Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55811 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ | 0.8903 | 1.0924 | 0.815 | [X:[], M:[0.7229, 0.746], q:[0.6385, 0.6385, 0.6155], qb:[0.6155, 0.7298, 0.6007], phi:[0.5404]] | [X:[], M:[[1, 1, -14, 2], [0, 0, -7, 1]], q:[[-1, 0, 7, -1], [0, -1, 7, -1], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[0, 0, -4, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_2q_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_2q_3$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_2\phi_1^2$, $ M_1q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_3$ | . | -6 | t^2.17 + t^2.24 + t^3.24 + 2*t^3.65 + t^3.69 + 2*t^3.72 + 3*t^3.76 + t^3.99 + 2*t^4.04 + 2*t^4.11 + t^4.34 + t^4.41 + t^4.48 + t^5.23 + 2*t^5.27 + 3*t^5.31 + 2*t^5.34 + 4*t^5.38 + t^5.41 + 3*t^5.45 + t^5.48 + 2*t^5.82 + t^5.86 + 2*t^5.89 - 6*t^6. - 2*t^6.04 - 4*t^6.07 - 2*t^6.11 + t^6.16 + 2*t^6.2 + t^6.23 + 2*t^6.27 - t^6.39 + t^6.48 + t^6.51 + t^6.58 + t^6.64 + t^6.71 + 2*t^6.89 + t^6.94 + 2*t^6.96 + 3*t^7. + 3*t^7.3 + 2*t^7.34 + 4*t^7.37 + 2*t^7.39 + 6*t^7.41 + 5*t^7.44 + 4*t^7.46 + 7*t^7.48 + 2*t^7.51 + 5*t^7.52 + 3*t^7.55 + t^7.58 - t^7.62 + 2*t^7.64 + t^7.65 - 2*t^7.67 + 4*t^7.68 - t^7.69 + 2*t^7.71 + t^7.72 + 7*t^7.75 + 6*t^7.8 + 3*t^7.82 + 4*t^7.87 + 2*t^7.99 + t^8.03 + 2*t^8.06 - 6*t^8.17 - 2*t^8.21 - 6*t^8.24 - 2*t^8.28 - t^8.31 + t^8.33 + t^8.37 + 2*t^8.4 - 2*t^8.41 + 2*t^8.44 + 2*t^8.47 - 2*t^8.48 + 2*t^8.51 + 2*t^8.56 + 2*t^8.58 + 3*t^8.63 + t^8.65 + t^8.68 + 3*t^8.69 + t^8.72 + t^8.74 - t^8.76 + t^8.81 + 2*t^8.87 + t^8.88 + 4*t^8.92 + 2*t^8.94 + t^8.95 + 6*t^8.96 + 7*t^8.99 - t^4.62/y - t^6.79/y - t^6.86/y + t^7.38/y + t^7.41/y - t^7.86/y + t^8.38/y + t^8.41/y + t^8.45/y + t^8.48/y + (2*t^8.82)/y + t^8.86/y + (4*t^8.89)/y + (4*t^8.93)/y + t^8.96/y - t^4.62*y - t^6.79*y - t^6.86*y + t^7.38*y + t^7.41*y - t^7.86*y + t^8.38*y + t^8.41*y + t^8.45*y + t^8.48*y + 2*t^8.82*y + t^8.86*y + 4*t^8.89*y + 4*t^8.93*y + t^8.96*y | (g1*g2*g4^2*t^2.17)/g3^14 + (g4*t^2.24)/g3^7 + t^3.24/g3^8 + g1*g4^2*t^3.65 + g2*g4^2*t^3.65 + g1*g2*t^3.69 + (g3^7*g4*t^3.72)/g1 + (g3^7*g4*t^3.72)/g2 + (g3^7*t^3.76)/g4 + (g1*g3^7*t^3.76)/(g2*g4) + (g2*g3^7*t^3.76)/(g1*g4) + g3^2*g4^2*t^3.99 + g1*g3^2*t^4.04 + g2*g3^2*t^4.04 + (g3^9*t^4.11)/(g1*g4) + (g3^9*t^4.11)/(g2*g4) + (g1^2*g2^2*g4^4*t^4.34)/g3^28 + (g1*g2*g4^3*t^4.41)/g3^21 + (g4^2*t^4.48)/g3^14 + (g4^4*t^5.23)/g3^4 + (g1*g4^2*t^5.27)/g3^4 + (g2*g4^2*t^5.27)/g3^4 + (g1^2*t^5.31)/g3^4 + (g1*g2*t^5.31)/g3^4 + (g2^2*t^5.31)/g3^4 + (g3^3*g4*t^5.34)/g1 + (g3^3*g4*t^5.34)/g2 + (2*g3^3*t^5.38)/g4 + (g1*g3^3*t^5.38)/(g2*g4) + (g2*g3^3*t^5.38)/(g1*g4) + (g1*g2*g4^2*t^5.41)/g3^22 + (g3^10*t^5.45)/(g1^2*g4^2) + (g3^10*t^5.45)/(g2^2*g4^2) + (g3^10*t^5.45)/(g1*g2*g4^2) + (g4*t^5.48)/g3^15 + (g1^2*g2*g4^4*t^5.82)/g3^14 + (g1*g2^2*g4^4*t^5.82)/g3^14 + (g1^2*g2^2*g4^2*t^5.86)/g3^14 + (g1*g4^3*t^5.89)/g3^7 + (g2*g4^3*t^5.89)/g3^7 - 4*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1*t^6.04)/g4^2 - (g2*t^6.04)/g4^2 - (g3^7*t^6.07)/(g1^2*g4) - (g3^7*t^6.07)/(g2^2*g4) - (2*g3^7*t^6.07)/(g1*g2*g4) - (g3^7*t^6.11)/(g1*g4^3) - (g3^7*t^6.11)/(g2*g4^3) + (g1*g2*g4^4*t^6.16)/g3^12 + (g1^2*g2*g4^2*t^6.2)/g3^12 + (g1*g2^2*g4^2*t^6.2)/g3^12 + (g4^3*t^6.23)/g3^5 + (g1*g4*t^6.27)/g3^5 + (g2*g4*t^6.27)/g3^5 - (g3^2*t^6.39)/g4^2 + t^6.48/g3^16 + (g1^3*g2^3*g4^6*t^6.51)/g3^42 + (g1^2*g2^2*g4^5*t^6.58)/g3^35 + (g1*g2*g4^4*t^6.64)/g3^28 + (g4^3*t^6.71)/g3^21 + (g1*g4^2*t^6.89)/g3^8 + (g2*g4^2*t^6.89)/g3^8 + (g1*g2*t^6.94)/g3^8 + (g4*t^6.96)/(g1*g3) + (g4*t^6.96)/(g2*g3) + t^7./(g3*g4) + (g1*t^7.)/(g2*g3*g4) + (g2*t^7.)/(g1*g3*g4) + g1^2*g4^4*t^7.3 + g1*g2*g4^4*t^7.3 + g2^2*g4^4*t^7.3 + g1^2*g2*g4^2*t^7.34 + g1*g2^2*g4^2*t^7.34 + 2*g3^7*g4^3*t^7.37 + (g1*g3^7*g4^3*t^7.37)/g2 + (g2*g3^7*g4^3*t^7.37)/g1 + g1^2*g2^2*t^7.39 + (g1*g2*g4^6*t^7.39)/g3^18 + 2*g1*g3^7*g4*t^7.41 + (g1^2*g3^7*g4*t^7.41)/g2 + 2*g2*g3^7*g4*t^7.41 + (g2^2*g3^7*g4*t^7.41)/g1 + (g3^14*g4^2*t^7.44)/g1^2 + (g3^14*g4^2*t^7.44)/g2^2 + (g3^14*g4^2*t^7.44)/(g1*g2) + (g1^2*g2*g4^4*t^7.44)/g3^18 + (g1*g2^2*g4^4*t^7.44)/g3^18 + (g1^2*g3^7*t^7.46)/g4 + (g1*g2*g3^7*t^7.46)/g4 + (g2^2*g3^7*t^7.46)/g4 + (g4^5*t^7.46)/g3^11 + (g3^14*t^7.48)/g1 + (g1*g3^14*t^7.48)/g2^2 + (g3^14*t^7.48)/g2 + (g2*g3^14*t^7.48)/g1^2 + (g1^3*g2*g4^2*t^7.48)/g3^18 + (g1^2*g2^2*g4^2*t^7.48)/g3^18 + (g1*g2^3*g4^2*t^7.48)/g3^18 + (g1*g4^3*t^7.51)/g3^11 + (g2*g4^3*t^7.51)/g3^11 + (g3^14*t^7.52)/g4^2 + (g1^2*g3^14*t^7.52)/(g2^2*g4^2) + (g1*g3^14*t^7.52)/(g2*g4^2) + (g2*g3^14*t^7.52)/(g1*g4^2) + (g2^2*g3^14*t^7.52)/(g1^2*g4^2) + (g1^2*g4*t^7.55)/g3^11 + (g1*g2*g4*t^7.55)/g3^11 + (g2^2*g4*t^7.55)/g3^11 + (g1^2*g2^2*g4^4*t^7.58)/g3^36 - t^7.62/g3^4 + g1*g3^2*g4^4*t^7.64 + g2*g3^2*g4^4*t^7.64 + (g1*g2*g4^3*t^7.65)/g3^29 - (g1*t^7.67)/(g3^4*g4^2) - (g2*t^7.67)/(g3^4*g4^2) + g1^2*g3^2*g4^2*t^7.68 + 2*g1*g2*g3^2*g4^2*t^7.68 + g2^2*g3^2*g4^2*t^7.68 - (g3^3*t^7.69)/(g1*g2*g4) + (g3^9*g4^3*t^7.71)/g1 + (g3^9*g4^3*t^7.71)/g2 + (g4^2*t^7.72)/g3^22 + g1^2*g2*g3^2*t^7.73 + g1*g2^2*g3^2*t^7.73 - (g3^3*t^7.73)/(g1*g4^3) - (g3^3*t^7.73)/(g2*g4^3) + 3*g3^9*g4*t^7.75 + (2*g1*g3^9*g4*t^7.75)/g2 + (2*g2*g3^9*g4*t^7.75)/g1 + (2*g1*g3^9*t^7.8)/g4 + (g1^2*g3^9*t^7.8)/(g2*g4) + (2*g2*g3^9*t^7.8)/g4 + (g2^2*g3^9*t^7.8)/(g1*g4) + (g3^16*t^7.82)/g1^2 + (g3^16*t^7.82)/g2^2 + (g3^16*t^7.82)/(g1*g2) + (g3^16*t^7.87)/(g1*g4^2) + (g1*g3^16*t^7.87)/(g2^2*g4^2) + (g3^16*t^7.87)/(g2*g4^2) + (g2*g3^16*t^7.87)/(g1^2*g4^2) + (g1^3*g2^2*g4^6*t^7.99)/g3^28 + (g1^2*g2^3*g4^6*t^7.99)/g3^28 + (g1^3*g2^3*g4^4*t^8.03)/g3^28 + (g1^2*g2*g4^5*t^8.06)/g3^21 + (g1*g2^2*g4^5*t^8.06)/g3^21 - (g1^2*g4^2*t^8.17)/g3^14 - (4*g1*g2*g4^2*t^8.17)/g3^14 - (g2^2*g4^2*t^8.17)/g3^14 - (g1^2*g2*t^8.21)/g3^14 - (g1*g2^2*t^8.21)/g3^14 - (4*g4*t^8.24)/g3^7 - (g1*g4*t^8.24)/(g2*g3^7) - (g2*g4*t^8.24)/(g1*g3^7) - (g1*t^8.28)/(g3^7*g4) - (g2*t^8.28)/(g3^7*g4) - t^8.31/(g1*g2) + (g1^2*g2^2*g4^6*t^8.33)/g3^26 - g3^6*g4^2*t^8.37 + (g1^3*g2^2*g4^4*t^8.37)/g3^26 + (g1^2*g2^3*g4^4*t^8.37)/g3^26 + t^8.4/g4^4 + (g1*g2*g4^5*t^8.4)/g3^19 - g1*g3^6*t^8.41 - g2*g3^6*t^8.41 + (g1^2*g2*g4^3*t^8.44)/g3^19 + (g1*g2^2*g4^3*t^8.44)/g3^19 + (2*g4^4*t^8.47)/g3^12 - (g3^13*t^8.48)/(g1*g4) - (g3^13*t^8.48)/(g2*g4) + (g1*g4^2*t^8.51)/g3^12 + (g2*g4^2*t^8.51)/g3^12 + (g1^2*t^8.56)/g3^12 + (g2^2*t^8.56)/g3^12 + (g4*t^8.58)/(g1*g3^5) + (g4*t^8.58)/(g2*g3^5) + t^8.63/(g3^5*g4) + (g1*t^8.63)/(g2*g3^5*g4) + (g2*t^8.63)/(g1*g3^5*g4) + (g1*g2*g4^2*t^8.65)/g3^30 + (g1^4*g2^4*g4^8*t^8.68)/g3^56 + (g3^2*t^8.69)/(g1^2*g4^2) + (g3^2*t^8.69)/(g2^2*g4^2) + (g3^2*t^8.69)/(g1*g2*g4^2) + (g4*t^8.72)/g3^23 + (g1^3*g2^3*g4^7*t^8.74)/g3^49 - g3^8*t^8.76 + (g1^2*g2^2*g4^6*t^8.81)/g3^42 + (g1*g4^6*t^8.87)/g3^4 + (g2*g4^6*t^8.87)/g3^4 + (g1*g2*g4^5*t^8.88)/g3^35 + (g1^2*g4^4*t^8.92)/g3^4 + (2*g1*g2*g4^4*t^8.92)/g3^4 + (g2^2*g4^4*t^8.92)/g3^4 + (g3^3*g4^5*t^8.94)/g1 + (g3^3*g4^5*t^8.94)/g2 + (g4^4*t^8.95)/g3^28 + (g1^3*g4^2*t^8.96)/g3^4 + (2*g1^2*g2*g4^2*t^8.96)/g3^4 + (2*g1*g2^2*g4^2*t^8.96)/g3^4 + (g2^3*g4^2*t^8.96)/g3^4 + 3*g3^3*g4^3*t^8.99 + (2*g1*g3^3*g4^3*t^8.99)/g2 + (2*g2*g3^3*g4^3*t^8.99)/g1 - t^4.62/(g3^4*y) - (g1*g2*g4^2*t^6.79)/(g3^18*y) - (g4*t^6.86)/(g3^11*y) + (g3^4*t^7.38)/y + (g1*g2*g4^3*t^7.41)/(g3^21*y) - t^7.86/(g3^12*y) + (g3^3*t^8.38)/(g4*y) + (g1*g2*g4^2*t^8.41)/(g3^22*y) + (g3^10*t^8.45)/(g1*g2*g4^2*y) + (g4*t^8.48)/(g3^15*y) + (g1^2*g2*g4^4*t^8.82)/(g3^14*y) + (g1*g2^2*g4^4*t^8.82)/(g3^14*y) + (g1^2*g2^2*g4^2*t^8.86)/(g3^14*y) + (2*g1*g4^3*t^8.89)/(g3^7*y) + (2*g2*g4^3*t^8.89)/(g3^7*y) + (g1^2*g4*t^8.93)/(g3^7*y) + (2*g1*g2*g4*t^8.93)/(g3^7*y) + (g2^2*g4*t^8.93)/(g3^7*y) + (g4^2*t^8.96)/(g1*y) + (g4^2*t^8.96)/(g2*y) - (g1^2*g2^2*g4^4*t^8.96)/(g3^32*y) - (t^4.62*y)/g3^4 - (g1*g2*g4^2*t^6.79*y)/g3^18 - (g4*t^6.86*y)/g3^11 + g3^4*t^7.38*y + (g1*g2*g4^3*t^7.41*y)/g3^21 - (t^7.86*y)/g3^12 + (g3^3*t^8.38*y)/g4 + (g1*g2*g4^2*t^8.41*y)/g3^22 + (g3^10*t^8.45*y)/(g1*g2*g4^2) + (g4*t^8.48*y)/g3^15 + (g1^2*g2*g4^4*t^8.82*y)/g3^14 + (g1*g2^2*g4^4*t^8.82*y)/g3^14 + (g1^2*g2^2*g4^2*t^8.86*y)/g3^14 + (2*g1*g4^3*t^8.89*y)/g3^7 + (2*g2*g4^3*t^8.89*y)/g3^7 + (g1^2*g4*t^8.93*y)/g3^7 + (2*g1*g2*g4*t^8.93*y)/g3^7 + (g2^2*g4*t^8.93*y)/g3^7 + (g4^2*t^8.96*y)/g1 + (g4^2*t^8.96*y)/g2 - (g1^2*g2^2*g4^4*t^8.96*y)/g3^32 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55674 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ | 0.8984 | 1.1064 | 0.8119 | [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] | t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y | detail |