Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55788 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_2$ | 0.9181 | 1.1419 | 0.804 | [X:[], M:[0.7095, 0.7251, 0.7095], q:[0.6531, 0.6374, 0.6374], qb:[0.6374, 0.6374, 0.6166], phi:[0.5452]] | [X:[], M:[[-4, -2, -2, 1, 0], [0, -2, -2, 0, 0], [-4, 0, 0, -1, 0]], q:[[4, 0, 0, 0, 0], [0, 2, 2, -1, 0], [0, 2, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 4]], phi:[[-1, -1, -1, 0, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_1M_3$, $ M_3^2$, $ M_1^2$, $ M_2M_3$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_3q_2q_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_3$ | . | -9 | 2*t^2.13 + t^2.18 + t^3.27 + 4*t^3.76 + t^3.81 + 5*t^3.82 + 2*t^3.87 + 3*t^4.26 + 2*t^4.3 + t^4.35 + t^5.33 + 6*t^5.4 + t^5.44 + t^5.45 + 10*t^5.46 + 4*t^5.51 + t^5.55 + 7*t^5.89 + 2*t^5.94 + 6*t^5.95 + t^5.98 - 9*t^6. - 2*t^6.05 - 4*t^6.06 - t^6.11 + 4*t^6.39 + 3*t^6.43 + 2*t^6.48 + t^6.53 + t^6.54 + 4*t^7.03 + t^7.08 + 5*t^7.1 + 2*t^7.14 + 2*t^7.46 + t^7.51 + 10*t^7.52 + 10*t^7.53 + 8*t^7.57 + 32*t^7.59 + 3*t^7.62 + 7*t^7.63 + t^7.64 + 14*t^7.65 + 4*t^7.68 + 2*t^7.7 + t^7.73 + 3*t^7.74 - t^7.75 + 10*t^8.02 - t^8.06 + 2*t^8.07 + 8*t^8.08 + 2*t^8.11 - 24*t^8.13 + t^8.16 - t^8.17 - 7*t^8.18 - 17*t^8.19 - 2*t^8.22 - 6*t^8.24 - t^8.28 - t^8.29 + t^8.3 + 5*t^8.51 + 4*t^8.56 + 4*t^8.61 + 2*t^8.65 + 6*t^8.67 + t^8.7 + 2*t^8.72 + 10*t^8.73 + 4*t^8.78 + t^8.83 - t^4.64/y - (2*t^6.76)/y - t^6.81/y + t^7.26/y + (2*t^7.3)/y + t^7.36/y - t^7.91/y + (2*t^8.4)/y + t^8.45/y + t^8.46/y + (2*t^8.51)/y + (5*t^8.89)/y + (4*t^8.94)/y + (10*t^8.95)/y + t^8.98/y - t^8.99/y - t^4.64*y - 2*t^6.76*y - t^6.81*y + t^7.26*y + 2*t^7.3*y + t^7.36*y - t^7.91*y + 2*t^8.4*y + t^8.45*y + t^8.46*y + 2*t^8.51*y + 5*t^8.89*y + 4*t^8.94*y + 10*t^8.95*y + t^8.98*y - t^8.99*y | t^2.13/(g1^4*g4) + (g4*t^2.13)/(g1^4*g2^2*g3^2) + t^2.18/(g2^2*g3^2) + t^3.27/(g1^2*g2^2*g3^2*g5^2) + g2^2*g5^4*t^3.76 + g3^2*g5^4*t^3.76 + (g2^2*g3^2*g5^4*t^3.76)/g4 + g4*g5^4*t^3.76 + g1^4*g5^4*t^3.81 + g2^2*g3^2*t^3.82 + (g2^4*g3^2*t^3.82)/g4 + (g2^2*g3^4*t^3.82)/g4 + g2^2*g4*t^3.82 + g3^2*g4*t^3.82 + g1^4*g2^2*t^3.87 + g1^4*g3^2*t^3.87 + t^4.26/(g1^8*g2^2*g3^2) + t^4.26/(g1^8*g4^2) + (g4^2*t^4.26)/(g1^8*g2^4*g3^4) + t^4.3/(g1^4*g2^2*g3^2*g4) + (g4*t^4.3)/(g1^4*g2^4*g3^4) + t^4.35/(g2^4*g3^4) + (g5^7*t^5.33)/(g1*g2*g3) + t^5.4/(g1^6*g2^2*g3^2*g4*g5^2) + (g4*t^5.4)/(g1^6*g2^4*g3^4*g5^2) + (g2*g5^3*t^5.4)/(g1*g3) + (g3*g5^3*t^5.4)/(g1*g2) + (g2*g3*g5^3*t^5.4)/(g1*g4) + (g4*g5^3*t^5.4)/(g1*g2*g3) + (g1^3*g5^3*t^5.44)/(g2*g3) + t^5.45/(g1^2*g2^4*g3^4*g5^2) + (g2^3*t^5.46)/(g1*g3*g5) + (2*g2*g3*t^5.46)/(g1*g5) + (g3^3*t^5.46)/(g1*g2*g5) + (g2^3*g3^3*t^5.46)/(g1*g4^2*g5) + (g2^3*g3*t^5.46)/(g1*g4*g5) + (g2*g3^3*t^5.46)/(g1*g4*g5) + (g2*g4*t^5.46)/(g1*g3*g5) + (g3*g4*t^5.46)/(g1*g2*g5) + (g4^2*t^5.46)/(g1*g2*g3*g5) + (g1^3*g2*t^5.51)/(g3*g5) + (g1^3*g3*t^5.51)/(g2*g5) + (g1^3*g2*g3*t^5.51)/(g4*g5) + (g1^3*g4*t^5.51)/(g2*g3*g5) + (g1^7*t^5.55)/(g2*g3*g5) + (g5^4*t^5.89)/g1^4 + (g2^2*g3^2*g5^4*t^5.89)/(g1^4*g4^2) + (g2^2*g5^4*t^5.89)/(g1^4*g4) + (g3^2*g5^4*t^5.89)/(g1^4*g4) + (g4*g5^4*t^5.89)/(g1^4*g2^2) + (g4*g5^4*t^5.89)/(g1^4*g3^2) + (g4^2*g5^4*t^5.89)/(g1^4*g2^2*g3^2) + (g5^4*t^5.94)/g4 + (g4*g5^4*t^5.94)/(g2^2*g3^2) + (g2^2*t^5.95)/g1^4 + (g3^2*t^5.95)/g1^4 + (g2^4*g3^2*t^5.95)/(g1^4*g4^2) + (g2^2*g3^4*t^5.95)/(g1^4*g4^2) + (g4^2*t^5.95)/(g1^4*g2^2) + (g4^2*t^5.95)/(g1^4*g3^2) + (g1^4*g5^4*t^5.98)/(g2^2*g3^2) - 5*t^6. - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - (g2^2*g3^2*t^6.)/g4^2 - (g4^2*t^6.)/(g2^2*g3^2) - (g1^4*t^6.05)/g4 - (g1^4*g4*t^6.05)/(g2^2*g3^2) - (g2^2*t^6.06)/g5^4 - (g3^2*t^6.06)/g5^4 - (g2^2*g3^2*t^6.06)/(g4*g5^4) - (g4*t^6.06)/g5^4 - (g1^4*t^6.11)/g5^4 + t^6.39/(g1^12*g4^3) + t^6.39/(g1^12*g2^2*g3^2*g4) + (g4*t^6.39)/(g1^12*g2^4*g3^4) + (g4^3*t^6.39)/(g1^12*g2^6*g3^6) + t^6.43/(g1^8*g2^4*g3^4) + t^6.43/(g1^8*g2^2*g3^2*g4^2) + (g4^2*t^6.43)/(g1^8*g2^6*g3^6) + t^6.48/(g1^4*g2^4*g3^4*g4) + (g4*t^6.48)/(g1^4*g2^6*g3^6) + t^6.53/(g2^6*g3^6) + t^6.54/(g1^4*g2^4*g3^4*g5^4) + (g5^2*t^7.03)/(g1^2*g2^2) + (g5^2*t^7.03)/(g1^2*g3^2) + (g5^2*t^7.03)/(g1^2*g4) + (g4*g5^2*t^7.03)/(g1^2*g2^2*g3^2) + (g1^2*g5^2*t^7.08)/(g2^2*g3^2) + t^7.1/(g1^2*g5^2) + (g2^2*t^7.1)/(g1^2*g4*g5^2) + (g3^2*t^7.1)/(g1^2*g4*g5^2) + (g4*t^7.1)/(g1^2*g2^2*g5^2) + (g4*t^7.1)/(g1^2*g3^2*g5^2) + (g1^2*t^7.14)/(g2^2*g5^2) + (g1^2*t^7.14)/(g3^2*g5^2) + (g5^7*t^7.46)/(g1^5*g2*g3*g4) + (g4*g5^7*t^7.46)/(g1^5*g2^3*g3^3) + (g5^7*t^7.51)/(g1*g2^3*g3^3) + g2^4*g5^8*t^7.52 + 2*g2^2*g3^2*g5^8*t^7.52 + g3^4*g5^8*t^7.52 + (g2^4*g3^4*g5^8*t^7.52)/g4^2 + (g2^4*g3^2*g5^8*t^7.52)/g4 + (g2^2*g3^4*g5^8*t^7.52)/g4 + g2^2*g4*g5^8*t^7.52 + g3^2*g4*g5^8*t^7.52 + g4^2*g5^8*t^7.52 + t^7.53/(g1^10*g2^4*g3^4*g5^2) + t^7.53/(g1^10*g2^2*g3^2*g4^2*g5^2) + (g4^2*t^7.53)/(g1^10*g2^6*g3^6*g5^2) + (g5^3*t^7.53)/(g1^5*g2*g3) + (g2*g3*g5^3*t^7.53)/(g1^5*g4^2) + (g2*g5^3*t^7.53)/(g1^5*g3*g4) + (g3*g5^3*t^7.53)/(g1^5*g2*g4) + (g4*g5^3*t^7.53)/(g1^5*g2*g3^3) + (g4*g5^3*t^7.53)/(g1^5*g2^3*g3) + (g4^2*g5^3*t^7.53)/(g1^5*g2^3*g3^3) + t^7.57/(g1^6*g2^4*g3^4*g4*g5^2) + (g4*t^7.57)/(g1^6*g2^6*g3^6*g5^2) + (g5^3*t^7.57)/(g1*g2*g3*g4) + (g4*g5^3*t^7.57)/(g1*g2^3*g3^3) + g1^4*g2^2*g5^8*t^7.57 + g1^4*g3^2*g5^8*t^7.57 + (g1^4*g2^2*g3^2*g5^8*t^7.57)/g4 + g1^4*g4*g5^8*t^7.57 + (g2*t^7.59)/(g1^5*g3*g5) + (g3*t^7.59)/(g1^5*g2*g5) + (g2^3*g3^3*t^7.59)/(g1^5*g4^3*g5) + (g2^3*g3*t^7.59)/(g1^5*g4^2*g5) + (g2*g3^3*t^7.59)/(g1^5*g4^2*g5) + (g2^3*t^7.59)/(g1^5*g3*g4*g5) + (2*g2*g3*t^7.59)/(g1^5*g4*g5) + (g3^3*t^7.59)/(g1^5*g2*g4*g5) + (g2*g4*t^7.59)/(g1^5*g3^3*g5) + (2*g4*t^7.59)/(g1^5*g2*g3*g5) + (g3*g4*t^7.59)/(g1^5*g2^3*g5) + (g4^2*t^7.59)/(g1^5*g2*g3^3*g5) + (g4^2*t^7.59)/(g1^5*g2^3*g3*g5) + (g4^3*t^7.59)/(g1^5*g2^3*g3^3*g5) + 2*g2^4*g3^2*g5^4*t^7.59 + 2*g2^2*g3^4*g5^4*t^7.59 + (g2^6*g3^4*g5^4*t^7.59)/g4^2 + (g2^4*g3^6*g5^4*t^7.59)/g4^2 + (g2^6*g3^2*g5^4*t^7.59)/g4 + (2*g2^4*g3^4*g5^4*t^7.59)/g4 + (g2^2*g3^6*g5^4*t^7.59)/g4 + g2^4*g4*g5^4*t^7.59 + 2*g2^2*g3^2*g4*g5^4*t^7.59 + g3^4*g4*g5^4*t^7.59 + g2^2*g4^2*g5^4*t^7.59 + g3^2*g4^2*g5^4*t^7.59 + t^7.62/(g1^2*g2^6*g3^6*g5^2) + (g1^3*g5^3*t^7.62)/(g2^3*g3^3) + g1^8*g5^8*t^7.62 + g1^4*g2^4*g5^4*t^7.63 + g1^4*g2^2*g3^2*g5^4*t^7.63 + g1^4*g3^4*g5^4*t^7.63 + (g1^4*g2^4*g3^2*g5^4*t^7.63)/g4 + (g1^4*g2^2*g3^4*g5^4*t^7.63)/g4 + g1^4*g2^2*g4*g5^4*t^7.63 + g1^4*g3^2*g4*g5^4*t^7.63 - t^7.64/(g1*g2*g3*g5) + (g2*g3*t^7.64)/(g1*g4^2*g5) + (g4^2*t^7.64)/(g1*g2^3*g3^3*g5) + g2^6*g3^2*t^7.65 + 2*g2^4*g3^4*t^7.65 + g2^2*g3^6*t^7.65 + (g2^8*g3^4*t^7.65)/g4^2 + (g2^6*g3^6*t^7.65)/g4^2 + (g2^4*g3^8*t^7.65)/g4^2 + (g2^6*g3^4*t^7.65)/g4 + (g2^4*g3^6*t^7.65)/g4 + g2^4*g3^2*g4*t^7.65 + g2^2*g3^4*g4*t^7.65 + g2^4*g4^2*t^7.65 + g2^2*g3^2*g4^2*t^7.65 + g3^4*g4^2*t^7.65 + (g1^3*t^7.68)/(g2*g3*g4*g5) + (g1^3*g4*t^7.68)/(g2^3*g3^3*g5) + g1^8*g2^2*g5^4*t^7.68 + g1^8*g3^2*g5^4*t^7.68 + (g1^4*g2^6*g3^2*t^7.7)/g4 + (g1^4*g2^4*g3^4*t^7.7)/g4 + (g1^4*g2^2*g3^6*t^7.7)/g4 + g1^4*g2^4*g4*t^7.7 + g1^4*g2^2*g3^2*g4*t^7.7 + g1^4*g3^4*g4*t^7.7 - (g2*t^7.7)/(g1*g3*g5^5) - (g3*t^7.7)/(g1*g2*g5^5) - (g2*g3*t^7.7)/(g1*g4*g5^5) - (g4*t^7.7)/(g1*g2*g3*g5^5) + (g1^7*t^7.73)/(g2^3*g3^3*g5) + g1^8*g2^4*t^7.74 + g1^8*g2^2*g3^2*t^7.74 + g1^8*g3^4*t^7.74 - (g1^3*t^7.75)/(g2*g3*g5^5) + (g5^4*t^8.02)/(g1^8*g2^2) + (g5^4*t^8.02)/(g1^8*g3^2) + (g2^2*g3^2*g5^4*t^8.02)/(g1^8*g4^3) + (g2^2*g5^4*t^8.02)/(g1^8*g4^2) + (g3^2*g5^4*t^8.02)/(g1^8*g4^2) + (g5^4*t^8.02)/(g1^8*g4) + (g4*g5^4*t^8.02)/(g1^8*g2^2*g3^2) + (g4^2*g5^4*t^8.02)/(g1^8*g2^2*g3^4) + (g4^2*g5^4*t^8.02)/(g1^8*g2^4*g3^2) + (g4^3*g5^4*t^8.02)/(g1^8*g2^4*g3^4) - g1*g2*g3*g5^9*t^8.06 + (g5^4*t^8.07)/(g1^4*g4^2) + (g4^2*g5^4*t^8.07)/(g1^4*g2^4*g3^4) + (g2^4*g3^2*t^8.08)/(g1^8*g4^3) + (g2^2*g3^4*t^8.08)/(g1^8*g4^3) + (g2^2*t^8.08)/(g1^8*g4) + (g3^2*t^8.08)/(g1^8*g4) + (g4*t^8.08)/(g1^8*g2^2) + (g4*t^8.08)/(g1^8*g3^2) + (g4^3*t^8.08)/(g1^8*g2^2*g3^4) + (g4^3*t^8.08)/(g1^8*g2^4*g3^2) + (g5^4*t^8.11)/(g2^2*g3^2*g4) + (g4*g5^4*t^8.11)/(g2^4*g3^4) - t^8.13/(g1^4*g2^2) - t^8.13/(g1^4*g3^2) - (g2^2*g3^2*t^8.13)/(g1^4*g4^3) - (6*t^8.13)/(g1^4*g4) - (g2^2*t^8.13)/(g1^4*g3^2*g4) - (g3^2*t^8.13)/(g1^4*g2^2*g4) - (g4*t^8.13)/(g1^4*g2^4) - (g4*t^8.13)/(g1^4*g3^4) - (6*g4*t^8.13)/(g1^4*g2^2*g3^2) - (g4^3*t^8.13)/(g1^4*g2^4*g3^4) - g1*g2^3*g3*g5^5*t^8.13 - g1*g2*g3^3*g5^5*t^8.13 - (g1*g2^3*g3^3*g5^5*t^8.13)/g4 - g1*g2*g3*g4*g5^5*t^8.13 + (g1^4*g5^4*t^8.16)/(g2^4*g3^4) - g1^5*g2*g3*g5^5*t^8.17 - (5*t^8.18)/(g2^2*g3^2) - t^8.18/g4^2 - (g4^2*t^8.18)/(g2^4*g3^4) - t^8.19/(g1^4*g5^4) - (g2^2*g3^2*t^8.19)/(g1^4*g4^2*g5^4) - (g2^2*t^8.19)/(g1^4*g4*g5^4) - (g3^2*t^8.19)/(g1^4*g4*g5^4) - (g4*t^8.19)/(g1^4*g2^2*g5^4) - (g4*t^8.19)/(g1^4*g3^2*g5^4) - (g4^2*t^8.19)/(g1^4*g2^2*g3^2*g5^4) - g1*g2^5*g3*g5*t^8.19 - 2*g1*g2^3*g3^3*g5*t^8.19 - g1*g2*g3^5*g5*t^8.19 - (g1*g2^5*g3^5*g5*t^8.19)/g4^2 - (g1*g2^5*g3^3*g5*t^8.19)/g4 - (g1*g2^3*g3^5*g5*t^8.19)/g4 - g1*g2^3*g3*g4*g5*t^8.19 - g1*g2*g3^3*g4*g5*t^8.19 - g1*g2*g3*g4^2*g5*t^8.19 - (g1^4*t^8.22)/(g2^2*g3^2*g4) - (g1^4*g4*t^8.22)/(g2^4*g3^4) - t^8.24/(g4*g5^4) - (g4*t^8.24)/(g2^2*g3^2*g5^4) - g1^5*g2^3*g3*g5*t^8.24 - g1^5*g2*g3^3*g5*t^8.24 - (g1^5*g2^3*g3^3*g5*t^8.24)/g4 - g1^5*g2*g3*g4*g5*t^8.24 - g1^9*g2*g3*g5*t^8.28 - (g1^4*t^8.29)/(g2^2*g3^2*g5^4) + t^8.3/g5^8 + t^8.51/(g1^16*g2^4*g3^4) + t^8.51/(g1^16*g4^4) + t^8.51/(g1^16*g2^2*g3^2*g4^2) + (g4^2*t^8.51)/(g1^16*g2^6*g3^6) + (g4^4*t^8.51)/(g1^16*g2^8*g3^8) + t^8.56/(g1^12*g2^2*g3^2*g4^3) + t^8.56/(g1^12*g2^4*g3^4*g4) + (g4*t^8.56)/(g1^12*g2^6*g3^6) + (g4^3*t^8.56)/(g1^12*g2^8*g3^8) + t^8.61/(g1^8*g2^6*g3^6) + t^8.61/(g1^8*g2^4*g3^4*g4^2) + (g4^2*t^8.61)/(g1^8*g2^8*g3^8) + (g5^5*t^8.61)/(g1^3*g2^3*g3^3) + t^8.65/(g1^4*g2^6*g3^6*g4) + (g4*t^8.65)/(g1^4*g2^8*g3^8) + t^8.67/(g1^8*g2^4*g3^4*g4*g5^4) + (g