Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55764 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.8977 | 1.1027 | 0.8141 | [X:[], M:[0.7267, 0.7324], q:[0.6366, 0.6366, 0.6309], qb:[0.6309, 0.6366, 0.6366], phi:[0.5479]] | [X:[], M:[[0, 0, -2, -2], [-2, -2, -1, -1]], q:[[-2, 2, 1, 1], [2, -2, 1, 1], [4, 0, 0, 0]], qb:[[0, 4, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2q_3$, $ \phi_1q_1q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ M_1q_3\tilde{q}_1$ | $M_2q_3\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$ | -8 | t^2.18 + t^2.2 + t^3.29 + t^3.79 + 7*t^3.8 + 5*t^3.82 + t^4.36 + t^4.38 + t^4.39 + 3*t^5.43 + 8*t^5.45 + 10*t^5.46 + t^5.47 + t^5.48 + t^5.97 - 8*t^6. - 3*t^6.02 + t^6.54 + t^6.56 + 2*t^6.57 + t^6.59 + t^7.07 + 7*t^7.09 + 5*t^7.11 + t^7.57 + 7*t^7.59 + 30*t^7.61 + 27*t^7.62 + 3*t^7.63 + 13*t^7.64 + t^7.65 + 3*t^7.66 + t^7.68 - 3*t^8.14 + t^8.15 - 8*t^8.16 - 15*t^8.18 - 8*t^8.2 + 4*t^8.72 + 8*t^8.73 + t^8.74 + 10*t^8.75 + 2*t^8.76 + 2*t^8.77 + t^8.79 - t^4.64/y - t^6.82/y - t^6.84/y + t^7.36/y + t^7.38/y - t^7.93/y + t^8.45/y + t^8.46/y + t^8.47/y + t^8.48/y + t^8.97/y + (8*t^8.98)/y - t^4.64*y - t^6.82*y - t^6.84*y + t^7.36*y + t^7.38*y - t^7.93*y + t^8.45*y + t^8.46*y + t^8.47*y + t^8.48*y + t^8.97*y + 8*t^8.98*y | t^2.18/(g3^2*g4^2) + t^2.2/(g1^2*g2^2*g3*g4) + t^3.29/(g1^2*g2^2*g3^2*g4^2) + g1^4*g2^4*t^3.79 + g1^4*g3^2*t^3.8 + g2^4*g3^2*t^3.8 + (g1^6*g3*g4*t^3.8)/g2^2 + g1^2*g2^2*g3*g4*t^3.8 + (g2^6*g3*g4*t^3.8)/g1^2 + g1^4*g4^2*t^3.8 + g2^4*g4^2*t^3.8 + (g1^2*g3^3*g4*t^3.82)/g2^2 + (g2^2*g3^3*g4*t^3.82)/g1^2 + g3^2*g4^2*t^3.82 + (g1^2*g3*g4^3*t^3.82)/g2^2 + (g2^2*g3*g4^3*t^3.82)/g1^2 + t^4.36/(g3^4*g4^4) + t^4.38/(g1^2*g2^2*g3^3*g4^3) + t^4.39/(g1^4*g2^4*g3^2*g4^2) + (g1^7*t^5.43)/(g2*g3*g4) + (g1^3*g2^3*t^5.43)/(g3*g4) + (g2^7*t^5.43)/(g1*g3*g4) + (g1^5*t^5.45)/g2^3 + 2*g1*g2*t^5.45 + (g2^5*t^5.45)/g1^3 + (g1^3*g3*t^5.45)/(g2*g4) + (g2^3*g3*t^5.45)/(g1*g4) + (g1^3*g4*t^5.45)/(g2*g3) + (g2^3*g4*t^5.45)/(g1*g3) + (g1*g3^2*t^5.46)/g2^3 + (g2*g3^2*t^5.46)/g1^3 + (g3^3*t^5.46)/(g1*g2*g4) + (g1^3*g3*g4*t^5.46)/g2^5 + (2*g3*g4*t^5.46)/(g1*g2) + (g2^3*g3*g4*t^5.46)/g1^5 + (g1*g4^2*t^5.46)/g2^3 + (g2*g4^2*t^5.46)/g1^3 + (g4^3*t^5.46)/(g1*g2*g3) + t^5.47/(g1^2*g2^2*g3^4*g4^4) + t^5.48/(g1^4*g2^4*g3^3*g4^3) + (g1^4*g2^4*t^5.97)/(g3^2*g4^2) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g3^2 - (g1^2*g3*g4*t^6.02)/g2^6 - (g3*g4*t^6.02)/(g1^2*g2^2) - (g2^2*g3*g4*t^6.02)/g1^6 + t^6.54/(g3^6*g4^6) + t^6.56/(g1^2*g2^2*g3^5*g4^5) + (2*t^6.57)/(g1^4*g2^4*g3^4*g4^4) + t^6.59/(g1^6*g2^6*g3^3*g4^3) + (g1^2*g2^2*t^7.07)/(g3^2*g4^2) + (g1^2*t^7.09)/(g2^2*g3^2) + (g2^2*t^7.09)/(g1^2*g3^2) + (g1^2*t^7.09)/(g2^2*g4^2) + (g2^2*t^7.09)/(g1^2*g4^2) + t^7.09/(g3*g4) + (g1^4*t^7.09)/(g2^4*g3*g4) + (g2^4*t^7.09)/(g1^4*g3*g4) + t^7.11/(g1^2*g2^2) + (g3*t^7.11)/(g1^4*g4) + (g3*t^7.11)/(g2^4*g4) + (g4*t^7.11)/(g1^4*g3) + (g4*t^7.11)/(g2^4*g3) + g1^8*g2^8*t^7.57 + g1^8*g2^4*g3^2*t^7.59 + g1^4*g2^8*g3^2*t^7.59 + g1^10*g2^2*g3*g4*t^7.59 + g1^6*g2^6*g3*g4*t^7.59 + g1^2*g2^10*g3*g4*t^7.59 + g1^8*g2^4*g4^2*t^7.59 + g1^4*g2^8*g4^2*t^7.59 + g1^8*g3^4*t^7.61 + g1^4*g2^4*g3^4*t^7.61 + g2^8*g3^4*t^7.61 + (g1^7*t^7.61)/(g2*g3^3*g4^3) + (g1^3*g2^3*t^7.61)/(g3^3*g4^3) + (g2^7*t^7.61)/(g1*g3^3*g4^3) + (g1^10*g3^3*g4*t^7.61)/g2^2 + 2*g1^6*g2^2*g3^3*g4*t^7.61 + 2*g1^2*g2^6*g3^3*g4*t^7.61 + (g2^10*g3^3*g4*t^7.61)/g1^2 + 2*g1^8*g3^2*g4^2*t^7.61 + (g1^12*g3^2*g4^2*t^7.61)/g2^4 + 3*g1^4*g2^4*g3^2*g4^2*t^7.61 + 2*g2^8*g3^2*g4^2*t^7.61 + (g2^12*g3^2*g4^2*t^7.61)/g1^4 + (g1^10*g3*g4^3*t^7.61)/g2^2 + 2*g1^6*g2^2*g3*g4^3*t^7.61 + 2*g1^2*g2^6*g3*g4^3*t^7.61 + (g2^10*g3*g4^3*t^7.61)/g1^2 + g1^8*g4^4*t^7.61 + g1^4*g2^4*g4^4*t^7.61 + g2^8*g4^4*t^7.61 + (g1^6*g3^5*g4*t^7.62)/g2^2 + 2*g1^2*g2^2*g3^5*g4*t^7.62 + (g2^6*g3^5*g4*t^7.62)/g1^2 + 2*g1^4*g3^4*g4^2*t^7.62 + (g1^8*g3^4*g4^2*t^7.62)/g2^4 + 2*g2^4*g3^4*g4^2*t^7.62 + (g2^8*g3^4*g4^2*t^7.62)/g1^4 + (2*g1^6*g3^3*g4^3*t^7.62)/g2^2 + 3*g1^2*g2^2*g3^3*g4^3*t^7.62 + (2*g2^6*g3^3*g4^3*t^7.62)/g1^2 + 2*g1^4*g3^2*g4^4*t^7.62 + (g1^8*g3^2*g4^4*t^7.62)/g2^4 + 2*g2^4*g3^2*g4^4*t^7.62 + (g2^8*g3^2*g4^4*t^7.62)/g1^4 + (g1^6*g3*g4^5*t^7.62)/g2^2 + 2*g1^2*g2^2*g3*g4^5*t^7.62 + (g2^6*g3*g4^5*t^7.62)/g1^2 + (g1^5*t^7.63)/(g2^3*g3^2*g4^2) + (g1*g2*t^7.63)/(g3^2*g4^2) + (g2^5*t^7.63)/(g1^3*g3^2*g4^2) - t^7.64/(g1*g2*g3*g4) + g3^6*g4^2*t^7.64 + (g1^4*g3^6*g4^2*t^7.64)/g2^4 + (g2^4*g3^6*g4^2*t^7.64)/g1^4 + (g1^2*g3^5*g4^3*t^7.64)/g2^2 + (g2^2*g3^5*g4^3*t^7.64)/g1^2 + 2*g3^4*g4^4*t^7.64 + (g1^4*g3^4*g4^4*t^7.64)/g2^4 + (g2^4*g3^4*g4^4*t^7.64)/g1^4 + (g1^2*g3^3*g4^5*t^7.64)/g2^2 + (g2^2*g3^3*g4^5*t^7.64)/g1^2 + g3^2*g4^6*t^7.64 + (g1^4*g3^2*g4^6*t^7.64)/g2^4 + (g2^4*g3^2*g4^6*t^7.64)/g1^4 + t^7.65/(g1^2*g2^2*g3^6*g4^6) + t^7.66/(g1^4*g2^4*g3^5*g4^5) + (g3^2*t^7.66)/(g1^3*g2^3*g4^2) + (g4^2*t^7.66)/(g1^3*g2^3*g3^2) + t^7.68/(g1^6*g2^6*g3^4*g4^4) - g1^9*g2*g3*g4*t^8.14 - g1^5*g2^5*g3*g4*t^8.14 - g1*g2^9*g3*g4*t^8.14 + (g1^4*g2^4*t^8.15)/(g3^4*g4^4) - g1^5*g2*g3^3*g4*t^8.16 - g1*g2^5*g3^3*g4*t^8.16 - (g1^7*g3^2*g4^2*t^8.16)/g2 - 2*g1^3*g2^3*g3^2*g4^2*t^8.16 - (g2^7*g3^2*g4^2*t^8.16)/g1 - g1^5*g2*g3*g4^3*t^8.16 - g1*g2^5*g3*g4^3*t^8.16 - (3*t^8.18)/(g3^2*g4^2) - (g1^4*t^8.18)/(g2^4*g3^2*g4^2) - (g2^4*t^8.18)/(g1^4*g3^2*g4^2) - g1*g2*g3^5*g4*t^8.18 - (g1^3*g3^4*g4^2*t^8.18)/g2 - (g2^3*g3^4*g4^2*t^8.18)/g1 - (g1^5*g3^3*g4^3*t^8.18)/g2^3 - 2*g1*g2*g3^3*g4^3*t^8.18 - (g2^5*g3^3*g4^3*t^8.18)/g1^3 - (g1^3*g3^2*g4^4*t^8.18)/g2 - (g2^3*g3^2*g4^4*t^8.18)/g1 - g1*g2*g3*g4^5*t^8.18 - (g3*t^8.2)/(g1^2*g2^2*g4^3) - (g1^2*t^8.2)/(g2^6*g3*g4) - (4*t^8.2)/(g1^2*g2^2*g3*g4) - (g2^2*t^8.2)/(g1^6*g3*g4) - (g4*t^8.2)/(g1^2*g2^2*g3^3) + t^8.72/(g3^8*g4^8) + (g1^5*t^8.72)/(g2^3*g3^3*g4^3) + (g1*g2*t^8.72)/(g3^3*g4^3) + (g2^5*t^8.72)/(g1^3*g3^3*g4^3) + (g1*t^8.73)/(g2^3*g3*g4^3) + (g2*t^8.73)/(g1^3*g3*g4^3) + (g1^3*t^8.73)/(g2^5*g3^2*g4^2) + (2*t^8.73)/(g1*g2*g3^2*g4^2) + (g2^3*t^8.73)/(g1^5*g3^2*g4^2) + (g1*t^8.73)/(g2^3*g3^3*g4) + (g2*t^8.73)/(g1^3*g3^3*g4) + t^8.74/(g1^2*g2^2*g3^7*g4^7) + t^8.75/(g1*g2^5*g3^2) + t^8.75/(g1^5*g2*g3^2) + (g3*t^8.75)/(g1^3*g2^3*g4^3) + t^8.75/(g1*g2^5*g4^2) + t^8.75/(g1^5*g2*g4^2) + (g1*t^8.75)/(g2^7*g3*g4) + (2*t^8.75)/(g1^3*g2^3*g3*g4) + (g2*t^8.75)/(g1^7*g3*g4) + (g4*t^8.75)/(g1^3*g2^3*g3^3) + (2*t^8.76)/(g1^4*g2^4*g3^6*g4^6) + (2*t^8.77)/(g1^6*g2^6*g3^5*g4^5) + t^8.79/(g1^8*g2^8*g3^4*g4^4) - t^4.64/(g1*g2*g3*g4*y) - t^6.82/(g1*g2*g3^3*g4^3*y) - t^6.84/(g1^3*g2^3*g3^2*g4^2*y) + (g1*g2*g3*g4*t^7.36)/y + t^7.38/(g1^2*g2^2*g3^3*g4^3*y) - t^7.93/(g1^3*g2^3*g3^3*g4^3*y) + (g1*g2*t^8.45)/y + (g3*g4*t^8.46)/(g1*g2*y) + t^8.47/(g1^2*g2^2*g3^4*g4^4*y) + t^8.48/(g1^4*g2^4*g3^3*g4^3*y) + (g1^4*g2^4*t^8.97)/(g3^2*g4^2*y) + (g1^4*t^8.98)/(g3^2*y) + (g2^4*t^8.98)/(g3^2*y) + (g1^4*t^8.98)/(g4^2*y) + (g2^4*t^8.98)/(g4^2*y) + (g1^6*t^8.98)/(g2^2*g3*g4*y) + (2*g1^2*g2^2*t^8.98)/(g3*g4*y) + (g2^6*t^8.98)/(g1^2*g3*g4*y) - (t^4.64*y)/(g1*g2*g3*g4) - (t^6.82*y)/(g1*g2*g3^3*g4^3) - (t^6.84*y)/(g1^3*g2^3*g3^2*g4^2) + g1*g2*g3*g4*t^7.36*y + (t^7.38*y)/(g1^2*g2^2*g3^3*g4^3) - (t^7.93*y)/(g1^3*g2^3*g3^3*g4^3) + g1*g2*t^8.45*y + (g3*g4*t^8.46*y)/(g1*g2) + (t^8.47*y)/(g1^2*g2^2*g3^4*g4^4) + (t^8.48*y)/(g1^4*g2^4*g3^3*g4^3) + (g1^4*g2^4*t^8.97*y)/(g3^2*g4^2) + (g1^4*t^8.98*y)/g3^2 + (g2^4*t^8.98*y)/g3^2 + (g1^4*t^8.98*y)/g4^2 + (g2^4*t^8.98*y)/g4^2 + (g1^6*t^8.98*y)/(g2^2*g3*g4) + (2*g1^2*g2^2*t^8.98*y)/(g3*g4) + (g2^6*t^8.98*y)/(g1^2*g3*g4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55674 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ | 0.8984 | 1.1064 | 0.8119 | [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] | t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y | detail |