Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55708 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.898 1.1043 0.8131 [X:[], M:[0.7129, 0.7325], q:[0.6435, 0.6435, 0.6239], qb:[0.6239, 0.6337, 0.6337], phi:[0.5494]] [X:[], M:[[1, 1, -8, -8], [0, 0, -4, -4]], q:[[-1, 0, 4, 4], [0, -1, 4, 4], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]], phi:[[0, 0, -3, -3]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ M_2q_3\tilde{q}_1$, $ M_1\tilde{q}_2\tilde{q}_3$ . -8 t^2.14 + t^2.2 + t^3.3 + t^3.74 + 4*t^3.77 + 4*t^3.8 + 4*t^3.83 + t^4.28 + t^4.34 + t^4.4 + 3*t^5.39 + 4*t^5.42 + t^5.44 + 7*t^5.45 + 4*t^5.48 + t^5.49 + 3*t^5.51 + t^5.88 + 4*t^5.91 + t^5.94 - 8*t^6. - 4*t^6.03 - 4*t^6.06 + t^6.42 + t^6.48 + t^6.53 + 2*t^6.59 + t^7.04 + 4*t^7.07 + 4*t^7.1 + 4*t^7.13 + t^7.49 + 4*t^7.52 + 3*t^7.53 + 13*t^7.55 + 4*t^7.56 + t^7.57 + 16*t^7.58 + 6*t^7.59 + 21*t^7.6 + 13*t^7.63 - t^7.65 + 9*t^7.66 - 4*t^7.68 + t^7.69 - t^7.71 + t^8.02 + 4*t^8.05 + t^8.08 - 3*t^8.1 - 4*t^8.12 - 8*t^8.14 - 7*t^8.15 - 4*t^8.17 - 4*t^8.18 - 5*t^8.2 - 3*t^8.21 - t^8.26 + t^8.56 + t^8.61 + t^8.67 + 3*t^8.69 + 4*t^8.72 + 2*t^8.73 + 7*t^8.75 + 4*t^8.78 + 2*t^8.79 + 3*t^8.81 - t^4.65/y - t^6.79/y - t^6.85/y + t^7.34/y + t^7.35/y - t^7.94/y + t^8.44/y + t^8.45/y + t^8.49/y + t^8.51/y + t^8.88/y + (4*t^8.91)/y - t^8.93/y + (5*t^8.94)/y + (8*t^8.97)/y - t^8.98/y - t^4.65*y - t^6.79*y - t^6.85*y + t^7.34*y + t^7.35*y - t^7.94*y + t^8.44*y + t^8.45*y + t^8.49*y + t^8.51*y + t^8.88*y + 4*t^8.91*y - t^8.93*y + 5*t^8.94*y + 8*t^8.97*y - t^8.98*y (g1*g2*t^2.14)/(g3^8*g4^8) + t^2.2/(g3^4*g4^4) + t^3.3/(g3^6*g4^6) + g1*g2*t^3.74 + g1*g3^4*t^3.77 + g2*g3^4*t^3.77 + g1*g4^4*t^3.77 + g2*g4^4*t^3.77 + 2*g3^4*g4^4*t^3.8 + (g1*g3^4*g4^4*t^3.8)/g2 + (g2*g3^4*g4^4*t^3.8)/g1 + (g3^8*g4^4*t^3.83)/g1 + (g3^8*g4^4*t^3.83)/g2 + (g3^4*g4^8*t^3.83)/g1 + (g3^4*g4^8*t^3.83)/g2 + (g1^2*g2^2*t^4.28)/(g3^16*g4^16) + (g1*g2*t^4.34)/(g3^12*g4^12) + t^4.4/(g3^8*g4^8) + (g1^2*t^5.39)/(g3^3*g4^3) + (g1*g2*t^5.39)/(g3^3*g4^3) + (g2^2*t^5.39)/(g3^3*g4^3) + (g1*g3*t^5.42)/g4^3 + (g2*g3*t^5.42)/g4^3 + (g1*g4*t^5.42)/g3^3 + (g2*g4*t^5.42)/g3^3 + (g1*g2*t^5.44)/(g3^14*g4^14) + (g3^5*t^5.45)/g4^3 + 3*g3*g4*t^5.45 + (g1*g3*g4*t^5.45)/g2 + (g2*g3*g4*t^5.45)/g1 + (g4^5*t^5.45)/g3^3 + (g3^5*g4*t^5.48)/g1 + (g3^5*g4*t^5.48)/g2 + (g3*g4^5*t^5.48)/g1 + (g3*g4^5*t^5.48)/g2 + t^5.49/(g3^10*g4^10) + (g3^5*g4^5*t^5.51)/g1^2 + (g3^5*g4^5*t^5.51)/g2^2 + (g3^5*g4^5*t^5.51)/(g1*g2) + (g1^2*g2^2*t^5.88)/(g3^8*g4^8) + (g1^2*g2*t^5.91)/(g3^4*g4^8) + (g1*g2^2*t^5.91)/(g3^4*g4^8) + (g1^2*g2*t^5.91)/(g3^8*g4^4) + (g1*g2^2*t^5.91)/(g3^8*g4^4) + (g1*g2*t^5.94)/(g3^4*g4^4) - 4*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g3^4*t^6.03)/g1 - (g3^4*t^6.03)/g2 - (g4^4*t^6.03)/g1 - (g4^4*t^6.03)/g2 - (g3^4*g4^4*t^6.06)/g1^2 - (g3^4*g4^4*t^6.06)/g2^2 - (2*g3^4*g4^4*t^6.06)/(g1*g2) + (g1^3*g2^3*t^6.42)/(g3^24*g4^24) + (g1^2*g2^2*t^6.48)/(g3^20*g4^20) + (g1*g2*t^6.53)/(g3^16*g4^16) + (2*t^6.59)/(g3^12*g4^12) + (g1*g2*t^7.04)/(g3^6*g4^6) + (g1*t^7.07)/(g3^2*g4^6) + (g2*t^7.07)/(g3^2*g4^6) + (g1*t^7.07)/(g3^6*g4^2) + (g2*t^7.07)/(g3^6*g4^2) + (2*t^7.1)/(g3^2*g4^2) + (g1*t^7.1)/(g2*g3^2*g4^2) + (g2*t^7.1)/(g1*g3^2*g4^2) + (g3^2*t^7.13)/(g1*g4^2) + (g3^2*t^7.13)/(g2*g4^2) + (g4^2*t^7.13)/(g1*g3^2) + (g4^2*t^7.13)/(g2*g3^2) + g1^2*g2^2*t^7.49 + g1^2*g2*g3^4*t^7.52 + g1*g2^2*g3^4*t^7.52 + g1^2*g2*g4^4*t^7.52 + g1*g2^2*g4^4*t^7.52 + (g1^3*g2*t^7.53)/(g3^11*g4^11) + (g1^2*g2^2*t^7.53)/(g3^11*g4^11) + (g1*g2^3*t^7.53)/(g3^11*g4^11) + g1^2*g3^8*t^7.55 + g1*g2*g3^8*t^7.55 + g2^2*g3^8*t^7.55 + 2*g1^2*g3^4*g4^4*t^7.55 + 3*g1*g2*g3^4*g4^4*t^7.55 + 2*g2^2*g3^4*g4^4*t^7.55 + g1^2*g4^8*t^7.55 + g1*g2*g4^8*t^7.55 + g2^2*g4^8*t^7.55 + (g1^2*g2*t^7.56)/(g3^7*g4^11) + (g1*g2^2*t^7.56)/(g3^7*g4^11) + (g1^2*g2*t^7.56)/(g3^11*g4^7) + (g1*g2^2*t^7.56)/(g3^11*g4^7) + (g1^2*g2^2*t^7.57)/(g3^22*g4^22) + 3*g1*g3^8*g4^4*t^7.58 + (g1^2*g3^8*g4^4*t^7.58)/g2 + 3*g2*g3^8*g4^4*t^7.58 + (g2^2*g3^8*g4^4*t^7.58)/g1 + 3*g1*g3^4*g4^8*t^7.58 + (g1^2*g3^4*g4^8*t^7.58)/g2 + 3*g2*g3^4*g4^8*t^7.58 + (g2^2*g3^4*g4^8*t^7.58)/g1 + (g1*g2*t^7.59)/(g3^3*g4^11) + (g1^2*t^7.59)/(g3^7*g4^7) + (2*g1*g2*t^7.59)/(g3^7*g4^7) + (g2^2*t^7.59)/(g3^7*g4^7) + (g1*g2*t^7.59)/(g3^11*g4^3) + 