)/(g1^8*g5^4) + (g2^4*g6^4*t^8.08)/(g1^4*g3^4*g4^4*g5^4) + (g4^4*g6^4*t^8.08)/(g1^8*g2^4*g5^4) + (g5^4*g6^4*t^8.08)/(g1^8*g2^8) + (g5^4*g6^4*t^8.08)/(g3^8*g4^8) + (g5^4*g6^4*t^8.08)/(g1^4*g2^4*g3^4*g4^4) - (6*t^8.14)/(g1^4*g2^4) + (g3^4*t^8.14)/(g1^8*g2^4) + (g1^4*t^8.14)/(g3^8*g4^4) - (6*t^8.14)/(g3^4*g4^4) - (g2^4*t^8.14)/(g1^4*g5^8) + (g2^4*g3^4*t^8.14)/(g1^8*g5^8) - (6*t^8.14)/(g1^4*g5^4) + (g3^4*t^8.14)/(g1^8*g5^4) - (g2^4*t^8.14)/(g3^4*g4^4*g5^4) - (g4^4*t^8.14)/(g1^4*g2^4*g5^4) - (g5^4*t^8.14)/(g1^4*g2^8) + (g3^4*g5^4*t^8.14)/(g1^8*g2^8) - (g5^4*t^8.14)/(g2^4*g3^4*g4^4) + (g1^4*g4^4*t^8.14)/(g3^8*g6^8) - (g4^4*t^8.14)/(g3^4*g6^8) + (g1^4*t^8.14)/(g3^8*g6^4) - (6*t^8.14)/(g3^4*g6^4) - (g2^4*t^8.14)/(g3^4*g4^4*g6^4) - (g4^4*t^8.14)/(g1^4*g2^4*g6^4) - (g2^4*t^8.14)/(g3^4*g5^4*g6^4) - (g4^4*t^8.14)/(g1^4*g5^4*g6^4) - (g5^4*t^8.14)/(g2^4*g3^4*g6^4) - (g5^4*t^8.14)/(g3^4*g4^4*g6^4) + (g1^4*g6^4*t^8.14)/(g3^8*g4^8) - (g6^4*t^8.14)/(g3^4*g4^8) - (g6^4*t^8.14)/(g1^4*g2^4*g4^4) - (g6^4*t^8.14)/(g1^4*g2^4*g5^4) - (g6^4*t^8.14)/(g1^4*g4^4*g5^4) - g1*g2^9*g3*g4*g5*g6*t^8.18 - g1*g2^5*g3*g4^5*g5*g6*t^8.18 - g1*g2*g3*g4^9*g5*g6*t^8.18 - g1*g2^5*g3*g4*g5^5*g6*t^8.18 - g1*g2*g3*g4^5*g5^5*g6*t^8.18 - g1*g2*g3*g4*g5^9*g6*t^8.18 - g1*g2^5*g3*g4*g5*g6^5*t^8.18 - g1*g2*g3*g4^5*g5*g6^5*t^8.18 - g1*g2*g3*g4*g5^5*g6^5*t^8.18 - g1*g2*g3*g4*g5*g6^9*t^8.18 - (g1^4*t^8.2)/(g2^4*g3^4*g4^4) - (g3^4*t^8.2)/(g1^4*g2^4*g4^4) - t^8.2/(g2^4*g5^4) - (g3^4*t^8.2)/(g1^4*g2^4*g5^4) - (g1^4*t^8.2)/(g3^4*g4^4*g5^4) - (g3^4*t^8.2)/(g1^4*g4^4*g5^4) - (g1^4*t^8.2)/(g2^4*g3^4*g6^4) - (g3^4*t^8.2)/(g1^4*g2^4*g6^4) - t^8.2/(g4^4*g6^4) - (g1^4*t^8.2)/(g3^4*g4^4*g6^4) - (g1^4*t^8.2)/(g3^4*g5^4*g6^4) - (g3^4*t^8.2)/(g1^4*g5^4*g6^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.24 - g1*g2^5*g3^5*g4*g5*g6*t^8.24 - g1^5*g2*g3*g4^5*g5*g6*t^8.24 - g1*g2*g3^5*g4^5*g5*g6*t^8.24 - g1^5*g2*g3*g4*g5^5*g6*t^8.24 - g1*g2*g3^5*g4*g5^5*g6*t^8.24 - g1^5*g2*g3*g4*g5*g6^5*t^8.24 - g1*g2*g3^5*g4*g5*g6^5*t^8.24 - g1^9*g2*g3*g4*g5*g6*t^8.3 - g1^5*g2*g3^5*g4*g5*g6*t^8.3 - g1*g2*g3^9*g4*g5*g6*t^8.3 + t^8.56/(g1^16*g2^16) + t^8.56/(g3^16*g4^16) + t^8.56/(g1^4*g2^4*g3^12*g4^12) + t^8.56/(g1^8*g2^8*g3^8*g4^8) + t^8.56/(g1^12*g2^12*g3^4*g4^4) + t^8.56/(g1^16*g5^16) + t^8.56/(g1^16*g2^4*g5^12) + t^8.56/(g1^12*g3^4*g4^4*g5^12) + t^8.56/(g1^16*g2^8*g5^8) + t^8.56/(g1^8*g3^8*g4^8*g5^8) + t^8.56/(g1^12*g2^4*g3^4*g4^4*g5^8) + t^8.56/(g1^16*g2^12*g5^4) + t^8.56/(g1^4*g3^12*g4^12*g5^4) + t^8.56/(g1^8*g2^4*g3^8*g4^8*g5^4) + t^8.56/(g1^12*g2^8*g3^4*g4^4*g5^4) + t^8.56/(g3^16*g6^16) + t^8.56/(g1^4*g2^4*g3^12*g6^12) + t^8.56/(g3^16*g4^4*g6^12) + t^8.56/(g1^4*g3^12*g5^4*g6^12) + t^8.56/(g1^8*g2^8*g3^8*g6^8) + t^8.56/(g3^16*g4^8*g6^8) + t^8.56/(g1^4*g2^4*g3^12*g4^4*g6^8) + t^8.56/(g1^8*g3^8*g5^8*g6^8) + t^8.56/(g1^8*g2^4*g3^8*g5^4*g6^8) + t^8.56/(g1^4*g3^12*g4^4*g5^4*g6^8) + t^8.56/(g1^