Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55818 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_3q_3\tilde{q}_1$ 0.9183 1.1435 0.8031 [X:[], M:[0.7103, 0.7103, 0.7103], q:[0.6448, 0.6448, 0.6448], qb:[0.6448, 0.6172, 0.6172], phi:[0.5466]] [X:[], M:[[-4, 1, -2, 0, 0], [-2, 0, -2, 0, 0], [0, -1, -2, 0, 0]], q:[[2, -1, 2, 0, 0], [2, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 4, 0], [0, 0, 0, 0, 4]], phi:[[-1, 0, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ M_2^2$, $ M_1M_3$, $ M_3^2$, $ M_2M_3$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ \phi_1q_3\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$ $M_3q_2q_3$, $ M_3q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$ -11 3*t^2.13 + t^3.28 + t^3.7 + 8*t^3.79 + 3*t^3.87 + 6*t^4.26 + 3*t^5.34 + 3*t^5.41 + 8*t^5.43 + 10*t^5.51 + 3*t^5.83 + 16*t^5.92 - 11*t^6. - 8*t^6.08 + 10*t^6.39 + t^6.56 + t^6.98 + 8*t^7.07 + 3*t^7.15 + t^7.41 + 9*t^7.47 + 8*t^7.49 + 6*t^7.54 + 16*t^7.56 + 33*t^7.57 + 11*t^7.64 + 16*t^7.66 - 8*t^7.72 + 5*t^7.74 + 6*t^7.97 + 24*t^8.05 - 3*t^8.06 - 32*t^8.13 - 8*t^8.15 - 16*t^8.21 - 10*t^8.23 + 3*t^8.3 + 15*t^8.52 + 3*t^8.62 + 3*t^8.69 + 8*t^8.71 + 10*t^8.79 - t^4.64/y - (3*t^6.77)/y + (3*t^7.26)/y + t^7.36/y - t^7.92/y + (3*t^8.41)/y + (3*t^8.51)/y + (3*t^8.83)/y - (6*t^8.9)/y + (24*t^8.92)/y - t^4.64*y - 3*t^6.77*y + 3*t^7.26*y + t^7.36*y - t^7.92*y + 3*t^8.41*y + 3*t^8.51*y + 3*t^8.83*y - 6*t^8.9*y + 24*t^8.92*y t^2.13/(g1^2*g3^2) + t^2.13/(g2*g3^2) + (g2*t^2.13)/(g1^4*g3^2) + t^3.28/(g1^2*g3^2*g4^2*g5^2) + g4^4*g5^4*t^3.7 + g1^2*g4^4*t^3.79 + g2*g4^4*t^3.79 + g3^2*g4^4*t^3.79 + (g1^2*g3^2*g4^4*t^3.79)/g2 + g1^2*g5^4*t^3.79 + g2*g5^4*t^3.79 + g3^2*g5^4*t^3.79 + (g1^2*g3^2*g5^4*t^3.79)/g2 + g1^2*g2*t^3.87 + g1^2*g3^2*t^3.87 + (g1^2*g3^4*t^3.87)/g2 + (2*t^4.26)/(g1^4*g3^4) + t^4.26/(g2^2*g3^4) + t^4.26/(g1^2*g2*g3^4) + (g2*t^4.26)/(g1^6*g3^4) + (g2^2*t^4.26)/(g1^8*g3^4) + (g4^7*t^5.34)/(g1*g3*g5) + (g4^3*g5^3*t^5.34)/(g1*g3) + (g5^7*t^5.34)/(g1*g3*g4) + t^5.41/(g1^4*g3^4*g4^2*g5^2) + t^5.41/(g1^2*g2*g3^4*g4^2*g5^2) + (g2*t^5.41)/(g1^6*g3^4*g4^2*g5^2) + (g1*g4^3*t^5.43)/(g3*g5) + (g2*g4^3*t^5.43)/(g1*g3*g5) + (g3*g4^3*t^5.43)/(g1*g5) + (g1*g3*g4^3*t^5.43)/(g2*g5) + (g1*g5^3*t^5.43)/(g3*g4) + (g2*g5^3*t^5.43)/(g1*g3*g4) + (g3*g5^3*t^5.43)/(g1*g4) + (g1*g3*g5^3*t^5.43)/(g2*g4) + (g1^3*t^5.51)/(g3*g4*g5) + (g1*g2*t^5.51)/(g3*g4*g5) + (g2^2*t^5.51)/(g1*g3*g4*g5) + (2*g1*g3*t^5.51)/(g4*g5) + (g1^3*g3*t^5.51)/(g2*g4*g5) + (g2*g3*t^5.51)/(g1*g4*g5) + (g3^3*t^5.51)/(g1*g4*g5) + (g1^3*g3^3*t^5.51)/(g2^2*g4*g5) + (g1*g3^3*t^5.51)/(g2*g4*g5) + (g4^4*g5^4*t^5.83)/(g1^2*g3^2) + (g4^4*g5^4*t^5.83)/(g2*g3^2) + (g2*g4^4*g5^4*t^5.83)/(g1^4*g3^2) + (g4^4*t^5.92)/g1^2 + (g1^2*g4^4*t^5.92)/g2^2 + (g4^4*t^5.92)/g2 + (g2*g4^4*t^5.92)/g1^4 + (g4^4*t^5.92)/g3^2 + (g1^2*g4^4*t^5.92)/(g2*g3^2) + (g2*g4^4*t^5.92)/(g1^2*g3^2) + (g2^2*g4^4*t^5.92)/(g1^4*g3^2) + (g5^4*t^5.92)/g1^2 + (g1^2*g5^4*t^5.92)/g2^2 + (g5^4*t^5.92)/g2 + (g2*g5^4*t^5.92)/g1^4 + (g5^4*t^5.92)/g3^2 + (g1^2*g5^4*t^5.92)/(g2*g3^2) + (g2*g5^4*t^5.92)/(g1^2*g3^2) + (g2^2*g5^4*t^5.92)/(g1^4*g3^2) - 5*t^6. - (g1^2*t^6.)/g2 - (g2*t^6.)/g1^2 - (g2*t^6.)/g3^2 - (g3^2*t^6.)/g2 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g1^2*t^6.08)/g4^4 - (g2*t^6.08)/g4^4 - (g3^2*t^6.08)/g4^4 - (g1^2*g3^2*t^6.08)/(g2*g4^4) - (g1^2*t^6.08)/g5^4 - (g2*t^6.08)/g5^4 - (g3^2*t^6.08)/g5^4 - (g1^2*g3^2*t^6.08)/(g2*g5^4) + (2*t^6.39)/(g1^6*g3^6) + t^6.39/(g2^3*g3^6) + t^6.39/(g1^2*g2^2*g3^6) + (2*t^6.39)/(g1^4*g2*g3^6) + (2*g2*t^6.39)/(g1^8*g3^6) + (g2^2*t^6.39)/(g1^10*g3^6) + (g2^3*t^6.39)/(g1^12*g3^6) + t^6.56/(g1^4*g3^4*g4^4*g5^4) + (g4^2*g5^2*t^6.98)/(g1^2*g3^2) + (g4^2*t^7.07)/(g1^2*g5^2) + (g4^2*t^7.07)/(g2*g5^2) + (g4^2*t^7.07)/(g3^2*g5^2) + (g2*g4^2*t^7.07)/(g1^2*g3^2*g5^2) + (g5^2*t^7.07)/(g1^2*g4^2) + (g5^2*t^7.07)/(g2*g4^2) + (g5^2*t^7.07)/(g3^2*g4^2) + (g2*g5^2*t^7.07)/(g1^2*g3^2*g4^2) + t^7.15/(g4^2*g5^2) + (g2*t^7.15)/(g3^2*g4^2*g5^2) + (g3^2*t^7.15)/(g2*g4^2*g5^2) + g4^8*g5^8*t^7.41 + (g4^7*t^7.47)/(g1^3*g3^3*g5) + (g4^7*t^7.47)/(g1*g2*g3^3*g5) + (g2*g4^7*t^7.47)/(g1^5*g3^3*g5) + (g4^3*g5^3*t^7.47)/(g1^3*g3^3) + (g4^3*g5^3*t^7.47)/(g1*g2*g3^3) + (g2*g4^3*g5^3*t^7.47)/(g1^5*g3^3) + (g5^7*t^7.47)/(g1^3*g3^3*g4) + (g5^7*t^7.47)/(g1*g2*g3^3*g4) + (g2*g5^7*t^7.47)/(g1^5*g3^3*g4) + g1^2*g4^8*g5^4*t^7.49 + g2*g4^8*g5^4*t^7.49 + g3^2*g4^8*g5^4*t^7.49 + (g1^2*g3^2*g4^8*g5^4*t^7.49)/g2 + g1^2*g4^4*g5^8*t^7.49 + g2*g4^4*g5^8*t^7.49 + g3^2*g4^4*g5^8*t^7.49 + (g1^2*g3^2*g4^4*g5^8*t^7.49)/g2 + (2*t^7.54)/(g1^6*g3^6*g4^2*g5^2) + t^7.54/(g1^2*g2^2*g3^6*g4^2*g5^2) + t^7.54/(g1^4*g2*g3^6*g4^2*g5^2) + (g2*t^7.54)/(g1^8*g3^6*g4^2*g5^2) + (g2^2*t^7.54)/(g1^10*g3^6*g4^2*g5^2) + (g4^3*t^7.56)/(g1*g3^3*g5) + (g1*g4^3*t^7.56)/(g2*g3^3*g5) + (g2*g4^3*t^7.56)/(g1^3*g3^3*g5) + (g2^2*g4^3*t^7.56)/(g1^5*g3^3*g5) + (g4^3*t^7.56)/(g1^3*g3*g5) + (g1*g4^3*t^7.56)/(g2^2*g3*g5) + (g4^3*t^7.56)/(g1*g2*g3*g5) + (g2*g4^3*t^7.56)/(g1^5*g3*g5) + (g5^3*t^7.56)/(g1*g3^3*g4) + (g1*g5^3*t^7.56)/(g2*g3^3*g4) + (g2*g5^3*t^7.56)/(g1^3*g3^3*g4) + (g2^2*g5^3*t^7.56)/(g1^5*g3^3*g4) + (g5^3*t^7.56)/(g1^3*g3*g4) + (g1*g5^3*t^7.56)/(g2^2*g3*g4) + (g5^3*t^7.56)/(g1*g2*g3*g4) + (g2*g5^3*t^7.56)/(g1^5*g3*g4) + g1^4*g4^8*t^7.57 + g1^2*g2*g4^8*t^7.57 + g2^2*g4^8*t^7.57 + 2*g1^2*g3^2*g4^8*t^7.57 + (g1^4*g3^2*g4^8*t^7.57)/g2 + g2*g3^2*g4^8*t^7.57 + g3^4*g4^8*t^7.57 + (g1^4*g3^4*g4^8*t^7.57)/g2^2 + (g1^2*g3^4*g4^8*t^7.57)/g2 + g1^4*g4^4*g5^4*t^7.57 + 2*g1^2*g2*g4^4*g5^4*t^7.57 + g2^2*g4^4*g5^4*t^7.57 + 3*g1^2*g3^2*g4^4*g5^4*t^7.57 + (g1^4*g3^2*g4^4*g5^4*t^7.57)/g2 + g2*g3^2*g4^4*g5^4*t^7.57 + g3^4*g4^4*g5^4*t^7.57 + (g1^4*g3^4*g4^4*g5^4*t^7.57)/g2^2 + (2*g1^2*g3^4*g4^4*g5^4*t^7.57)/g2 + g1^4*g5^8*t^7.57 + g1^2*g2*g5^8*t^7.57 + g2^2*g5^8*t^7.57 + 2*g1^2*g3^2*g5^8*t^7.57 + (g1^4*g3^2*g5^8*t^7.57)/g2 + g2*g3^2*g5^8*t^7.57 + g3^4*g5^8*t^7.57 + (g1^4*g3^4*g5^8*t^7.57)/g2^2 + (g1^2*g3^4*g5^8*t^7.57)/g2 - (g4^3*t^7.64)/(g1*g3*g5^5) + (g1*t^7.64)/(g3^3*g4*g5) + (g1^3*t^7.64)/(g2*g3^3*g4*g5) + (g2*t^7.64)/(g1*g3^3*g4*g5) + (g2^2*t^7.64)/(g1^3*g3^3*g4*g5) + (g2^3*t^7.64)/(g1^5*g3^3*g4*g5) - t^7.64/(g1*g3*g4*g5) + (g1^3*t^7.64)/(g2^2*g3*g4*g5) + (g1*t^7.64)/(g2*g3*g4*g5) + (g2*t^7.64)/(g1^3*g3*g4*g5) + (g2^2*t^7.64)/(g1^5*g3*g4*g5) + (g3*t^7.64)/(g1^3*g4*g5) + (g1^3*g3*t^7.64)/(g2^3*g4*g5) + (g1*g3*t^7.64)/(g2^2*g4*g5) + (g3*t^7.64)/(g1*g2*g4*g5) + (g2*g3*t^7.64)/(g1^5*g4*g5) - (g5^3*t^7.64)/(g1*g3*g4^5) + g1^4*g2*g4^4*t^7.66 + g1^2*g2^2*g4^4*t^7.66 + g1^4*g3^2*g4^4*t^7.66 + g1^2*g2*g3^2*g4^4*t^7.66 + g1^2*g3^4*g4^4*t^7.66 + (g1^4*g3^4*g4^4*t^7.66)/g2 + (g1^4*g3^6*g4^4*t^7.66)/g2^2 + (g1^2*g3^6*g4^4*t^7.66)/g2 + g1^4*g2*g5^4*t^7.66 + g1^2*g2^2*g5^4*t^7.66 + g1^4*g3^2*g5^4*t^7.66 + g1^2*g2*g3^2*g5^4*t^7.66 + g1^2*g3^4*g5^4*t^7.66 + (g1^4*g3^4*g5^4*t^7.66)/g2 + (g1^4*g3^6*g5^4*t^7.66)/g2^2 + (g1^2*g3^6*g5^4*t^7.66)/g2 - (g1*t^7.72)/(g3*g4*g5^5) - (g2*t^7.72)/(g1*g3*g4*g5^5) - (g3*t^7.72)/(g1*g4*g5^5) - (g1*g3*t^7.72)/(g2*g4*g5^5) - (g1*t^7.72)/(g3*g4^5*g5) - (g2*t^7.72)/(g1*g3*g4^5*g5) - (g3*t^7.72)/(g1*g4^5*g5) - (g1*g3*t^7.72)/(g2*g4^5*g5) + g1^4*g2^2*t^7.74 + g1^4*g2*g3^2*t^7.74 + g1^4*g3^4*t^7.74 + (g1^4*g3^6*t^7.74)/g2 + (g1^4*g3^8*t^7.74)/g2^2 + (2*g4^4*g5^4*t^7.97)/(g1^4*g3^4) + (g4^4*g5^4*t^7.97)/(g2^2*g3^4) + (g4^4*g5^4*t^7.97)/(g1^2*g2*g3^4) + (g2*g4^4*g5^4*t^7.97)/(g1^6*g3^4) + (g2^2*g4^4*g5^4*t^7.97)/(g1^8*g3^4) + (g4^4*t^8.05)/(g1^2*g3^4) + (g1^2*g4^4*t^8.05)/(g2^2*g3^4) + (g4^4*t^8.05)/(g2*g3^4) + (g2*g4^4*t^8.05)/(g1^4*g3^4) + (g2^2*g4^4*t^8.05)/(g