4*t^8.67)/(g1^8*g2^6*g3^6*g5^4) + (g5*t^8.67)/(g1^3*g2*g3^3) + (g5*t^8.67)/(g1^3*g2^3*g3) + (g5*t^8.67)/(g1^3*g2*g3*g4) + (g4*g5*t^8.67)/(g1^3*g2^3*g3^3) + t^8.7/(g2^8*g3^8) + t^8.72/(g1^4*g2^6*g3^6*g5^4) + (g1*g5*t^8.72)/(g2^3*g3^3) + (g2*t^8.73)/(g1^3*g3^3*g5^3) + (2*t^8.73)/(g1^3*g2*g3*g5^3) + (g3*t^8.73)/(g1^3*g2^3*g5^3) + (g2*g3*t^8.73)/(g1^3*g4^2*g5^3) + (g2*t^8.73)/(g1^3*g3*g4*g5^3) + (g3*t^8.73)/(g1^3*g2*g4*g5^3) + (g4*t^8.73)/(g1^3*g2*g3^3*g5^3) + (g4*t^8.73)/(g1^3*g2^3*g3*g5^3) + (g4^2*t^8.73)/(g1^3*g2^3*g3^3*g5^3) + (g1*t^8.78)/(g2*g3^3*g5^3) + (g1*t^8.78)/(g2^3*g3*g5^3) + (g1*t^8.78)/(g2*g3*g4*g5^3) + (g1*g4*t^8.78)/(g2^3*g3^3*g5^3) + (g1^5*t^8.83)/(g2^3*g3^3*g5^3) - t^4.64/(g1*g2*g3*g5*y) - t^6.76/(g1^5*g2*g3*g4*g5*y) - (g4*t^6.76)/(g1^5*g2^3*g3^3*g5*y) - t^6.81/(g1*g2^3*g3^3*g5*y) + t^7.26/(g1^8*g2^2*g3^2*y) + t^7.3/(g1^4*g2^2*g3^2*g4*y) + (g4*t^7.3)/(g1^4*g2^4*g3^4*y) + (g1*g2*g3*g5*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g5^3*y) + t^8.4/(g1^6*g2^2*g3^2*g4*g5^2*y) + (g4*t^8.4)/(g1^6*g2^4*g3^4*g5^2*y) + t^8.45/(g1^2*g2^4*g3^4*g5^2*y) + (g2*g3*t^8.46)/(g1*g5*y) + (g1^3*g2*g3*t^8.51)/(g4*g5*y) + (g1^3*g4*t^8.51)/(g2*g3*g5*y) - t^8.89/(g1^9*g2^3*g3^3*g5*y) - t^8.89/(g1^9*g2*g3*g4^2*g5*y) - (g4^2*t^8.89)/(g1^9*g2^5*g3^5*g5*y) + (2*g5^4*t^8.89)/(g1^4*y) + (g2^2*g3^2*g5^4*t^8.89)/(g1^4*g4^2*y) + (g2^2*g5^4*t^8.89)/(g1^4*g4*y) + (g3^2*g5^4*t^8.89)/(g1^4*g4*y) + (g4*g5^4*t^8.89)/(g1^4*g2^2*y) + (g4*g5^4*t^8.89)/(g1^4*g3^2*y) + (g4^2*g5^4*t^8.89)/(g1^4*g2^2*g3^2*y) - t^8.94/(g1^5*g2^3*g3^3*g4*g5*y) - (g4*t^8.94)/(g1^5*g2^5*g3^5*g5*y) + (g5^4*t^8.94)/(g2^2*y) + (g5^4*t^8.94)/(g3^2*y) + (2*g5^4*t^8.94)/(g4*y) + (2*g4*g5^4*t^8.94)/(g2^2*g3^2*y) + (2*g2^2*t^8.95)/(g1^4*y) + (2*g3^2*t^8.95)/(g1^4*y) + (g2^4*g3^2*t^8.95)/(g1^4*g4^2*y) + (g2^2*g3^4*t^8.95)/(g1^4*g4^2*y) + (g2^2*g3^2*t^8.95)/(g1^4*g4*y) + (g4*t^8.95)/(g1^4*y) + (g4^2*t^8.95)/(g1^4*g2^2*y) + (g4^2*t^8.95)/(g1^4*g3^2*y) + (g1^4*g5^4*t