12*g2^12*g3^4*g6^4) + t^8.56/(g3^16*g4^12*g6^4) + t^8.56/(g1^4*g2^4*g3^12*g4^8*g6^4) + t^8.56/(g1^8*g2^8*g3^8*g4^4*g6^4) + t^8.56/(g1^12*g3^4*g5^12*g6^4) + t^8.56/(g1^12*g2^4*g3^4*g5^8*g6^4) + t^8.56/(g1^8*g3^8*g4^4*g5^8*g6^4) + t^8.56/(g1^12*g2^8*g3^4*g5^4*g6^4) + t^8.56/(g1^4*g3^12*g4^8*g5^4*g6^4) + t^8.56/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.62/(g1^4*g2^4*g3^8*g4^4*g5^4*g6^8) + t^8.62/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.62/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + t^8.62/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g2^5*t^8.66)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.66)/(g1^3*g3^3*g5^3*g6^3) + (g4^5*t^8.66)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g2*g5*t^8.66)/(g1^3*g3^3*g4^3*g6^3) + (g4*g5*t^8.66)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g2*g6*t^8.66)/(g1^3*g3^3*g4^3*g5^3) + (g4*g6*t^8.66)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (g1*g2*t^8.72)/(g3^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.72)/(g1^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.72)/(g2^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.72)/(g1^3*g2^3*g5^3*g6^3) + (g1*g5*t^8.72)/(g2^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.72)/(g1^3*g2^3*g4^3*g6^3) + (g1*g6*t^8.72)/(g2^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.72)/(g1^3*g2^3*g4^3*g5^3) + (g1^5*t^8.78)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.78)/(g2^3*g4^3*g5^3*g6^3) + (g3^5*t^8.78)/(g1^3*g2^3*g4^3*g5^3*g6^3) - t^4.62/(g1*g2*g3*g4*g5*g6*y) - t^6.76/(g1*g2*g3^5*g4*g5*g6^5*y) - t^6.76/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.76/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.76/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.28/(g1^4*g2^4*g3^4*g4^4*y) + t^7.28/(g1^8*g2^4*g5^4*y) + t^7.28/(g1^4*g3^4*g4^4*g5^4*y) + t^7.28/(g1^4*g2^4*g3^4*g6^4*y) + t^7.28/(g3^8*g4^4*g6^4*y) + t^7.28/(g1^4*g3^4*g5^4*g6^4*y) + (g1*g2*g3*g4*g5*g6*t^7.38)/y - t^7.86/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.38/(g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*y) + t^8.38/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.38/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + t^8.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.48)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.48)/(g1*g2*g5*g6*y) + (g1^3*g5^3*t^8.48)/(g2*g3*g4*g6*y) + (g3^3*g6^3*t^8.48)/(g1*g2*g4*g5*y) - t^8.9/(g1*g2*g3^9*g4*g5*g6^9*y) - t^8.9/(g1^5*g2*g3^5*g4*g5^5*g6^5*y) - t^8.9/(g1*g2*g3^9*g4^5*g5*g6^5*y) - t^8.9/(g1^5*g2^5*g3^5*g4*g5*g6^5*y) - t^8.9/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.9/(g1^5*g2*g3^5*g4^5*g5^5*g6*y) - t^8.9/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.9/(g1*g2*g3^9*g4^9*g5*g6*y) - t^8.9/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.9/(g1^9*g2^9*g3*g4*g5*g6*y) + (g2^4*t^8.94)/(