2*g3^12*g4^4*t^7.6 + (g1*g3^12*g4^4*t^7.6)/g2 + (g2*g3^12*g4^4*t^7.6)/g1 + 5*g3^8*g4^8*t^7.6 + (g1^2*g3^8*g4^8*t^7.6)/g2^2 + (3*g1*g3^8*g4^8*t^7.6)/g2 + (3*g2*g3^8*g4^8*t^7.6)/g1 + (g2^2*g3^8*g4^8*t^7.6)/g1^2 + 2*g3^4*g4^12*t^7.6 + (g1*g3^4*g4^12*t^7.6)/g2 + (g2*g3^4*g4^12*t^7.6)/g1 + (g1*g2*t^7.63)/(g3^18*g4^18) + (2*g3^12*g4^8*t^7.63)/g1 + (g1*g3^12*g4^8*t^7.63)/g2^2 + (2*g3^12*g4^8*t^7.63)/g2 + (g2*g3^12*g4^8*t^7.63)/g1^2 + (2*g3^8*g4^12*t^7.63)/g1 + (g1*g3^8*g4^12*t^7.63)/g2^2 + (2*g3^8*g4^12*t^7.63)/g2 + (g2*g3^8*g4^12*t^7.63)/g1^2 - t^7.65/(g3^3*g4^3) + (g3^16*g4^8*t^7.66)/g1^2 + (g3^16*g4^8*t^7.66)/g2^2 + (g3^16*g4^8*t^7.66)/(g1*g2) + (g3^12*g4^12*t^7.66)/g1^2 + (g3^12*g4^12*t^7.66)/g2^2 + (g3^12*g4^12*t^7.66)/(g1*g2) + (g3^8*g4^16*t^7.66)/g1^2 + (g3^8*g4^16*t^7.66)/g2^2 + (g3^8*g4^16*t^7.66)/(g1*g2) - (g3*t^7.68)/(g1*g4^3) - (g3*t^7.68)/(g2*g4^3) - (g4*t^7.68)/(g1*g3^3) - (g4*t^7.68)/(g2*g3^3) + t^7.69/(g3^14*g4^14) - (g3*g4*t^7.71)/(g1*g2) + (g1^3*g2^3*t^8.02)/(g3^16*g4^16) + (g1^3*g2^2*t^8.05)/(g3^12*g4^16) + (g1^2*g2^3*t^8.05)/(g3^12*g4^16) + (g1^3*g2^2*t^8.05)/(g3^16*g4^12) + (g1^2*g2^3*t^8.05)/(g3^16*g4^12) + (g1^2*g2^2*t^8.08)/(g3^12*g4^12) - g1^2*g3^3*g4^3*t^8.1 - g1*g2*g3^3*g4^3*t^8.1 - g2^2*g3^3*g4^3*t^8.1 - g1*g3^7*g4^3*t^8.12 - g2*g3^7*g4^3*t^8.12 - g1*g3^3*g4^7*t^8.12 - g2*g3^3*g4^7*t^8.12 - (g1*g2*t^8.14)/(g3^4*g4^12) - (g1^2*t^8.14)/(g3^8*g4^8) - (4*g1*g2*t^8.14)/(g3^8*g4^8) - (g2^2*t^8.14)/(g3^8*g4^8) - (g1*g2*t^8.14)/(g3^12*g4^4) - g3^11*g4^3*t^8.15 - 3*g3^7*g4^7*t^8.15 - (g1*g3^7*g4^7*t^8.15)/g2 - (g2*g3^7*g4^7*t^8.15)/g1 - g3^3*g4^11*t^8.15 - (g1*t^8.17)/(g3^4*g4^8) - (g2*t^8.17)/(g3^4*g4^8) - (g1*t^8.17)/(g3^8*g4^4) - (g2*t^8.17)/(g3^8*g4^4) - (g3^11*g4^7*t^8.18)/g1 - (g3^11*g4^7*t^8.18)/g2 - (g3^7*g4^11*t^8.18)/g1 - (g3^7*g4^11*t^8.18)/g2 - (3*t^8.2)/(g3^4*g4^4) - (g1*t^8.2)/(g2*g3^4*g4^4) - (g2*t^8.2)/(g1*g3^4*g4^4) - (g3^11*g4^11*t^8.21)/g1^2 - (g3^11*g4^11*t^8.21)/g2^2 - (g3^11*g4^11*t^8.21)/(g1*g2) - t^8.26/(g1*g2) + (g1^4*g2^4*t^8.56)/(g3^32*g4^32) + (g1^3*g2^3*t^8.61)/(g3^28*g4^28) + (g1^2*g2^2*t^8.67)/(g3^24*g4^24) + (g1^2*t^8.69)/(g3^9*g4^9) + (g1*g2*t^8.69)/(g3^9*g4^9) + (g2^2*t^8.69)/(g3^9*g4^9) + (g1*t^8.72)/(g3^5*g4^9) + (g2*t^8.72)/(g3^5*g4^9) + (g1*t^8.72)/(g3^9*g4^5) + (g2*t^8.72)/(g3^9*g4^5) + (2*g1*g2*t^8.73)/(g3^20*g4^20) + t^8.75/(g3*g4^9) + (3*t^8.75)/(g3^5*g4^5) + (g1*t^8.75)/(g2*g3^5*g4^5) + (g2*t^8.75)/(g1*g3^5*g4^5) + t^8.75/(g3^9*g4) + t^8.78/(g1*g3*g4^5) + t^8.78/(g2*g3*g4^5) + t^8.78/(g1*g3^5*g4) + t^8.78/(g2*g3^5*g4) + (2*t^8.79)/(g3^16*g4^16) + t^8.81/(g1^2*g3*g4) + t^8.81/(g2^2*g3*g4) + t^8.81/(g1*g2*g3*g4) - t^4.65/(g3^3*g4^3*y) - (g1*g2*t^6.79)/(g3^11*g4^11*y) - t^6.85/(g3^7*g4^7*y) + (g1*g2*t^7.34)/(g3^12*g4^12*y) + (g3^3*g4^3*t^7.35)/y - t^7.94/(g3^9*g4^9*y) + (g1*g2*t^8.44)/(g3^14*g4^14*y) + (g3*g4*t^8.45)/y + t^8.49/(g3^10*g4^10*y) + (g3^5*g4^5*t^8.51)/(g1*g2*y) + (g1^2*g2^2*t^8.88)/(g3^8*g4^8*y) + (g1^2*g2*t^8.91)/(g3^4*g4^8*y) + (g1*g2^2*t^8.91)/(g3^4*g4^8*y) + (g1^2*g2*t^8.91)/(g3^8*g4^4*y) + (g1*g2^2*t^8.91)/(g3^8*g4^4*y) - (g1^2*g2^2*t^8.93)/(g3^19*g4^19*y) + (g1^2*t^8.94)/(g3^4*g4^4*y) + (3*g1*g2*t^8.94)/(g3^4*g4^4*y) + (g2^2*t^8.94)/(g3^4*g4^4*y) + (2*g1*t^8.97)/(g3^4*y) + (2*g2*t^8.97)/(g3^4*y) + (2*g1*t^8.97)/(g4^4*y) + (2*g2*t^8.97)/(g4^4*y) - (g1*g2*t^8.98)/(g3^15*g4^15*y) - (t^4.65*y)/(g3^3*g4^3) - (g1*g2*t^6.79*y)/(g3^11*g4^11) - (t^6.85*y)/(g3^7*g4^7) + (g1*g2*t^7.34*y)/(g3^12*g4^12) + g3^3*g4^3*t^7.35*y - (t^7.94*y)/(g3^9*g4^9) + (g1*g2*t^8.44*y)/(g3^14*g4^14) + g3*g4*t^8.45*y + (t^8.49*y)/(g3^10*g4^10) + (g3^5*g4^5*t^8.51*y)/(g1*g2) + (g1^2*g2^2*t^8.88*y)/(g3^8*g4^8) + (g1^2*g2*t^8.91*y)/(g3^4*g4^8) + (g1*g2^2*t^8.91*y)/(g3^4*g4^8) + (g1^2*g2*t^8.91*y)/(g3^8*g4^4) + (g1*g2^2*t^8.91*y)/(g3^8*g4^4) - (g1^2*g2^2*t^8.93*y)/(g3^19*g4^19) + (g1^2*t^8.94*y)/(g3^4*g4^4) + (3*g1*g2*t^8.94*y)/(g3^4*g4^4) + (g2^2*t^8.94*y)/(g3^4*g4^4) + (2*g1*t^8.97*y)/g3^4 + (2*g2*t^8.97*y)/g3^4 + (2*g1*t^8.97*y)/g4^4 + (2*g2*t^8.97*y)/g4^4 - (g1*g2*t^8.98*y)/(g3^15*g4^15)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55674 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ 0.8984 1.1064 0.8119 [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y detail