Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55755 | SU2adj1nf3 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}q_{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.9096 | 1.1311 | 0.8042 | [M:[0.7236, 0.7469, 0.853], q:[0.6382, 0.6382, 0.6149], qb:[0.6149, 0.5999, 0.5999], phi:[0.5735]] | [M:[[-4, 1, -2, 0, 0], [-2, 0, -2, 0, 0], [2, 0, 2, 2, 2]], q:[[2, -1, 2, 0, 0], [2, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 4, 0], [0, 0, 0, 0, 4]], phi:[[-1, 0, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{1}q_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{3}$ | ${}$ | -9 | t^2.171 + t^2.241 + t^2.559 + t^3.6 + 4*t^3.645 + t^3.69 + 4*t^3.714 + 3*t^3.759 + t^4.342 + t^4.412 + t^4.481 + t^4.73 + t^4.8 + t^5.118 + 3*t^5.32 + 4*t^5.365 + 3*t^5.41 + 4*t^5.435 + 4*t^5.48 + 3*t^5.55 + t^5.771 + 4*t^5.816 + t^5.84 + t^5.86 + 4*t^5.885 - 9*t^6. - 4*t^6.045 - 4*t^6.07 - 4*t^6.115 + t^6.159 + 4*t^6.204 + t^6.249 + 4*t^6.274 + 3*t^6.318 + t^6.513 + t^6.583 + t^6.652 + t^6.722 + t^6.901 + t^6.971 + t^7.041 + t^7.199 + 4*t^7.244 + 11*t^7.289 + 4*t^7.314 + 4*t^7.334 + 16*t^7.359 + t^7.379 + 12*t^7.404 + 9*t^7.429 + 3*t^7.449 + 8*t^7.474 + 3*t^7.491 + 5*t^7.519 + 4*t^7.536 + 3*t^7.561 + 3*t^7.581 + 4*t^7.606 + 3*t^7.651 + t^7.677 - 4*t^7.72 - 4*t^7.765 - t^7.79 - 4*t^7.835 + t^7.942 + 4*t^7.986 + t^8.011 + t^8.031 + 4*t^8.056 + t^8.081 - 9*t^8.171 - 4*t^8.216 - 9*t^8.241 - 4*t^8.286 - t^8.31 + t^8.33 + 4*t^8.375 + t^8.399 + 3*t^8.4 + t^8.42 + 4*t^8.444 - 9*t^8.559 - 4*t^8.604 - 4*t^8.629 - 4*t^8.674 + t^8.684 + t^8.718 + t^8.753 + 4*t^8.763 + t^8.808 + t^8.823 + 4*t^8.833 + 3*t^8.878 + t^8.893 + 3*t^8.92 + t^8.963 + 12*t^8.965 - t^4.72/y - t^6.891/y - t^6.961/y + t^7.412/y + t^7.73/y + t^7.8/y + t^8.48/y + t^8.55/y + t^8.771/y + (4*t^8.816)/y + t^8.84/y + t^8.86/y + (8*t^8.885)/y + (4*t^8.93)/y + (4*t^8.955)/y - t^4.72*y - t^6.891*y - t^6.961*y + t^7.412*y + t^7.73*y + t^7.8*y + t^8.48*y + t^8.55*y + t^8.771*y + 4*t^8.816*y + t^8.84*y + t^8.86*y + 8*t^8.885*y + 4*t^8.93*y + 4*t^8.955*y | (g2*t^2.171)/(g1^4*g3^2) + t^2.241/(g1^2*g3^2) + g1^2*g3^2*g4^2*g5^2*t^2.559 + g4^4*g5^4*t^3.6 + g2*g4^4*t^3.645 + g3^2*g4^4*t^3.645 + g2*g5^4*t^3.645 + g3^2*g5^4*t^3.645 + g2*g3^2*t^3.69 + g1^2*g4^4*t^3.714 + (g1^2*g3^2*g4^4*t^3.714)/g2 + g1^2*g5^4*t^3.714 + (g1^2*g3^2*g5^4*t^3.714)/g2 + g1^2*g2*t^3.759 + g1^2*g3^2*t^3.759 + (g1^2*g3^4*t^3.759)/g2 + (g2^2*t^4.342)/(g1^8*g3^4) + (g2*t^4.412)/(g1^6*g3^4) + t^4.481/(g1^4*g3^4) + (g2*g4^2*g5^2*t^4.73)/g1^2 + g4^2*g5^2*t^4.8 + g1^4*g3^4*g4^4*g5^4*t^5.118 + (g4^7*t^5.32)/(g1*g3*g5) + (g4^3*g5^3*t^5.32)/(g1*g3) + (g5^7*t^5.32)/(g1*g3*g4) + (g2*g4^3*t^5.365)/(g1*g3*g5) + (g3*g4^3*t^5.365)/(g1*g5) + (g2*g5^3*t^5.365)/(g1*g3*g4) + (g3*g5^3*t^5.365)/(g1*g4) + (g2^2*t^5.41)/(g1*g3*g4*g5) + (g2*g3*t^5.41)/(g1*g4*g5) + (g3^3*t^5.41)/(g1*g4*g5) + (g1*g4^3*t^5.435)/(g3*g5) + (g1*g3*g4^3*t^5.435)/(g2*g5) + (g1*g5^3*t^5.435)/(g3*g4) + (g1*g3*g5^3*t^5.435)/(g2*g4) + (g1*g2*t^5.48)/(g3*g4*g5) + (2*g1*g3*t^5.48)/(g4*g5) + (g1*g3^3*t^5.48)/(g2*g4*g5) + (g1^3*t^5.55)/(g3*g4*g5) + (g1^3*g3*t^5.55)/(g2*g4*g5) + (g1^3*g3^3*t^5.55)/(g2^2*g4*g5) + (g2*g4^4*g5^4*t^5.771)/(g1^4*g3^2) + (g2*g4^4*t^5.816)/g1^4 + (g2^2*g4^4*t^5.816)/(g1^4*g3^2) + (g2*g5^4*t^5.816)/g1^4 + (g2^2*g5^4*t^5.816)/(g1^4*g3^2) + (g4^4*g5^4*t^5.84)/(g1^2*g3^2) + (g2^2*t^5.86)/g1^4 + (g4^4*t^5.885)/g1^2 + (g2*g4^4*t^5.885)/(g1^2*g3^2) + (g5^4*t^5.885)/g1^2 + (g2*g5^4*t^5.885)/(g1^2*g3^2) - 5*t^6. - (g2*t^6.)/g3^2 - (g3^2*t^6.)/g2 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g2*t^6.045)/g4^4 - (g3^2*t^6.045)/g4^4 - (g2*t^6.045)/g5^4 - (g3^2*t^6.045)/g5^4 - (2*g1^2*t^6.07)/g2 - (g1^2*t^6.07)/g3^2 - (g1^2*g3^2*t^6.07)/g2^2 - (g1^2*t^6.115)/g4^4 - (g1^2*g3^2*t^6.115)/(g2*g4^4) - (g1^2*t^6.115)/g5^4 - (g1^2*g3^2*t^6.115)/(g2*g5^4) + g1^2*g3^2*g4^6*g5^6*t^6.159 + g1^2*g2*g3^2*g4^6*g5^2*t^6.204 + g1^2*g3^4*g4^6*g5^2*t^6.204 + g1^2*g2*g3^2*g4^2*g5^6*t^6.204 + g1^2*g3^4*g4^2*g5^6*t^6.204 + g1^2*g2*g3^4*g4^2*g5^2*t^6.249 + g1^4*g3^2*g4^6*g5^2*t^6.274 + (g1^4*g3^4*g4^6*g5^2*t^6.274)/g2 + g1^4*g3^2*g4^2*g5^6*t^6.274 + (g1^4*g3^4*g4^2*g5^6*t^6.274)/g2 + g1^4*g2*g3^2*g4^2*g5^2*t^6.318 + g1^4*g3^4*g4^2*g5^2*t^6.318 + (g1^4*g3^6*g4^2*g5^2*t^6.318)/g2 + (g2^3*t^6.513)/(g1^12*g3^6) + (g2^2*t^6.583)/(g1^10*g3^6) + (g2*t^6.652)/(g1^8*g3^6) + t^6.722/(g1^6*g3^6) + (g2^2*g4^2*g5^2*t^6.901)/(g1^6*g3^2) + (g2*g4^2*g5^2*t^6.971)/(g1^4*g3^2) + (g4^2*g5^2*t^7.041)/(g1^2*g3^2) + g4^8*g5^8*t^7.199 + g2*g4^8*g5^4*t^7.244 + g3^2*g4^8*g5^4*t^7.244 + g2*g4^4*g5^8*t^7.244 + g3^2*g4^4*g5^8*t^7.244 + g2^2*g4^8*t^7.289 + g2*g3^2*g4^8*t^7.289 + g3^4*g4^8*t^7.289 + g2^2*g4^4*g5^4*t^7.289 + 3*g2*g3^2*g4^4*g5^4*t^7.289 + g3^4*g4^4*g5^4*t^7.289 + g2^2*g5^8*t^7.289 + g2*g3^2*g5^8*t^7.289 + g3^4*g5^8*t^7.289 + g1^2*g4^8*g5^4*t^7.314 + (g1^2*g3^2*g4^8*g5^4*t^7.314)/g2 + g1^2*g4^4*g5^8*t^7.314 + (g1^2*g3^2*g4^4*g5^8*t^7.314)/g2 + g2^2*g3^2*g4^4*t^7.334 + g2*g3^4*g4^4*t^7.334 + g2^2*g3^2*g5^4*t^7.334 + g2*g3^4*g5^4*t^7.334 + g1^2*g2*g4^8*t^7.359 + 2*g1^2*g3^2*g4^8*t^7.359 + (g1^2*g3^4*g4^8*t^7.359)/g2 + 2*g1^2*g2*g4^4*g5^4*t^7.359 + 4*g1^2*g3^2*g4^4*g5^4*t^7.359 + (2*g1^2*g3^4*g4^4*g5^4*t^7.359)/g2 + g1^2*g2*g5^8*t^7.359 + 2*g1^2*g3^2*g5^8*t^7.359 + (g1^2*g3^4*g5^8*t^7.359)/g2 + g2^2*g3^4*t^7.379 + g1^2*g2^2*g4^4*t^7.404 + 2*g1^2*g2*g3^2*g4^4*t^7.404 + 2*g1^2*g3^4*g4^4*t^7.404 + (g1^2*g3^6*g4^4*t^7.404)/g2 + g1^2*g2^2*g5^4*t^7.404 + 2*g1^2*g2*g3^2*g5^4*t^7.404 + 2*g1^2*g3^4*g5^4*t^7.404 + (g1^2*g3^6*g5^4*t^7.404)/g2 + g1^4*g4^8*t^7.429 + (g1^4*g3^2*g4^8*t^7.429)/g2 + (g1^4*g3^4*g4^8*t^7.429)/g2^2 + g1^4*g4^4*g5^4*t^7.429 + (g1^4*g3^2*g4^4*g5^4*t^7.429)/g2 + (g1^4*g3^4*g4^4*g5^4*t^7.429)/g2^2 + g1^4*g5^8*t^7.429 + (g1^4*g3^2*g5^8*t^7.429)/g2 + (g1^4*g3^4*g5^8*t^7.429)/g2^2 + g1^2*g2^2*g3^2*t^7.449 + g1^2*g2*g3^4*t^7.449 + g1^2*g3^6*t^7.449 + g1^4*g2*g4^4*t^7.474 + g1^4*g3^2*g4^4*t^7.474 + (g1^4*g3^4*g4^4*t^7.474)/g2 + (g1^4*g3^6*g4^4*t^7.474)/g2^2 + g1^4*g2*g5^4*t^7.474 + g1^4*g3^2*g5^4*t^7.474 + (g1^4*g3^4*g5^4*t^7.474)/g2 + (g1^4*g3^6*g5^4*t^7.474)/g2^2 + (g2*g4^7*t^7.491)/(g1^5*g3^3*g5) + (g2*g4^3*g5^3*t^7.491)/(g1^5*g3^3) + (g2*g5^7*t^7.491)/(g1^5*g3^3*g4) + g1^4*g2^2*t^7.519 + g1^4*g2*g3^2*t^7.519 + g1^4*g3^4*t^7.519 + (g1^4*g3^6*t^7.519)/g2 + (g1^4*g3^8*t^7.519)/g2^2 + (g2^2*g4^3*t^7.536)/(g1^5*g3^3*g5) + (g2*g4^3*t^7.536)/(g1^5*g3*g5) + (g2^2*g5^3*t^7.536)/(g1^5*g3^3*g4) + (g2*g5^3*t^7.536)/(g1^5*g3*g4) + (g4^7*t^7.561)/(g1^3*g3^3*g5) + (g4^3*g5^3*t^7.561)/(g1^3*g3^3) + (g5^7*t^7.561)/(g1^3*g3^3*g4) + (g2^3*t^7.581)/(g1^5*g3^3*g4*g5) + (g2^2*t^7.581)/(g1^5*g3*g4*g5) + (g2*g3*t^7.581)/(g1^5*g4*g5) + (g2*g4^3*t^7.606)/(g1^3*g3^3*g5) + (g4^3*t^7.606)/(g1^3*g3*g5) + (g2*g5^3*t^7.606)/(g1^3*g3^3*g4) + (g5^3*t^7.606)/(g1^3*g3*g4) + (g2^2*t^7.651)/(g1^3*g3^3*g4*g5) + (g2*t^7.651)/(g1^3*g3*g4*g5) + (g3*t^7.651)/(g1^3*g4*g5) + g1^6*g3^6*g4^6*g5^6*t^7.677 - (g4^3*t^7.72)/(g1*g3*g5^5) - (2*t^7.72)/(g1*g3*g4*g5) - (g5^3*t^7.72)/(g1*g3*g4^5) - (g2*t^7.765)/(g1*g3*g4*g5^5) - (g3*t^7.765)/(g1*g4*g5^5) - (g2*t^7.765)/(g1*g3*g4^5*g5) - (g3*t^7.765)/(g1*g4^5*g5) - (g1*t^7.79)/(g2*g3*g4*g5) - (g1*t^7.835)/(g3*g4*g5^5) - (g1*g3*t^7.835)/(g2*g4*g5^5) - (g1*t^7.835)/(g3*g4^5*g5) - (g1*g3*t^7.835)/(g2*g4^5*g5) + (g2^2*g4^4*g5^4*t^7.942)/(g1^8*g3^4) + (g2^3*g4^4*t^7.986)/(g1^8*g3^4) + (g2^2*g4^4*t^7.986)/(g1^8*g3^2) + (g2^3*g5^4*t^7.986)/(g1^8*g3^4) + (g2^2*g5^4*t^7.986)/(g1^8*g3^2) + (g2*g4^4*g5^4*t^8.011)/(g1^6*g3^4) + (g2^3*t^8.031)/(g1^8*g3^2) + (g2^2*g4^4*t^8.056)/(g1^6*g3^4) + (g2*g4^4*t^8.056)/(g1^6*g3^2) + (g2^2*g5^4*t^8.056)/(g1^6*g3^4) + (g2*g5^4*t^8.056)/(g1^6*g3^2) + (g4^4*g5^4*t^8.081)/(g1^4*g3^4) - t^8.171/g1^4 - (g2^2*t^8.171)/(g1^4*g3^4) - (5*g2*t^8.171)/(g1^4*g3^2) - (g2*g4^4*t^8.171)/(g1^4*g3^2*g5^4) - (g2*g5^4*t^8.171)/(g1^4*g3^2*g4^4) - (g2*t^8.216)/(g1^4*g4^4) - (g2^2*t^8.216)/(g1^4*g3^2*g4^4) - (g2*t^8.216)/(g1^4*g5^4) - (g2^2*t^8.216)/(g1^4*g3^2*g5^4) - t^8.241/(g1^2*g2) - (g2*t^8.241)/(g1^2*g3^4) - (5*t^8.241)/(g1^2*g3^2) - (g4^4*t^8.241)/(g1^2*g3^2*g5^4) - (g5^4*t^8.241)/(g1^2*g3^2*g4^4) - t^8.286/(g1^2*g4^4) - (g2*t^8.286)/(g1^2*g3^2*g4^4) - t^8.286/(g1^2*g5^4) - (g2*t^8.286)/(g1^2*g3^2*g5^4) - t^8.31/(g2*g3^2) + (g2*g4^6*g5^6*t^8.33)/g1^2 + (g2^2*g4^6*g5^2*t^8.375)/g1^2 + (g2*g3^2*g4^6*g5^2*t^8.375)/g1^2 + (g2^2*g4^2*g5^6*t^8.375)/g1^2 + (g2*g3^2*g4^2*g5^6*t^8.375)/g1^2 + g4^6*g5^6*t^8.399 + t^8.4/g4^8 + t^8.4/g5^8 + t^8.4/(g4^4*g5^4) + (g2^2*g3^2*g4^2*g5^2*t^8.42)/g1^2 + g2*g4^6*g5^2*t^8.444 + g3^2*g4^6*g5^2*t^8.444 + g2*g4^2*g5^6*t^8.444 + g3^2*g4^2*g5^6*t^8.444 - (g1^2*g3^2*g4^6*t^8.559)/g5^2 - g1^2*g2*g4^2*g5^2*t^8.559 - 5*g1^2*g3^2*g4^2*g5^2*t^8.559 - (g1^2*g3^4*g4^2*g5^2*t^8.559)/g2 - (g1^2*g3^2*g5^6*t^8.559)/g4^2 - (g1^2*g2*g3^2*g4^2*t^8.604)/g5^2 - (g1^2*g3^4*g4^2*t^8.604)/g5^2 - (g1^2*g2*g3^2*g5^2*t^8.604)/g4^2 - (g1^2*g3^4*g5^2*t^8.604)/g4^2 - g1^4*g4^2*g5^2*t^8.629 - (2*g1^4*g3^2*g4^2*g5^2*t^8.629)/g2 - (g1^4*g3^4*g4^2*g5^2*t^8.629)/g2^2 - (g1^4*g3^2*g4^2*t^8.674)/g5^2 - (g1^4*g3^4*g4^2*t^8.674)/(g2*g5^2) - (g1^4*g3^2*g5^2*t^8.674)/g4^2 - (g1^4*g3^4*g5^2*t^8.674)/(g2*g4^2) + (g2^4*t^8.684)/(g1^16*g3^8) + g1^4*g3^4*g4^8*g5^8*t^8.718 + (g2^3*t^8.753)/(g1^14*g3^8) + g1^4*g2*g3^4*g4^8*g5^4*t^8.763 + g1^4*g3^6*g4^8*g5^4*t^8.763 + g1^4*g2*g3^4*g4^4*g5^8*t^8.763 + g1^4*g3^6*g4^4*g5^8*t^8.763 + g1^4*g2*g3^6*g4^4*g5^4*t^8.808 + (g2^2*t^8.823)/(g1^12*g3^8) + g1^6*g3^4*g4^8*g5^4*t^8.833 + (g1^6*g3^6*g4^8*g5^4*t^8.833)/g2 + g1^6*g3^4*g4^4*g5^8*t^8.833 + (g1^6*g3^6*g4^4*g5^8*t^8.833)/g2 + g1^6*g2*g3^4*g4^4*g5^4*t^8.878 + g1^6*g3^6*g4^4*g5^4*t^8.878 + (g1^6*g3^8*g4^4*g5^4*t^8.878)/g2 + (g2*t^8.893)/(g1^10*g3^8) + (g4^11*g5^3*t^8.92)/(g1*g3) + (g4^7*g5^7*t^8.92)/(g1*g3) + (g4^3*g5^11*t^8.92)/(g1*g3) + t^8.963/(g1^8*g3^8) + (g2*g4^11*t^8.965)/(g1*g3*g5) + (g3*g4^11*t^8.965)/(g1*g5) + (2*g2*g4^7*g5^3*t^8.965)/(g1*g3) + (2*g3*g4^7*g5^3*t^8.965)/g1 + (2*g2*g4^3*g5^7*t^8.965)/(g1*g3) + (2*g3*g4^3*g5^7*t^8.965)/g1 + (g2*g5^11*t^8.965)/(g1*g3*g4) + (g3*g5^11*t^8.965)/(g1*g4) - t^4.72/(g1*g3*g4*g5*y) - (g2*t^6.891)/(g1^5*g3^3*g4*g5*y) - t^6.961/(g1^3*g3^3*g4*g5*y) + (g2*t^7.412)/(g1^6*g3^4*y) + (g2*g4^2*g5^2*t^7.73)/(g1^2*y) + (g4^2*g5^2*t^7.8)/y + (g1*g3*t^8.48)/(g4*g5*y) + (g1^3*g3*t^8.55)/(g2*g4*g5*y) + (g2*g4^4*g5^4*t^8.771)/(g1^4*g3^2*y) + (g2*g4^4*t^8.816)/(g1^4*y) + (g2^2*g4^4*t^8.816)/(g1^4*g3^2*y) + (g2*g5^4*t^8.816)/(g1^4*y) + (g2^2*g5^4*t^8.816)/(g1^4*g3^2*y) + (g4^4*g5^4*t^8.84)/(g1^2*g3^2*y) + (g2^2*t^8.86)/(g1^4*y) + (2*g4^4*t^8.885)/(g1^2*y) + (2*g2*g4^4*t^8.885)/(g1^2*g3^2*y) + (2*g5^4*t^8.885)/(g1^2*y) + (2*g2*g5^4*t^8.885)/(g1^2*g3^2*y) + (2*g2*t^8.93)/(g1^2*y) + (g2^2*t^8.93)/(g1^2*g3^2*y) + (g3^2*t^8.93)/(g1^2*y) + (g4^4*t^8.955)/(g2*y) + (g4^4*t^8.955)/(g3^2*y) + (g5^4*t^8.955)/(g2*y) + (g5^4*t^8.955)/(g3^2*y) - (t^4.72*y)/(g1*g3*g4*g5) - (g2*t^6.891*y)/(g1^5*g3^3*g4*g5) - (t^6.961*y)/(g1^3*g3^3*g4*g5) + (g2*t^7.412*y)/(g1^6*g3^4) + (g2*g4^2*g5^2*t^7.73*y)/g1^2 + g4^2*g5^2*t^7.8*y + (g1*g3*t^8.48*y)/(g4*g5) + (g1^3*g3*t^8.55*y)/(g2*g4*g5) + (g2*g4^4*g5^4*t^8.771*y)/(g1^4*g3^2) + (g2*g4^4*t^8.816*y)/g1^4 + (g2^2*g4^4*t^8.816*y)/(g1^4*g3^2) + (g2*g5^4*t^8.816*y)/g1^4 + (g2^2*g5^4*t^8.816*y)/(g1^4*g3^2) + (g4^4*g5^4*t^8.84*y)/(g1^2*g3^2) + (g2^2*t^8.86*y)/g1^4 + (2*g4^4*t^8.885*y)/g1^2 + (2*g2*g4^4*t^8.885*y)/(g1^2*g3^2) + (2*g5^4*t^8.885*y)/g1^2 + (2*g2*g5^4*t^8.885*y)/(g1^2*g3^2) + (2*g2*t^8.93*y)/g1^2 + (g2^2*t^8.93*y)/(g1^2*g3^2) + (g3^2*t^8.93*y)/g1^2 + (g4^4*t^8.955*y)/g2 + (g4^4*t^8.955*y)/g3^2 + (g5^4*t^8.955*y)/g2 + (g5^4*t^8.955*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
No data available in table |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
No data available in table |
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Loading... |
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55674 | SU2adj1nf3 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}q_{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 0.8984 | 1.1064 | 0.8119 | [M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] | t^2.116 + t^2.166 + t^3.308 + t^3.716 + 4*t^3.75 + t^3.784 + 4*t^3.8 + 3*t^3.834 + t^4.232 + t^4.282 + t^4.332 + 3*t^5.37 + 4*t^5.404 + t^5.424 + 3*t^5.438 + 4*t^5.454 + t^5.474 + 4*t^5.488 + 3*t^5.538 + t^5.832 + 4*t^5.865 + t^5.882 + t^5.899 + 4*t^5.916 - 9*t^6. - t^4.654/y - t^4.654*y | detail |