1^6*g3^4) + (g2^3*g4^4*t^8.05)/(g1^8*g3^4) + (g4^4*t^8.05)/(g1^4*g3^2) + (g1^2*g4^4*t^8.05)/(g2^3*g3^2) + (g4^4*t^8.05)/(g2^2*g3^2) + (g4^4*t^8.05)/(g1^2*g2*g3^2) + (g2*g4^4*t^8.05)/(g1^6*g3^2) + (g2^2*g4^4*t^8.05)/(g1^8*g3^2) + (g5^4*t^8.05)/(g1^2*g3^4) + (g1^2*g5^4*t^8.05)/(g2^2*g3^4) + (g5^4*t^8.05)/(g2*g3^4) + (g2*g5^4*t^8.05)/(g1^4*g3^4) + (g2^2*g5^4*t^8.05)/(g1^6*g3^4) + (g2^3*g5^4*t^8.05)/(g1^8*g3^4) + (g5^4*t^8.05)/(g1^4*g3^2) + (g1^2*g5^4*t^8.05)/(g2^3*g3^2) + (g5^4*t^8.05)/(g2^2*g3^2) + (g5^4*t^8.05)/(g1^2*g2*g3^2) + (g2*g5^4*t^8.05)/(g1^6*g3^2) + (g2^2*g5^4*t^8.05)/(g1^8*g3^2) - g1*g3*g4^9*g5*t^8.06 - g1*g3*g4^5*g5^5*t^8.06 - g1*g3*g4*g5^9*t^8.06 - t^8.13/g1^4 - t^8.13/g2^2 - t^8.13/(g1^2*g2) - t^8.13/g3^4 - (g2*t^8.13)/(g1^2*g3^4) - (g2^2*t^8.13)/(g1^4*g3^4) - (6*t^8.13)/(g1^2*g3^2) - (g1^2*t^8.13)/(g2^2*g3^2) - (6*t^8.13)/(g2*g3^2) - (6*g2*t^8.13)/(g1^4*g3^2) - (g2^2*t^8.13)/(g1^6*g3^2) - (g4^4*t^8.13)/(g1^2*g3^2*g5^4) - (g4^4*t^8.13)/(g2*g3^2*g5^4) - (g2*g4^4*t^8.13)/(g1^4*g3^2*g5^4) - (g5^4*t^8.13)/(g1^2*g3^2*g4^4) - (g5^4*t^8.13)/(g2*g3^2*g4^4) - (g2*g5^4*t^8.13)/(g1^4*g3^2*g4^4) - g1^3*g3*g4^5*g5*t^8.15 - g1*g2*g3*g4^5*g5*t^8.15 - g1*g3^3*g4^5*g5*t^8.15 - (g1^3*g3^3*g4^5*g5*t^8.15)/g2 - g1^3*g3*g4*g5^5*t^8.15 - g1*g2*g3*g4*g5^5*t^8.15 - g1*g3^3*g4*g5^5*t^8.15 - (g1^3*g3^3*g4*g5^5*t^8.15)/g2 - t^8.21/(g1^2*g4^4) - (g1^2*t^8.21)/(g2^2*g4^4) - t^8.21/(g2*g4^4) - (g2*t^8.21)/(g1^4*g4^4) - t^8.21/(g3^2*g4^4) - (g1^2*t^8.21)/(g2*g3^2*g4^4) - (g2*t^8.21)/(g1^2*g3^2*g4^4) - (g2^2*t^8.21)/(g1^4*g3^2*g4^4) - t^8.21/(g1^2*g5^4) - (g1^2*t^8.21)/(g2^2*g5^4) - t^8.21/(g2*g5^4) - (g2*t^8.21)/(g1^4*g5^4) - t^8.21/(g3^2*g5^4) - (g1^2*t^8.21)/(g2*g3^2*g5^4) - (g2*t^8.21)/(g1^2*g3^2*g5^4) - (g2^2*t^8.21)/(g1^4*g3^2*g5^4) - g1^5*g3*g4*g5*t^8.23 - g1^3*g2*g3*g4*g5*t^8.23 - g1*g2^2*g3*g4*g5*t^8.23 - 2*g1^3*g3^3*g4*g5*t^8.23 - (g1^5*g3^3*g4*g5*t^8.23)/g2 - g1*g2*g3^3*g4*g5*t^8.23 - g1*g3^5*g4*g5*t^8.23 - (g1^5*g3^5*g4*g5*t^8.23)/g2^2 - (g1^3*g3^5*g4*g5*t^8.23)/g2 + t^8.3/g4^8 + t^8.3/g5^8 + t^8.3/(g4^4*g5^4) + (3*t^8.52)/(g1^8*g3^8) + t^8.52/(g2^4*g3^8) + t^8.52/(g1^2*g2^3*g3^8) + (2*t^8.52)/(g1^4*g2^2*g3^8) + (2*t^8.52)/(g1^6*g2*g3^8) + (2*g2*t^8.52)/(g1^10*g3^8) + (2*g2^2*t^8.52)/(g1^12*g3^8) + (g2^3*t^8.52)/(g1^14*g3^8) + (g2^4*t^8.52)/(g1^16*g3^8) + (g4^5*t^8.62)/(g1^3*g3^3*g5^3) + (g4*g5*t^8.62)/(g1^3*g3^3) + (g5^5*t^8.62)/(g1^3*g3^3*g4^3) + t^8.69/(g1^6*g3^6*g4^4*g5^4) + t^8.69/(g1^4*g2*g3^6*g4^4*g5^4) + (g2*t^8.69)/(g1^8*g3^6*g4^4*g5^4) + (g4*t^8.71)/(g1*g3^3*g5^3) + (g2*g4*t^8.71)/(g1^3*g3^3*g5^3) + (g4*t^8.71)/(g1^3*g3*g5^3) + (g4*t^8.71)/(g1*g2*g3*g5^3) + (g5*t^8.71)/(g1*g3^3*g4^3) + (g2*g5*t^8.71)/(g1^3*g3^3*g4^3) + (g5*t^8.71)/(g1^3*g3*g4^3) + (g5*t^8.71)/(g1*g2*g3*g4^3) + (g1*t^8.79)/(g3^3*g4^3*g5^3) + (g2*t^8.79)/(g1*g3^3*g4^3*g5^3) + (g2^2*t^8.79)/(g1^3*g3^3*g4^3*g5^3) + (2*t^8.79)/(g1*g3*g4^3*g5^3) + (g1*t^8.79)/(g2*g3*g4^3*g5^3) + (g2*t^8.79)/(g1^3*g3*g4^3*g5^3) + (g3*t^8.79)/(g1^3*g4^3*g5^3) + (g1*g3*t^8.79)/(g2^2*g4^3*g5^3) + (g3*t^8.79)/(g1*g2*g4^3*g5^3) - t^4.64/(g1*g3*g4*g5*y) - t^6.77/(g1^3*g3^3*g4*g5*y) - t^6.77/(g1*g2*g3^3*g4*g5*y) - (g2*t^6.77)/(g1^5*g3^3*g4*g5*y) + t^7.26/(g1^4*g3^4*y) + t^7.26/(g1^2*g2*g3^4*y) + (g2*t^7.26)/(g1^6*g3^4*y) + (g1*g3*g4*g5*t^7.36)/y - t^7.92/(g1^3*g3^3*g4^3*g5^3*y) + t^8.41/(g1^4*g3^4*g4^2*g5^2*y) + t^8.41/(g1^2*g2*g3^4*g4^2*g5^2*y) + (g2*t^8.41)/(g1^6*g3^4*g4^2*g5^2*y) + (g1*g3*t^8.51)/(g4*g5*y) + (g1^3*g3*t^8.51)/(g2*g4*g5*y) + (g2*g3*t^8.51)/(g1*g4*g5*y) + (g4^4*g5^4*t^8.83)/(g1^2*g3^2*y) + (g4^4*g5^4*t^8.83)/(g2*g3^2*y) + (g2*g4^4*g5^4*t^8.83)/(g1^4*g3^2*y) - (2*t^8.9)/(g1^5*g3^5*g4*g5*y) - t^8.9/(g1*g2^2*g3^5*g4*g5*y) - t^8.9/(g1^3*g2*g3^5*g4*g5*y) - (g2*t^8.9)/(g1^7*g3^5*g4*g5*y) - (g2^2*t^8.9)/(g1^9*g3^5*g4*g5*