Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55674 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ 0.8984 1.1064 0.8119 [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] [X:[], M:[[-4, 1, -2, 0, 0], [-2, 0, -2, 0, 0]], q:[[2, -1, 2, 0, 0], [2, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 4, 0], [0, 0, 0, 0, 4]], phi:[[-1, 0, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_1q_3$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$ . -9 t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - 4*t^6.03 - 4*t^6.05 - 4*t^6.08 + t^6.35 + t^6.4 + t^6.45 + t^6.5 + t^6.62 + t^7.02 + 4*t^7.06 + t^7.09 + 4*t^7.11 + 3*t^7.14 + t^7.43 + 4*t^7.47 + 3*t^7.49 + 10*t^7.5 + 8*t^7.52 + 4*t^7.53 + 4*t^7.54 + 18*t^7.55 + 5*t^7.57 + 12*t^7.58 + t^7.59 + 12*t^7.6 + 3*t^7.62 + 8*t^7.63 + t^7.64 - 4*t^7.65 + 5*t^7.67 - 4*t^7.69 - t^7.7 - 4*t^7.74 + t^7.95 + 4*t^7.98 + t^8. + t^8.02 + 4*t^8.03 + t^8.05 - 3*t^8.06 - 4*t^8.1 - 9*t^8.12 - 3*t^8.13 - 8*t^8.15 - 9*t^8.17 - 4*t^8.18 - 4*t^8.2 - t^8.22 - 3*t^8.23 + 3*t^8.28 + t^8.46 + t^8.51 + t^8.56 + t^8.61 + t^8.66 + 3*t^8.68 + 4*t^8.71 + t^8.73 + 3*t^8.75 + 4*t^8.76 + t^8.78 + 4*t^8.8 + 3*t^8.85 - t^4.65/y - t^6.77/y - t^6.82/y + t^7.28/y + t^7.35/y - t^7.96/y + t^8.42/y + t^8.47/y + t^8.49/y + t^8.54/y + t^8.83/y + (4*t^8.87)/y + t^8.88/y - t^8.89/y + t^8.9/y + (8*t^8.92)/y - t^8.94/y + (4*t^8.95)/y + (4*t^8.97)/y - t^8.99/y - t^4.65*y - t^6.77*y - t^6.82*y + t^7.28*y + t^7.35*y - t^7.96*y + t^8.42*y + t^8.47*y + t^8.49*y + t^8.54*y + t^8.83*y + 4*t^8.87*y + t^8.88*y - t^8.89*y + t^8.9*y + 8*t^8.92*y - t^8.94*y + 4*t^8.95*y + 4*t^8.97*y - t^8.99*y (g2*t^2.12)/(g1^4*g3^2) + t^2.17/(g1^2*g3^2) + t^3.31/(g1^2*g3^2*g4^2*g5^2) + g4^4*g5^4*t^3.72 + g2*g4^4*t^3.75 + g3^2*g4^4*t^3.75 + g2*g5^4*t^3.75 + g3^2*g5^4*t^3.75 + g2*g3^2*t^3.78 + g1^2*g4^4*t^3.8 + (g1^2*g3^2*g4^4*t^3.8)/g2 + g1^2*g5^4*t^3.8 + (g1^2*g3^2*g5^4*t^3.8)/g2 + g1^2*g2*t^3.83 + g1^2*g3^2*t^3.83 + (g1^2*g3^4*t^3.83)/g2 + (g2^2*t^4.23)/(g1^8*g3^4) + (g2*t^4.28)/(g1^6*g3^4) + t^4.33/(g1^4*g3^4) + (g4^7*t^5.37)/(g1*g3*g5) + (g4^3*g5^3*t^5.37)/(g1*g3) + (g5^7*t^5.37)/(g1*g3*g4) + (g2*g4^3*t^5.4)/(g1*g3*g5) + (g3*g4^3*t^5.4)/(g1*g5) + (g2*g5^3*t^5.4)/(g1*g3*g4) + (g3*g5^3*t^5.4)/(g1*g4) + (g2*t^5.42)/(g1^6*g3^4*g4^2*g5^2) + (g2^2*t^5.44)/(g1*g3*g4*g5) + (g2*g3*t^5.44)/(g1*g4*g5) + (g3^3*t^5.44)/(g1*g4*g5) + (g1*g4^3*t^5.45)/(g3*g5) + (g1*g3*g4^3*t^5.45)/(g2*g5) + (g1*g5^3*t^5.45)/(g3*g4) + (g1*g3*g5^3*t^5.45)/(g2*g4) + t^5.47/(g1^4*g3^4*g4^2*g5^2) + (g1*g2*t^5.49)/(g3*g4*g5) + (2*g1*g3*t^5.49)/(g4*g5) + (g1*g3^3*t^5.49)/(g2*g4*g5) + (g1^3*t^5.54)/(g3*g4*g5) + (g1^3*g3*t^5.54)/(g2*g4*g5) + (g1^3*g3^3*t^5.54)/(g2^2*g4*g5) + (g2*g4^4*g5^4*t^5.83)/(g1^4*g3^2) + (g2*g4^4*t^5.87)/g1^4 + (g2^2*g4^4*t^5.87)/(g1^4*g3^2) + (g2*g5^4*t^5.87)/g1^4 + (g2^2*g5^4*t^5.87)/(g1^4*g3^2) + (g4^4*g5^4*t^5.88)/(g1^2*g3^2) + (g2^2*t^5.9)/g1^4 + (g4^4*t^5.92)/g1^2 + (g2*g4^4*t^5.92)/(g1^2*g3^2) + (g5^4*t^5.92)/g1^2 + (g2*g5^4*t^5.92)/(g1^2*g3^2) - 5*t^6. - (g2*t^6.)/g3^2 - (g3^2*t^6.)/g2 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g2*t^6.03)/g4^4 - (g3^2*t^6.03)/g4^4 - (g2*t^6.03)/g5^4 - (g3^2*t^6.03)/g5^4 - (2*g1^2*t^6.05)/g2 - (g1^2*t^6.05)/g3^2 - (g1^2*g3^2*t^6.05)/g2^2 - (g1^2*t^6.08)/g4^4 - (g1^2*g3^2*t^6.08)/(g2*g4^4) - (g1^2*t^6.08)/g5^4 - (g1^2*g3^2*t^6.08)/(g2*g5^4) + (g2^3*t^6.35)/(g1^12*g3^6) + (g2^2*t^6.4)/(g1^10*g3^6) + (g2*t^6.45)/(g1^8*g3^6) + t^6.5/(g1^6*g3^6) + t^6.62/(g1^4*g3^4*g4^4*g5^4) + (g4^2*g5^2*t^7.02)/(g1^2*g3^2) + (g4^2*t^7.06)/(g1^2*g5^2) + (g2*g4^2*t^7.06)/(g1^2*g3^2*g5^2) + (g5^2*t^7.06)/(g1^2*g4^2) + (g2*g5^2*t^7.06)/(g1^2*g3^2*g4^2) + (g2*t^7.09)/(g1^2*g4^2*g5^2) + (g4^2*t^7.11)/(g2*g5^2) + (g4^2*t^7.11)/(g3^2*g5^2) + (g5^2*t^7.11)/(g2*g4^2) + (g5^2*t^7.11)/(g3^2*g4^2) + t^7.14/(g4^2*g5^2) + (g2*t^7.14)/(g3^2*g4^2*g5^2) + (g3^2*t^7.14)/(g2*g4^2*g5^2) + g4^8*g5^8*t^7.43 + g2*g4^8*g5^4*t^7.47 + g3^2*g4^8*g5^4*t^7.47 + g2*g4^4*g5^8*t^7.47 + g3^2*g4^4*g5^8*t^7.47 + (g2*g4^7*t^7.49)/(g1^5*g3^3*g5) + (g2*g4^3*g5^3*t^7.49)/(g1^5*g3^3) + (g2*g5^7*t^7.49)/(g1^5*g3^3*g4) + g2^2*g4^8*t^7.5 + g2*g3^2*g4^8*t^7.5 + g3^4*g4^8*t^7.5 + g2^2*g4^4*g5^4*t^7.5 + 2*g2*g3^2*g4^4*g5^4*t^7.5 + g3^4*g4^4*g5^4*t^7.5 + g2^2*g5^8*t^7.5 + g2*g3^2*g5^8*t^7.5 + g3^4*g5^8*t^7.5 + (g2^2*g4^3*t^7.52)/(g1^5*g3^3*g5) + (g2*g4^3*t^7.52)/(g1^5*g3*g5) + (g2^2*g5^3*t^7.52)/(g1^5*g3^3*g4) + (g2*g5^3*t^7.52)/(g1^5*g3*g4) + g1^2*g4^8*g5^4*t^7.52 + (g1^2*g3^2*g4^8*g5^4*t^7.52)/g2 + g1^2*g4^4*g5^8*t^7.52 + (g1^2*g3^2*g4^4*g5^8*t^7.52)/g2 + g2^2*g3^2*g4^4*t^7.53 + g2*g3^4*g4^4*t^7.53 + g2^2*g3^2*g5^4*t^7.53 + g2*g3^4*g5^4*t^7.53 + (g2^2*t^7.54)/(g1^10*g3^6*g4^2*g5^2) + (g4^7*t^7.54)/(g1^3*g3^3*g5) + (g4^3*g5^3*t^7.54)/(g1^3*g3^3) + (g5^7*t^7.54)/(g1^3*g3^3*g4) + g1^2*g2*g4^8*t^7.55 + 2*g1^2*g3^2*g4^8*t^7.55 + (g1^2*g3^4*g4^8*t^7.55)/g2 + (g2^3*t^7.55)/(g1^5*g3^3*g4*g5) + (g2^2*t^7.55)/(g1^5*g3*g4*g5) + (g2*g3*t^7.55)/(g1^5*g4*g5) + 2*g1^2*g2*g4^4*g5^4*t^7.55 + 3*g1^2*g3^2*g4^4*g5^4*t^7.55 + (2*g1^2*g3^4*g4^4*g5^4*t^7.55)/g2 + g1^2*g2*g5^8*t^7.55 + 2*g1^2*g3^2*g5^8*t^7.55 + (g1^2*g3^4*g5^8*t^7.55)/g2 + g2^2*g3^4*t^7.57 + (g2*g4^3*t^7.57)/(g1^3*g3^3*g5) + (g4^3*t^7.57)/(g1^3*g3*g5) + (g2*g5^3*t^7.57)/(g1^3*g3^3*g4) + (g5^3*t^7.57)/(g1^3*g3*g4) + g1^2*g2^2*g4^4*t^7.58 + 2*g1^2*g2*g3^2*g4^4*t^7.58 + 2*g1^2*g3^4*g4^4*t^7.58 + (g1^2*g3^6*g4^4*t^7.58)/g2 + g1^2*g2^2*g5^4*t^7.58 + 2*g1^2*g2*g3^2*g5^4*t^7.58 + 2*g1^2*g3^4*g5^4*t^7.58 + (g1^2*g3^6*g5^4*t^7.58)/g2 + (g2*t^7.59)/(g1^8*g3^6*g4^2*g5^2) + g1^4*g4^8*t^7.6 + (g1^4*g3^2*g4^8*t^7.6)/g2 + (g1^4*g3^4*g4^8*t^7.6)/g2^2 + (g2^2*t^7.6)/(g1^3*g3^3*g4*g5) + (g2*t^7.6)/(g1^3*g3*g4*g5) + (g3*t^7.6)/(g1^3*g4*g5) + g1^4*g4^4*g5^4*t^7.6 + (g1^4*g3^2*g4^4*g5^4*t^7.6)/g2 + (g1^4*g3^4*g4^4*g5^4*t^7.6)/g2^2 + g1^4*g5^8*t^7.6 + (g1^4*g3^2*g5^8*t^7.6)/g2 + (g1^4*g3^4*g5^8*t^7.6)/g2^2 + g1^2*g2^2*g3^2*t^7.62 + g1^2*g2*g3^4*t^7.62 + g1^2*g3^6*t^7.62 + g1^4*g2*g4^4*t^7.63 + g1^4*g3^2*g4^4*t^7.63 + (g1^4*g3^4*g4^4*t^7.63)/g2 + (g1^4*g3^6*g4^4*t^7.63)/g2^2 + g1^4*g2*g5^4*t^7.63 + g1^4*g3^2*g5^4*t^7.63 + (g1^4*g3^4*g5^4*t^7.63)/g2 + (g1^4*g3^6*g5^4*t^7.63)/g2^2 + t^7.64/(g1^6*g3^6*g4^2*g5^2) - (g4^3*t^7.65)/(g1*g3*g5^5) - (2*t^7.65)/(g1*g3*g4*g5) - (g5^3*t^7.65)/(g1*g3*g4^5) + g1^4*g2^2*t^7.67 + g1^4*g2*g3^2*t^7.67 + g1^4*g3^4*t^7.67 + (g1^4*g3^6*t^7.67)/g2 + (g1^4*g3^8*t^7.67)/g2^2 - (g2*t^7.69)/(g1*g3*g4*g5^5) - (g3*t^7.69)/(g1*g4*g5^5) - (g2*t^7.69)/(g1*g3*g4^5*g5) - (g3*t^7.69)/(g1*g4^5*g5) - (g1*t^7.7)/(g2*g3*g4*g5) - (g1*t^7.74)/(g3*g4*g5^5) - (g1*g3*t^7.74)/(g2*g4*g5^5) - (g1*t^7.74)/(g3*g4^5*g5) - (g1*g3*t^7.74)/(g2*g4^5*g5) + (g2^2*g4^4*g5^4*t^7.95)/(g1^8*g3^4) + (g2^3*g4^4*t^7.98)/(g1^8*g3^4) + (g2^2*g4^4*t^7.98)/(g1^8*g3^2) + (g2^3*g5^4*t^7.98)/(g1^8*g3^4) + (g2^2*g5^4*t^7.98)/(g1^8*g3^2) + (g2*g4^4*g5^4*t^8.)/(g1^6*g3^4) + (g2^3*t^8.02)/(g1^8*g3^2) + (g2^2*g4^4*t^8.03)/(g1^6*g3^4) + (g2*g4^4*t^8.03)/(g1^6*g3^2) + (g2^2*g5^4*t^8.03)/(g1^6*g3^4) + (g2*g5^4*t^8.03)/(g1^6*g3^2) + (g4^4*g5^4*t^8.05)/(g1^4*g3^4) - g1*g3*g4^9*g5*t^8.06 - g1*g3*g4^5*g5^5*t^8.06 - g1*g3*g4*g5^9*t^8.06 - g1*g2*g3*g4^5*g5*t^8.1 - g1*g3^3*g4^5*g5*t^8.1 - g1*g2*g3*g4*g5^5*t^8.1 - g1*g3^3*g4*g5^5*t^8.1 - t^8.12/g1^4 - (g2^2*t^8.12)/(g1^4*g3^4) - (5*g2*t^8.12)/(g1^4*g3^2) - (g2*g4^4*t^8.12)/(g1^4*g3^2*g5^4) - (g2*g5^4*t^8.12)/(g1^4*g3^2*g4^4) - g1*g2^2*g3*g4*g5*t^8.13 - g1*g2*g3^3*g4*g5*t^8.13 - g1*g3^5*g4*g5*t^8.13 - (g2*t^8.15)/(g1^4*g4^4) - (g2^2*t^8.15)/(g1^4*g3^2*g4^4) - (g2*t^8.15)/(g1^4*g5^4) - (g2^2*t^8.15)/(g1^4*g3^2*g5^4) - g1^3*g3*g4^5*g5*t^8.15 - (g1^3*g3^3*g4^5*g5*t^8.15)/g2 - g1^3*g3*g4*g5^5*t^8.15 - (g1^3*g3^3*g4*g5^5*t^8.15)/g2 - t^8.17/(g1^2*g2) - (g2*t^8.17)/(g1^2*g3^4) - (5*t^8.17)/(g1^2*g3^2) - (g4^4*t^8.17)/(g1^2*g3^2*g5^4) - (g5^4*t^8.17)/(g1^2*g3^2*g4^4) - g1^3*g2*g3*g4*g5*t^8.18 - 2*g1^3*g3^3*g4*g5*t^8.18 - (g1^3*g3^5*g4*g5*t^8.18)/g2 - t^8.2/(g1^2*g4^4) - (g2*t^8.2)/(g1^2*g3^2*g4^4) - t^8.2/(g1^2*g5^4) - (g2*t^8.2)/(g1^2*g3^2*g5^4) - t^8.22/(g2*g3^2) - g1^5*g3*g4*g5*t^8.23 - (g1^5*g3^3*g4*g5*t^8.23)/g2 - (g1^5*g3^5*g4*g5*t^8.23)/g2^2 + t^8.28/g4^8 + t^8.28/g5^8 + t^8.28/(g4^4*g5^4) + (g2^4*t^8.46)/(g1^16*g3^8) + (g2^3*t^8.51)/(g1^14*g3^8) + (g2^2*t^8.56)/(g1^12*g3^8) + (g2*t^8.61)/(g1^10*g3^8) + t^8.66/(g1^8*g3^8) + (g4^5*t^8.68)/(g1^3*g3^3*g5^3) + (g4*g5*t^8.68)/(g1^3*g3^3) + (g5^5*t^8.68)/(g1^3*g3^3*g4^3) + (g2*g4*t^8.71)/(g1^3*g3^3*g5^3) + (g4*t^8.71)/(g1^3*g3*g5^3) + (g2*g5*t^8.71)/(g1^3*g3^3*g4^3) + (g5*t^8.71)/(g1^3*g3*g4^3) + (g2*t^8.73)/(g1^8*g3^6*g4^4*g5^4) + (g2^2*t^8.75)/(g1^3*g3^3*g4^3*g5^3) + (g2*t^8.75)/(g1^3*g3*g4^3*g5^3) + (g3*t^8.75)/(g1^3*g4^3*g5^3) + (g4*t^8.76)/(g1*g3^3*g5^3) + (g4*t^8.76)/(g1*g2*g3*g5^3) + (g5*t^8.76)/(g1*g3^3*g4^3) + (g5*t^8.76)/(g1*g2*g3*g4^3) + t^8.78/(g1^6*g3^6*g4^4*g5^4) + (g2*t^8.8)/(g1*g3^3*g4^3*g5^3) + (2*t^8.8)/(g1*g3*g4^3*g5^3) + (g3*t^8.8)/(g1*g2*g4^3*g5^3) + (g1*t^8.85)/(g3^3*g4^3*g5^3) + (g1*t^8.85)/(g2*g3*g4^3*g5^3) + (g1*g3*t^8.85)/(g2^2*g4^3*g5^3) - t^4.65/(g1*g3*g4*g5*y) - (g2*t^6.77)/(g1^5*g3^3*g4*g5*y) - t^6.82/(g1^3*g3^3*g4*g5*y) + (g2*t^7.28)/(g1^6*g3^4*y) + (g1*g3*g4*g5*t^7.35)/y - t^7.96/(g1^3*g3^3*g4^3*g5^3*y) + (g2*t^8.42)/(g1^6*g3^4*g4^2*g5^2*y) + t^8.47/(g1^4*g3^4*g4^2*g5^2*y) + (g1*g3*t^8.49)/(g4*g5*y) + (g1^3*g3*t^8.54)/(g2*g4*g5*y) + (g2*g4^4*g5^4*t^8.83)/(g1^4*g3^2*y) + (g2*g4^4*t^8.87)/(g1^4*y) + (g2^2*g4^4*t^8.87)/(g1^4*g3^2*y) + (g2*g5^4*t^8.87)/(g1^4*y) + (g2^2*g5^4*t^8.87)/(g1^4*g3^2*y) + (g4^4*g5^4*t^8.88)/(g1^2*g3^2*y) - (g2^2*t^8.89)/(g1^9*g3^5*g4*g5*y) + (g2^2*t^8.9)/(g1^4*y) + (2*g4^4*t^8.92)/(g1^2*y) + (2*g2*g4^4*t^8.92)/(g1^2*g3^2*y) + (2*g5^4*t^8.92)/(g1^2*y) + (2*g2*g5^4*t^8.92)/(g1^2*g3^2*y