^8.98)/(g2^2*g3^2*y) - t^8.99/(g1*g2^5*g3^5*g5*y) - (t^4.64*y)/(g1*g2*g3*g5) - (t^6.76*y)/(g1^5*g2*g3*g4*g5) - (g4*t^6.76*y)/(g1^5*g2^3*g3^3*g5) - (t^6.81*y)/(g1*g2^3*g3^3*g5) + (t^7.26*y)/(g1^8*g2^2*g3^2) + (t^7.3*y)/(g1^4*g2^2*g3^2*g4) + (g4*t^7.3*y)/(g1^4*g2^4*g3^4) + g1*g2*g3*g5*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g5^3) + (t^8.4*y)/(g1^6*g2^2*g3^2*g4*g5^2) + (g4*t^8.4*y)/(g1^6*g2^4*g3^4*g5^2) + (t^8.45*y)/(g1^2*g2^4*g3^4*g5^2) + (g2*g3*t^8.46*y)/(g1*g5) + (g1^3*g2*g3*t^8.51*y)/(g4*g5) + (g1^3*g4*t^8.51*y)/(g2*g3*g5) - (t^8.89*y)/(g1^9*g2^3*g3^3*g5) - (t^8.89*y)/(g1^9*g2*g3*g4^2*g5) - (g4^2*t^8.89*y)/(g1^9*g2^5*g3^5*g5) + (2*g5^4*t^8.89*y)/g1^4 + (g2^2*g3^2*g5^4*t^8.89*y)/(g1^4*g4^2) + (g2^2*g5^4*t^8.89*y)/(g1^4*g4) + (g3^2*g5^4*t^8.89*y)/(g1^4*g4) + (g4*g5^4*t^8.89*y)/(g1^4*g2^2) + (g4*g5^4*t^8.89*y)/(g1^4*g3^2) + (g4^2*g5^4*t^8.89*y)/(g1^4*g2^2*g3^2) - (t^8.94*y)/(g1^5*g2^3*g3^3*g4*g5) - (g4*t^8.94*y)/(g1^5*g2^5*g3^5*g5) + (g5^4*t^8.94*y)/g2^2 + (g5^4*t^8.94*y)/g3^2 + (2*g5^4*t^8.94*y)/g4 + (2*g4*g5^4*t^8.94*y)/(g2^2*g3^2) + (2*g2^2*t^8.95*y)/g1^4 + (2*g3^2*t^8.95*y)/g1^4 + (g2^4*g3^2*t^8.95*y)/(g1^4*g4^2) + (g2^2*g3^4*t^8.95*y)/(g1^4*g4^2) + (g2^2*g3^2*t^8.95*y)/(g1^4*g4) + (g4*t^8.95*y)/g1^4 + (g4^2*t^8.95*y)/(g1^4*g2^2) + (g4^2*t^8.95*y)/(g1^4*g3^2) + (g1^4*g5^4*t^8.98*y)/(g2^2*g3^2) - (t^8.99*y)/(g1*g2^5*g3^5*g5) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55676 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ | 0.9181 | 1.142 | 0.8039 | [X:[], M:[0.7108, 0.7216, 0.7108], q:[0.6543, 0.6349, 0.6392], qb:[0.6392, 0.6349, 0.6166], phi:[0.5452]] | 2*t^2.13 + t^2.16 + t^3.27 + 2*t^3.75 + 2*t^3.77 + 2*t^3.81 + 4*t^3.82 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.33 + t^5.34 + 2*t^5.39 + 4*t^5.4 + t^5.44 + 4*t^5.45 + 4*t^5.46 + 3*t^5.47 + 2*t^5.5 + 2*t^5.52 + t^5.56 + 3*t^5.89 + 4*t^5.9 + 2*t^5.92 + 6*t^5.95 + t^5.97 + t^5.98 - 10*t^6. - t^4.64/y - t^4.64*y | detail |