Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55444 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ 0.8986 1.1079 0.8111 [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ . -14 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - 8*t^6.05 - 3*t^6.11 + 4*t^6.37 + t^6.63 + 3*t^7.04 + 6*t^7.09 + 4*t^7.14 + 6*t^7.44 + 16*t^7.49 + 12*t^7.5 + 29*t^7.54 + 9*t^7.55 + 3*t^7.56 + 6*t^7.59 + 16*t^7.6 + 7*t^7.65 - 9*t^7.66 - 6*t^7.71 - 3*t^7.76 + 9*t^7.97 + 12*t^8.02 - 6*t^8.06 - 3*t^8.07 - 6*t^8.11 - 26*t^8.12 - 3*t^8.16 - 12*t^8.17 - t^8.18 - 2*t^8.22 - t^8.27 + 6*t^8.28 + 5*t^8.49 + 6*t^8.69 + 6*t^8.75 + 2*t^8.76 + 6*t^8.8 + 2*t^8.85 + t^8.91 - t^4.66/y - (2*t^6.78)/y + t^7.25/y + t^7.34/y - t^7.97/y + (2*t^8.44)/y + (2*t^8.54)/y + (6*t^8.84)/y + (12*t^8.89)/y - (3*t^8.9)/y + (8*t^8.95)/y - t^4.66*y - 2*t^6.78*y + t^7.25*y + t^7.34*y - t^7.97*y + 2*t^8.44*y + 2*t^8.54*y + 6*t^8.84*y + 12*t^8.89*y - 3*t^8.9*y + 8*t^8.95*y t^2.12/(g1^4*g2^4) + t^2.12/(g1^4*g3^4) + t^3.32/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g4^4*g5^4*t^3.72 + g4^4*g6^4*t^3.72 + g5^4*g6^4*t^3.72 + g2^4*g4^4*t^3.77 + g3^4*g4^4*t^3.77 + g2^4*g5^4*t^3.77 + g3^4*g5^4*t^3.77 + g2^4*g6^4*t^3.77 + g3^4*g6^4*t^3.77 + g2^4*g3^4*t^3.82 + g1^4*g4^4*t^3.83 + g1^4*g5^4*t^3.83 + g1^4*g6^4*t^3.83 + t^4.25/(g1^8*g2^8) + t^4.25/(g1^8*g3^8) + t^4.25/(g1^8*g2^4*g3^4) + (g4^7*t^5.38)/(g1*g2*g3*g5*g6) + (g4^3*g5^3*t^5.38)/(g1*g2*g3*g6) + (g5^7*t^5.38)/(g1*g2*g3*g4*g6) + (g4^3*g6^3*t^5.38)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.38)/(g1*g2*g3*g4) + (g6^7*t^5.38)/(g1*g2*g3*g4*g5) + (g2^3*g4^3*t^5.43)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.43)/(g1*g2*g5*g6) + (g2^3*g5^3*t^5.43)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.43)/(g1*g2*g4*g6) + (g2^3*g6^3*t^5.43)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.43)/(g1*g2*g4*g5) + t^5.44/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.44/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^7*t^5.48)/(g1*g3*g4*g5*g6) + (g2^3*g3^3*t^5.48)/(g1*g4*g5*g6) + (g3^7*t^5.48)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.48)/(g2*g3*g5*g6) + (g1^3*g5^3*t^5.48)/(g2*g3*g4*g6) + (g1^3*g6^3*t^5.48)/(g2*g3*g4*g5) + (g1^3*g2^3*t^5.54)/(g3*g4*g5*g6) + (g1^3*g3^3*t^5.54)/(g2*g4*g5*g6) + (g1^7*t^5.59)/(g2*g3*g4*g5*g6) + (g4^4*g5^4*t^5.84)/(g1^4*g2^4) + (g4^4*g5^4*t^5.84)/(g1^4*g3^4) + (g4^4*g6^4*t^5.84)/(g1^4*g2^4) + (g4^4*g6^4*t^5.84)/(g1^4*g3^4) + (g5^4*g6^4*t^5.84)/(g1^4*g2^4) + (g5^4*g6^4*t^5.84)/(g1^4*g3^4) + (g4^4*t^5.89)/g1^4 + (g2^4*g4^4*t^5.89)/(g1^4*g3^4) + (g3^4*g4^4*t^5.89)/(g1^4*g2^4) + (g5^4*t^5.89)/g1^4 + (g2^4*g5^4*t^5.89)/(g1^4*g3^4) + (g3^4*g5^4*t^5.89)/(g1^4*g2^4) + (g6^4*t^5.89)/g1^4 + (g2^4*g6^4*t^5.89)/(g1^4*g3^4) + (g3^4*g6^4*t^5.89)/(g1^4*g2^4) - 6*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.05)/g2^4 - (g1^4*t^6.05)/g3^4 - (g2^4*t^6.05)/g4^4 - (g3^4*t^6.05)/g4^4 - (g2^4*t^6.05)/g5^4 - (g3^4*t^6.05)/g5^4 - (g2^4*t^6.05)/g6^4 - (g3^4*t^6.05)/g6^4 - (g1^4*t^6.11)/g4^4 - (g1^4*t^6.11)/g5^4 - (g1^4*t^6.11)/g6^4 + t^6.37/(g1^12*g2^12) + t^6.37/(g1^12*g3^12) + t^6.37/(g1^12*g2^4*g3^8) + t^6.37/(g1^12*g2^8*g3^4) + t^6.63/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g4^2*g5^2*t^7.04)/(g1^2*g2^2*g3^2*g6^2) + (g4^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.04)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*g4^2*t^7.09)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g4^2*t^7.09)/(g1^2*g2^2*g5^2*g6^2) + (g2^2*g5^2*t^7.09)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.09)/(g1^2*g2^2*g4^2*g6^2) + (g2^2*g6^2*t^7.09)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.09)/(g1^2*g2^2*g4^2*g5^2) + (g2^2*g3^2*t^7.14)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.14)/(g2^2*g3^2*g5^2*g6^2) + (g1^2*g5^2*t^7.14)/(g2^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.14)/(g2^2*g3^2*g4^2*g5^2) + g4^8*g5^8*t^7.44 + g4^8*g5^4*g6^4*t^7.44 + g4^4*g5^8*g6^4*t^7.44 + g4^8*g6^8*t^7.44 + g4^4*g5^4*g6^8*t^7.44 + g5^8*g6^8*t^7.44 + g2^4*g4^8*g5^4*t^7.49 + g3^4*g4^8*g5^4*t^7.49 + g2^4*g4^4*g5^8*t^7.49 + g3^4*g4^4*g5^8*t^7.49 + g2^4*g4^8*g6^4*t^7.49 + g3^4*g4^8*g6^4*t^7.49 + 2*g2^4*g4^4*g5^4*g6^4*t^7.49 + 2*g3^4*g4^4*g5^4*g6^4*t^7.49 + g2^4*g5^8*g6^4*t^7.49 + g3^4*g5^8*g6^4*t^7.49 + g2^4*g4^4*g6^8*t^7.49 + g3^4*g4^4*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g3^4*g5^4*g6^8*t^7.49 + (g4^7*t^7.5)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.5)/(g1^5*g2^5*g3*g5*g6) + (g4^3*g5^3*t^7.5)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.5)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.5)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.5)/(g1^5*g2^5*g3*g4*g6) + (g4^3*g6^3*t^7.5)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.5)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.5)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.5)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.5)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.5)/(g1^5*g2^5*g3*g4*g5) + g2^8*g4^8*t^7.54 + g2^4*g3^4*g4^8*t^7.54 + g3^8*g4^8*t^7.54 + g2^8*g4^4*g5^4*t^7.54 + 2*g2^4*g3^4*g4^4*g5^4*t^7.54 + g3^8*g4^4*g5^4*t^7.54 + g1^4*g4^8*g5^4*t^7.54 + g2^8*g5^8*t^7.54 + g2^4*g3^4*g5^8*t^7.54 + g3^8*g5^8*t^7.54 + g1^4*g4^4*g5^8*t^7.54 + g2^8*g4^4*g6^4*t^7.54 + 2*g2^4*g3^4*g4^4*g6^4*t^7.54 + g3^8*g4^4*g6^4*t^7.54 + g1^4*g4^8*g6^4*t^7.54 + g2^8*g5^4*g6^4*t^7.54 + 2*g2^4*g3^4*g5^4*g6^4*t^7.54 + g3^8*g5^4*g6^4*t^7.54 + 2*g1^4*g4^4*g5^4*g6^4*t^7.54 + g1^4*g5^8*g6^4*t^7.54 + g2^8*g6^8*t^7.54 + g2^4*g3^4*g6^8*t^7.54 + g3^8*g6^8*t^7.54 + g1^4*g4^4*g6^8*t^7.54 + g1^4*g5^4*g6^8*t^7.54 + (g2^3*g4^3*t^7.55)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.55)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.55)/(g1^5*g2^5*g5*g6) + (g2^3*g5^3*t^7.55)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.55)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.55)/(g1^5*g2^5*g4*g6) + (g2^3*g6^3*t^7.55)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.55)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.55)/(g1^5*g2^5*g4*g5) + t^7.56/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + t^7.56/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + t^7.56/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + g2^8*g3^4*g4^4*t^7.59 + g2^4*g3^8*g4^4*t^7.59 + g2^8*g3^4*g5^4*t^7.59 + g2^4*g3^8*g5^4*t^7.59 + g2^8*g3^4*g6^4*t^7.59 + g2^4*g3^8*g6^4*t^7.59 + g1^4*g2^4*g4^8*t^7.6 + g1^4*g3^4*g4^8*t^7.6 + g1^4*g2^4*g4^4*g5^4*t^7.6 + g1^4*g3^4*g4^4*g5^4*t^7.6 + g1^4*g2^4*g5^8*t^7.6 + g1^4*g3^4*g5^8*t^7.6 + (g2^7*t^7.6)/(g1^5*g3^5*g4*g5*g6) + (g2^3*t^7.6)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.6)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.6)/(g1^5*g2^5*g4*g5*g6) + g1^4*g2^4*g4^4*g6^4*t^7.6 + g1^4*g3^4*g4^4*g6^4*t^7.6 + g1^4*g2^4*g5^4*g6^4*t^7.6 + g1^4*g3^4*g5^4*g6^4*t^7.6 + g1^4*g2^4*g6^8*t^7.6 + g1^4*g3^4*g6^8*t^7.6 + g2^8*g3^8*t^7.65 + g1^8*g4^8*t^7.65 + g1^8*g4^4*g5^4*t^7.65 + g1^8*g5^8*t^7.65 + g1^8*g4^4*g6^4*t^7.65 + g1^8*g5^4*g6^4*t^7.65 + g1^8*g6^8*t^7.65 - (g4^3*t^7.66)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.66)/(g1*g2*g3*g4*g6^5) - (g4^3*t^7.66)/(g1*g2*g3*g5^5*g6) - (3*t^7.66)/(g1*g2*g3*g4*g5*g6) - (g5^3*t^7.66)/(g1*g2*g3*g4^5*g6) - (g6^3*t^7.66)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.66)/(g1*g2*g3*g4^5*g5) - (g2^3*t^7.71)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.71)/(g1*g2*g4*g5*g6^5) - (g2^3*t^7.71)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.71)/(g1*g2*g4*g5^5*g6) - (g2^3*t^7.71)/(g1*g3*g4^5*g5*g6) - (g3^3*t^7.71)/(g1*g2*g4^5*g5*g6) - (g1^3*t^7.76)/(g2*g3*g4*g5*g6^5) - (g1^3*t^7.76)/(g2*g3*g4*g5^5*g6) - (g1^3*t^7.76)/(g2*g3*g4^5*g5*g6) + (g4^4*g5^4*t^7.97)/(g1^8*g2^8) + (g4^4*g5^4*t^7.97)/(g1^8*g3^8) + (g4^4*g5^4*t^7.97)/(g1^8*g2^4*g3^4) + (g4^4*g6^4*t^7.97)/(g1^8*g2^8) + (g4^4*g6^4*t^7.97)/(g1^8*g3^8) + (g4^4*g6^4*t^7.97)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.97)/(g1^8*g2^8) + (g5^4*g6^4*t^7.97)/(g1^8*g3^8) + (g5^4*g6^4*t^7.97)/(g1^8*g2^4*g3^4) + (g4^4*t^8.02)/(g1^8*g2^4) + (g2^4*g4^4*t^8.02)/(g1^8*g3^8) + (g4^4*t^8.02)/(g1^8*g3^4) + (g3^4*g4^4*t^8.02)/(g1^8*g2^8) + (g5^4*t^8.02)/(g1^8*g2^4) + (g2^4*g5^4*t^8.02)/(g1^8*g3^8) + (g5^4*t^8.02)/(g1^8*g3^4) + (g3^4*g5^4*t^8.02)/(g1^8*g2^8) + (g6^4*t^8.02)/(g1^8*g2^4) + (g2^4*g6^4*t^8.02)/(g1^8*g3^8) + (g6^4*t^8.02)/(g1^8*g3^4) + (g3^4*g6^4*t^8.02)/(g1^8*g2^8) - g1*g2*g3*g4^9*g5*g6*t^8.06 - g1*g2*g3*g4^5*g5^5*g6*t^8.06 - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3*g4^5*g5*g6^5*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 - (g4^4*t^8.07)/(g1^4*g2^4*g3^4) - (g5^4*t^8.07)/(g1^4*g2^4*g3^4) - (g6^4*t^8.07)/(g1^4*g2^4*g3^4) - g1*g2^5*g3*g4^5*g5*g6*t^8.11 - g1*g2*g3^5*g4^5*g5*g6*t^8.11 - g1*g2^5*g3*g4*g5^5*g6*t^8.11 - g1*g2*g3^5*g4*g5^5*g6*t^8.11 - g1*g2^5*g3*g4*g5*g6^5*t^8.11 - g1*g2*g3^5*g4*g5*g6^5*t^8.11 - (6*t^8.12)/(g1^4*g2^4) - (g2^4*t^8.12)/(g1^4*g3^8) - (6*t^8.12)/(g1^4*g3^4) - (g3^4*t^8.12)/(g1^4*g2^8) - (g4^4*t^8.12)/(g1^4*g2^4*g5^4) - (g4^4*t^8.12)/(g1^4*g3^4*g5^4) - (g5^4*t^8.12)/(g1^4*g2^4*g4^4) - (g5^4*t^8.12)/(g1^4*g3^4*g4^4) - (g4^4*t^8.12)/(g1^4*g2^4*g6^4) - (g4^4*t^8.12)/(g1^4*g3^4*g6^4) - (g5^4*t^8.12)/(g1^4*g2^4*g6^4) - (g5^4*t^8.12)/(g1^4*g3^4*g6^4) - (g6^4*t^8.12)/(g1^4*g2^4*g4^4) - (g6^4*t^8.12)/(g1^4*g3^4*g4^4) - (g6^4*t^8.12)/(g1^4*g2^4*g5^4) - (g6^4*t^8.12)/(g1^4*g3^4*g5^4) - g1*g2^9*g3*g4*g5*g6*t^8.16 - g1*g2^5*g3^5*g4*g5*g6*t^8.16 - g1*g2*g3^9*g4*g5*g6*t^8.16 - t^8.17/(g1^4*g4^4) - (g2^4*t^8.17)/(g1^4*g3^4*g4^4) - (g3^4*t^8.17)/(g1^4*g2^4*g4^4) - t^8.17/(g1^4*g5^4) - (g2^4*t^8.17)/(g1^4*g3^4*g5^4) - (g3^4*t^8.17)/(g1^4*g2^4*g5^4) - t^8.17/(g1^4*g6^4) - (g2^4*t^8.17)/(g1^4*g3^4*g6^4) - (g3^4*t^8.17)/(g1^4*g2^4*g6^4) - g1^5*g2*g3*g4^5*g5*g6*t^8.17 - g1^5*g2*g3*g4*g5^5*g6*t^8.17 - g1^5*g2*g3*g4*g5*g6^5*t^8.17 - t^8.18/(g2^4*g3^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.22 - g1^5*g2*g3^5*g4*g5*g6*t^8.22 - g1^9*g2*g3*g4*g5*g6*t^8.27 + t^8.28/g4^8 + t^8.28/g5^8 + t^8.28/(g4^4*g5^4) + t^8.28/g6^8 + t^8.28/(g4^4*g6^4) + t^8.28/(g5^4*g6^4) + t^8.49/(g1^16*g2^16) + t^8.49/(g1^16*g3^16) + t^8.49/(g1^16*g2^4*g3^12) + t^8.49/(g1^16*g2^8*g3^8) + t^8.49/(g1^16*g2^12*g3^4) + (g4^5*t^8.69)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g4*g5*t^8.69)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.69)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g4*g6*t^8.69)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.69)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.69)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (g2*g4*t^8.75)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.75)/(g1^3*g2^3*g5^3*g6^3) + (g2*g5*t^8.75)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.75)/(g1^3*g2^3*g4^3*g6^3) + (g2*g6*t^8.75)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.75)/(g1^3*g2^3*g4^3*g5^3) + t^8.76/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.76/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g2^5*t^8.8)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.8)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.8)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.8)/(g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.8)/(g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.8)/(g2^3*g3^3*g4^3*g5^3) + (g1*g2*t^8.85)/(g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.85)/(g2^3*g4^3*g5^3*g6^3) + (g1^5*t^8.91)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.66/(g1*g2*g3*g4*g5*g6*y) - t^6.78/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.78/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.25/(g1^8*g2^4*g3^4*y) + (g1*g2*g3*g4*g5*g6*t^7.34)/y - t^7.97/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.44/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.44/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.54)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.54)/(g2*g4*g5*g6*y) + (g4^4*g5^4*t^8.84)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.84)/(g1^4*g3^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (2*g4^4*t^8.89)/(g1^4*y) + (g2^4*g4^4*t^8.89)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.89)/(g1^4*g2^4*y) + (2*g5^4*t^8.89)/(g1^4*y) + (g2^4*g5^4*t^8.89)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.89)/(g1^4*g2^4*y) + (2*g6^4*t^8.89)/(g1^4*y) + (g2^4*g6^4*t^8.89)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.89)/(g1^4*g2^4*y) - t^8.9/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.9/(g1^9*g2^5*g3^5*g4*g5*g6*y) - t^8.9/(g1^9*g2^9*g3*g4*g5*g6*y) + (g2^4*t^8.95)/(g1^4*y) + (g3^4*t^8.95)/(g1^4*y) + (g4^4*t^8.95)/(g2^4*y) + (g4^4*t^8.95)/(g3^4*y) + (g5^4*t^8.95)/(g2^4*y) + (g5^4*t^8.95)/(g3^4*y) + (g6^4*t^8.95)/(g2^4*y) + (g6^4*t^8.95)/(g3^4*y) - (t^4.66*y)/(g1*g2*g3*g4*g5*g6) - (t^6.78*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.78*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.25*y)/(g1^8*g2^4*g3^4) + g1*g2*g3*g4*g5*g6*t^7.34*y - (t^7.97*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.44*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.44*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.54*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.54*y)/(g2*g4*g5*g6) + (g4^4*g5^4*t^8.84*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.84*y)/(g1^4*g3^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (2*g4^4*t^8.89*y)/g1^4 + (g2^4*g4^4*t^8.89*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.89*y)/(g1^4*g2^4) + (2*g5^4*t^8.89*y)/g1^4 + (g2^4*g5^4*t^8.89*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.89*y)/(g1^4*g2^4) + (2*g6^4*t^8.89*y)/g1^4 + (g2^4*g6^4*t^8.89*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.89*y)/(g1^4*g2^4) - (t^8.9*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.9*y)/(g1^9*g2^5*g3^5*g4*g5*g6) - (t^8.9*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g2^4*t^8.95*y)/g1^4 + (g3^4*t^8.95*y)/g1^4 + (g4^4*t^8.95*y)/g2^4 + (g4^4*t^8.95*y)/g3^4 + (g5^4*t^8.95*y)/g2^4 + (g5^4*t^8.95*y)/g3^4 + (g6^4*t^8.95*y)/g2^4 + (g6^4*t^8.95*y)/g3^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55674 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ 0.8984 1.1064 0.8119 [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y detail
55697 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ 0.9189 1.1465 0.8014 [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y detail
55594 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2q_3$ 0.9189 1.1464 0.8015 [X:[], M:[0.7021, 0.7021, 0.7021], q:[0.649, 0.649, 0.649], qb:[0.6185, 0.6185, 0.6185], phi:[0.5494]] 3*t^2.11 + t^3.3 + 3*t^3.71 + 9*t^3.8 + 6*t^4.21 + 6*t^5.36 + 3*t^5.4 + 9*t^5.45 + 6*t^5.54 + 9*t^5.82 + 18*t^5.91 - 18*t^6. - t^4.65/y - t^4.65*y detail
55595 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ 0.9185 1.1444 0.8026 [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y detail
55668 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ 0.8849 1.0962 0.8072 [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y detail
55597 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ 0.8849 1.096 0.8074 [X:[], M:[0.6768, 0.6768], q:[0.5964, 0.7269, 0.7269], qb:[0.5882, 0.5882, 0.5882], phi:[0.5463]] 2*t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.55 + 6*t^3.95 + 3*t^4.06 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.22 + 2*t^5.31 + 6*t^5.56 + 6*t^5.58 + 9*t^5.98 - 11*t^6. - t^4.64/y - t^4.64*y detail
55670 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1\tilde{q}_1\tilde{q}_2$ 0.878 1.0728 0.8184 [X:[], M:[0.7561, 0.7561], q:[0.639, 0.6049, 0.6049], qb:[0.737, 0.737, 0.5735], phi:[0.5259]] 2*t^2.27 + t^3.16 + 2*t^3.54 + t^3.63 + t^3.64 + 2*t^3.93 + 4*t^4.03 + 2*t^4.13 + t^4.42 + 3*t^4.54 + t^5.02 + 2*t^5.11 + 3*t^5.21 + t^5.22 + 2*t^5.31 + t^5.41 + 2*t^5.42 + 3*t^5.8 - 7*t^6. - t^4.58/y - t^4.58*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55431 SU2adj1nf3 $M_1q_1q_2$ 0.8785 1.0704 0.8208 [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - t^4.67/y - t^4.67*y detail