y) + (2*g4^4*t^8.92)/(g1^2*y) + (g1^2*g4^4*t^8.92)/(g2^2*y) + (2*g4^4*t^8.92)/(g2*y) + (g2*g4^4*t^8.92)/(g1^4*y) + (2*g4^4*t^8.92)/(g3^2*y) + (g1^2*g4^4*t^8.92)/(g2*g3^2*y) + (2*g2*g4^4*t^8.92)/(g1^2*g3^2*y) + (g2^2*g4^4*t^8.92)/(g1^4*g3^2*y) + (2*g5^4*t^8.92)/(g1^2*y) + (g1^2*g5^4*t^8.92)/(g2^2*y) + (2*g5^4*t^8.92)/(g2*y) + (g2*g5^4*t^8.92)/(g1^4*y) + (2*g5^4*t^8.92)/(g3^2*y) + (g1^2*g5^4*t^8.92)/(g2*g3^2*y) + (2*g2*g5^4*t^8.92)/(g1^2*g3^2*y) + (g2^2*g5^4*t^8.92)/(g1^4*g3^2*y) - (t^4.64*y)/(g1*g3*g4*g5) - (t^6.77*y)/(g1^3*g3^3*g4*g5) - (t^6.77*y)/(g1*g2*g3^3*g4*g5) - (g2*t^6.77*y)/(g1^5*g3^3*g4*g5) + (t^7.26*y)/(g1^4*g3^4) + (t^7.26*y)/(g1^2*g2*g3^4) + (g2*t^7.26*y)/(g1^6*g3^4) + g1*g3*g4*g5*t^7.36*y - (t^7.92*y)/(g1^3*g3^3*g4^3*g5^3) + (t^8.41*y)/(g1^4*g3^4*g4^2*g5^2) + (t^8.41*y)/(g1^2*g2*g3^4*g4^2*g5^2) + (g2*t^8.41*y)/(g1^6*g3^4*g4^2*g5^2) + (g1*g3*t^8.51*y)/(g4*g5) + (g1^3*g3*t^8.51*y)/(g2*g4*g5) + (g2*g3*t^8.51*y)/(g1*g4*g5) + (g4^4*g5^4*t^8.83*y)/(g1^2*g3^2) + (g4^4*g5^4*t^8.83*y)/(g2*g3^2) + (g2*g4^4*g5^4*t^8.83*y)/(g1^4*g3^2) - (2*t^8.9*y)/(g1^5*g3^5*g4*g5) - (t^8.9*y)/(g1*g2^2*g3^5*g4*g5) - (t^8.9*y)/(g1^3*g2*g3^5*g4*g5) - (g2*t^8.9*y)/(g1^7*g3^5*g4*g5) - (g2^2*t^8.9*y)/(g1^9*g3^5*g4*g5) + (2*g4^4*t^8.92*y)/g1^2 + (g1^2*g4^4*t^8.92*y)/g2^2 + (2*g4^4*t^8.92*y)/g2 + (g2*g4^4*t^8.92*y)/g1^4 + (2*g4^4*t^8.92*y)/g3^2 + (g1^2*g4^4*t^8.92*y)/(g2*g3^2) + (2*g2*g4^4*t^8.92*y)/(g1^2*g3^2) + (g2^2*g4^4*t^8.92*y)/(g1^4*g3^2) + (2*g5^4*t^8.92*y)/g1^2 + (g1^2*g5^4*t^8.92*y)/g2^2 + (2*g5^4*t^8.92*y)/g2 + (g2*g5^4*t^8.92*y)/g1^4 + (2*g5^4*t^8.92*y)/g3^2 + (g1^2*g5^4*t^8.92*y)/(g2*g3^2) + (2*g2*g5^4*t^8.92*y)/(g1^2*g3^2) + (g2^2*g5^4*t^8.92*y)/(g1^4*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55674 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ 0.8984 1.1064 0.8119 [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y detail