g1^4*y) + (2*g2^4*t^8.94)/(g3^4*y) + (2*g4^4*t^8.94)/(g1^4*y) + (g4^4*t^8.94)/(g3^4*y) + (g2^4*g4^4*t^8.94)/(g1^4*g5^4*y) + (g5^4*t^8.94)/(g1^4*y) + (2*g5^4*t^8.94)/(g3^4*y) + (g2^4*g5^4*t^8.94)/(g3^4*g4^4*y) + (g4^4*g5^4*t^8.94)/(g1^4*g2^4*y) + (g2^4*g4^4*t^8.94)/(g3^4*g6^4*y) + (g2^4*g5^4*t^8.94)/(g3^4*g6^4*y) + (g4^4*g5^4*t^8.94)/(g3^4*g6^4*y) + (2*g6^4*t^8.94)/(g1^4*y) + (g6^4*t^8.94)/(g3^4*y) + (g2^4*g6^4*t^8.94)/(g3^4*g4^4*y) + (g4^4*g6^4*t^8.94)/(g1^4*g2^4*y) + (g2^4*g6^4*t^8.94)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.94)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.94)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.94)/(g3^4*g4^4*y) - (t^4.62*y)/(g1*g2*g3*g4*g5*g6) - (t^6.76*y)/(g1*g2*g3^5*g4*g5*g6^5) - (t^6.76*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.76*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.76*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.28*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.28*y)/(g1^8*g2^4*g5^4) + (t^7.28*y)/(g1^4*g3^4*g4^4*g5^4) + (t^7.28*y)/(g1^4*g2^4*g3^4*g6^4) + (t^7.28*y)/(g3^8*g4^4*g6^4) + (t^7.28*y)/(g1^4*g3^4*g5^4*g6^4) + g1*g2*g3*g4*g5*g6*t^7.38*y - (t^7.86*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.38*y)/(g1^2*g2^2*g3^6*g4^2*g5^2*g6^6) + (t^8.38*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.38*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (t^8.38*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.48*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.48*y)/(g1*g2*g5*g6) + (g1^3*g5^3*t^8.48*y)/(g2*g3*g4*g6) + (g3^3*g6^3*t^8.48*y)/(g1*g2*g4*g5) - (t^8.9*y)/(g1*g2*g3^9*g4*g5*g6^9) - (t^8.9*y)/(g1^5*g2*g3^5*g4*g5^5*g6^5) - (t^8.9*y)/(g1*g2*g3^9*g4^5*g5*g6^5) - (t^8.9*y)/(g1^5*g2^5*g3^5*g4*g5*g6^5) - (t^8.9*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.9*y)/(g1^5*g2*g3^5*g4^5*g5^5*g6) - (t^8.9*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.9*y)/(g1*g2*g3^9*g4^9*g5*g6) - (t^8.9*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.9*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g2^4*t^8.94*y)/g1^4 + (2*g2^4*t^8.94*y)/g3^4 + (2*g4^4*t^8.94*y)/g1^4 + (g4^4*t^8.94*y)/g3^4 + (g2^4*g4^4*t^8.94*y)/(g1^4*g5^4) + (g5^4*t^8.94*y)/g1^4 + (2*g5^4*t^8.94*y)/g3^4 + (g2^4*g5^4*t^8.94*y)/(g3^4*g4^4) + (g4^4*g5^4*t^8.94*y)/(g1^4*g2^4) + (g2^4*g4^4*t^8.94*y)/(g3^4*g6^4) + (g2^4*g5^4*t^8.94*y)/(g3^4*g6^4) + (g4^4*g5^4*t^8.94*y)/(g3^4*g6^4) + (2*g6^4*t^8.94*y)/g1^4 + (g6^4*t^8.94*y)/g3^4 + (g2^4*g6^4*t^8.94*y)/(g3^4*g4^4) + (g4^4*g6^4*t^8.94*y)/(g1^4*g2^4) + (g2^4*g6^4*t^8.94*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.94*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.94*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.94*y)/(g3^4*g4^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55676 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y | detail |