) - (g2*t^8.94)/(g1^7*g3^5*g4*g5*y) + (2*g2*t^8.95)/(g1^2*y) + (g2^2*t^8.95)/(g1^2*g3^2*y) + (g3^2*t^8.95)/(g1^2*y) + (g4^4*t^8.97)/(g2*y) + (g4^4*t^8.97)/(g3^2*y) + (g5^4*t^8.97)/(g2*y) + (g5^4*t^8.97)/(g3^2*y) - t^8.99/(g1^5*g3^5*g4*g5*y) - (t^4.65*y)/(g1*g3*g4*g5) - (g2*t^6.77*y)/(g1^5*g3^3*g4*g5) - (t^6.82*y)/(g1^3*g3^3*g4*g5) + (g2*t^7.28*y)/(g1^6*g3^4) + g1*g3*g4*g5*t^7.35*y - (t^7.96*y)/(g1^3*g3^3*g4^3*g5^3) + (g2*t^8.42*y)/(g1^6*g3^4*g4^2*g5^2) + (t^8.47*y)/(g1^4*g3^4*g4^2*g5^2) + (g1*g3*t^8.49*y)/(g4*g5) + (g1^3*g3*t^8.54*y)/(g2*g4*g5) + (g2*g4^4*g5^4*t^8.83*y)/(g1^4*g3^2) + (g2*g4^4*t^8.87*y)/g1^4 + (g2^2*g4^4*t^8.87*y)/(g1^4*g3^2) + (g2*g5^4*t^8.87*y)/g1^4 + (g2^2*g5^4*t^8.87*y)/(g1^4*g3^2) + (g4^4*g5^4*t^8.88*y)/(g1^2*g3^2) - (g2^2*t^8.89*y)/(g1^9*g3^5*g4*g5) + (g2^2*t^8.9*y)/g1^4 + (2*g4^4*t^8.92*y)/g1^2 + (2*g2*g4^4*t^8.92*y)/(g1^2*g3^2) + (2*g5^4*t^8.92*y)/g1^2 + (2*g2*g5^4*t^8.92*y)/(g1^2*g3^2) - (g2*t^8.94*y)/(g1^7*g3^5*g4*g5) + (2*g2*t^8.95*y)/g1^2 + (g2^2*t^8.95*y)/(g1^2*g3^2) + (g3^2*t^8.95*y)/g1^2 + (g4^4*t^8.97*y)/g2 + (g4^4*t^8.97*y)/g3^2 + (g5^4*t^8.97*y)/g2 + (g5^4*t^8.97*y)/g3^2 - (t^8.99*y)/(g1^5*g3^5*g4*g5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55794 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8979 1.104 0.8134 [X:[], M:[0.7242, 0.7242], q:[0.642, 0.6339, 0.6339], qb:[0.642, 0.6339, 0.6183], phi:[0.549]] 2*t^2.17 + t^3.29 + 3*t^3.76 + 2*t^3.78 + 3*t^3.8 + 4*t^3.83 + t^3.85 + 3*t^4.34 + t^5.36 + 3*t^5.4 + 2*t^5.43 + 6*t^5.45 + 8*t^5.47 + 3*t^5.5 + 4*t^5.93 + t^5.95 - 6*t^6. - t^4.65/y - t^4.65*y detail
55764 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8977 1.1027 0.8141 [X:[], M:[0.7267, 0.7324], q:[0.6366, 0.6366, 0.6309], qb:[0.6309, 0.6366, 0.6366], phi:[0.5479]] t^2.18 + t^2.2 + t^3.29 + t^3.79 + 7*t^3.8 + 5*t^3.82 + t^4.36 + t^4.38 + t^4.39 + 3*t^5.43 + 8*t^5.45 + 10*t^5.46 + t^5.47 + t^5.48 + t^5.97 - 8*t^6. - t^4.64/y - t^4.64*y detail
55708 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.898 1.1043 0.8131 [X:[], M:[0.7129, 0.7325], q:[0.6435, 0.6435, 0.6239], qb:[0.6239, 0.6337, 0.6337], phi:[0.5494]] t^2.14 + t^2.2 + t^3.3 + t^3.74 + 4*t^3.77 + 4*t^3.8 + 4*t^3.83 + t^4.28 + t^4.34 + t^4.4 + 3*t^5.39 + 4*t^5.42 + t^5.44 + 7*t^5.45 + 4*t^5.48 + t^5.49 + 3*t^5.51 + t^5.88 + 4*t^5.91 + t^5.94 - 8*t^6. - t^4.65/y - t^4.65*y detail
55755 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_3\phi_1^2$ 0.9096 1.1311 0.8042 [X:[], M:[0.7236, 0.7469, 0.853], q:[0.6382, 0.6382, 0.6149], qb:[0.6149, 0.5999, 0.5999], phi:[0.5735]] t^2.17 + t^2.24 + t^2.56 + t^3.6 + 4*t^3.64 + t^3.69 + 4*t^3.71 + 3*t^3.76 + t^4.34 + t^4.41 + t^4.48 + t^4.73 + t^4.8 + t^5.12 + 3*t^5.32 + 4*t^5.37 + 3*t^5.41 + 4*t^5.43 + 4*t^5.48 + 3*t^5.55 + t^5.77 + 4*t^5.82 + t^5.84 + t^5.86 + 4*t^5.89 - 9*t^6. - t^4.72/y - t^4.72*y detail
55818 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_3\tilde{q}_1$ 0.9183 1.1435 0.8031 [X:[], M:[0.7103, 0.7103, 0.7103], q:[0.6448, 0.6448, 0.6448], qb:[0.6448, 0.6172, 0.6172], phi:[0.5466]] 3*t^2.13 + t^3.28 + t^3.7 + 8*t^3.79 + 3*t^3.87 + 6*t^4.26 + 3*t^5.34 + 3*t^5.41 + 8*t^5.43 + 10*t^5.51 + 3*t^5.83 + 16*t^5.92 - 11*t^6. - t^4.64/y - t^4.64*y detail
55811 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ 0.8903 1.0924 0.815 [X:[], M:[0.7229, 0.746], q:[0.6385, 0.6385, 0.6155], qb:[0.6155, 0.7298, 0.6007], phi:[0.5404]] t^2.17 + t^2.24 + t^3.24 + 2*t^3.65 + t^3.69 + 2*t^3.72 + 3*t^3.76 + t^3.99 + 2*t^4.04 + 2*t^4.11 + t^4.34 + t^4.41 + t^4.48 + t^5.23 + 2*t^5.27 + 3*t^5.31 + 2*t^5.34 + 4*t^5.38 + t^5.41 + 3*t^5.45 + t^5.48 + 2*t^5.82 + t^5.86 + 2*t^5.89 - 6*t^6. - t^4.62/y - t^4.62*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55444 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ 0.8986 1.1079 0.8111 [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y detail