Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55794 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8979 | 1.104 | 0.8134 | [X:[], M:[0.7242, 0.7242], q:[0.642, 0.6339, 0.6339], qb:[0.642, 0.6339, 0.6183], phi:[0.549]] | [X:[], M:[[0, -2, -2, 0], [-2, -2, -1, 0]], q:[[-2, 2, 1, 0], [2, 0, 1, 0], [4, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$ | $M_2q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$ | -6 | 2*t^2.17 + t^3.29 + 3*t^3.76 + 2*t^3.78 + 3*t^3.8 + 4*t^3.83 + t^3.85 + 3*t^4.34 + t^5.36 + 3*t^5.4 + 2*t^5.43 + 6*t^5.45 + 8*t^5.47 + 3*t^5.5 + 4*t^5.93 + t^5.95 - 6*t^6. - 4*t^6.02 - 3*t^6.05 - 2*t^6.07 + 4*t^6.52 + t^6.59 + 3*t^7.05 + 2*t^7.07 + 3*t^7.1 + 4*t^7.12 + t^7.15 + 6*t^7.51 + 2*t^7.53 + 6*t^7.54 + 11*t^7.56 + 16*t^7.58 + t^7.6 + 14*t^7.61 + 6*t^7.62 + 12*t^7.63 + 3*t^7.64 - t^7.65 + 10*t^7.66 + 4*t^7.68 - 3*t^7.69 + t^7.7 - 2*t^7.72 - t^8.06 + 5*t^8.1 - 3*t^8.11 - 2*t^8.13 - 6*t^8.16 - 10*t^8.17 - 6*t^8.18 - 6*t^8.2 - 4*t^8.22 - t^8.24 + t^8.29 + t^8.65 + 5*t^8.69 + 3*t^8.7 + 2*t^8.72 + 6*t^8.74 + 2*t^8.76 + 6*t^8.77 + 3*t^8.79 - t^4.65/y - (2*t^6.82)/y + t^7.34/y + t^7.35/y - t^7.94/y + (4*t^8.47)/y + (6*t^8.93)/y + (4*t^8.95)/y + (6*t^8.98)/y - (3*t^8.99)/y - t^4.65*y - 2*t^6.82*y + t^7.34*y + t^7.35*y - t^7.94*y + 4*t^8.47*y + 6*t^8.93*y + 4*t^8.95*y + 6*t^8.98*y - 3*t^8.99*y | t^2.17/(g2^2*g3^2) + t^2.17/(g1^2*g2^2*g3) + t^3.29/(g1^2*g2^2*g3^2*g4^2) + g1^4*g4^4*t^3.76 + g1^2*g3*g4^4*t^3.76 + g3^2*g4^4*t^3.76 + g2^2*g4^4*t^3.78 + (g2^2*g3*g4^4*t^3.78)/g1^2 + g1^6*g3*t^3.8 + g1^4*g3^2*t^3.8 + g1^2*g3^3*t^3.8 + g1^4*g2^2*t^3.83 + g1^2*g2^2*g3*t^3.83 + g2^2*g3^2*t^3.83 + (g2^2*g3^3*t^3.83)/g1^2 + (g2^4*g3*t^3.85)/g1^2 + t^4.34/(g2^4*g3^4) + t^4.34/(g1^2*g2^4*g3^3) + t^4.34/(g1^4*g2^4*g3^2) + (g4^7*t^5.36)/(g1*g2*g3) + (g1*g4^3*t^5.4)/g2 + (g1^3*g4^3*t^5.4)/(g2*g3) + (g3*g4^3*t^5.4)/(g1*g2) + (g2*g4^3*t^5.43)/g1^3 + (g2*g4^3*t^5.43)/(g1*g3) + (g1^5*t^5.45)/(g2*g4) + (g1^7*t^5.45)/(g2*g3*g4) + (2*g1^3*g3*t^5.45)/(g2*g4) + (g1*g3^2*t^5.45)/(g2*g4) + (g3^3*t^5.45)/(g1*g2*g4) + t^5.47/(g1^2*g2^4*g3^4*g4^2) + t^5.47/(g1^4*g2^4*g3^3*g4^2) + (2*g1*g2*t^5.47)/g4 + (g1^3*g2*t^5.47)/(g3*g4) + (2*g2*g3*t^5.47)/(g1*g4) + (g2*g3^2*t^5.47)/(g1^3*g4) + (g2^3*t^5.5)/(g1^3*g4) + (g2^3*t^5.5)/(g1*g3*g4) + (g2^3*g3*t^5.5)/(g1^5*g4) + (g4^4*t^5.93)/g2^2 + (g1^4*g4^4*t^5.93)/(g2^2*g3^2) + (g1^2*g4^4*t^5.93)/(g2^2*g3) + (g3*g4^4*t^5.93)/(g1^2*g2^2) + (g4^4*t^5.95)/(g1^2*g3) - 4*t^6. - (g1^2*t^6.)/g3 - (g3*t^6.)/g1^2 - (g2^2*t^6.02)/g1^4 - (g2^2*t^6.02)/g3^2 - (g2^2*t^6.02)/(g1^2*g3) - (g2^2*g3*t^6.02)/g1^6 - (g1^4*t^6.05)/g4^4 - (g1^2*g3*t^6.05)/g4^4 - (g3^2*t^6.05)/g4^4 - (g2^2*t^6.07)/g4^4 - (g2^2*g3*t^6.07)/(g1^2*g4^4) + t^6.52/(g2^6*g3^6) + t^6.52/(g1^2*g2^6*g3^5) + t^6.52/(g1^4*g2^6*g3^4) + t^6.52/(g1^6*g2^6*g3^3) + t^6.59/(g1^4*g2^4*g3^4*g4^4) + (g4^2*t^7.05)/(g1^2*g2^2) + (g1^2*g4^2*t^7.05)/(g2^2*g3^2) + (g4^2*t^7.05)/(g2^2*g3) + (g4^2*t^7.07)/(g1^2*g3^2) + (g4^2*t^7.07)/(g1^4*g3) + (g1^2*t^7.1)/(g2^2*g4^2) + (g1^4*t^7.1)/(g2^2*g3*g4^2) + (g3*t^7.1)/(g2^2*g4^2) + t^7.12/(g1^2*g4^2) + (g1^2*t^7.12)/(g3^2*g4^2) + t^7.12/(g3*g4^2) + (g3*t^7.12)/(g1^4*g4^2) + (g2^2*t^7.15)/(g1^4*g3*g4^2) + g1^8*g4^8*t^7.51 + g1^6*g3*g4^8*t^7.51 + 2*g1^4*g3^2*g4^8*t^7.51 + g1^2*g3^3*g4^8*t^7.51 + g3^4*g4^8*t^7.51 + (g4^7*t^7.53)/(g1*g2^3*g3^3) + (g4^7*t^7.53)/(g1^3*g2^3*g3^2) + g1^4*g2^2*g4^8*t^7.54 + 2*g1^2*g2^2*g3*g4^8*t^7.54 + 2*g2^2*g3^2*g4^8*t^7.54 + (g2^2*g3^3*g4^8*t^7.54)/g1^2 + g1^10*g3*g4^4*t^7.56 + 2*g1^8*g3^2*g4^4*t^7.56 + 2*g1^6*g3^3*g4^4*t^7.56 + 2*g1^4*g3^4*g4^4*t^7.56 + g1^2*g3^5*g4^4*t^7.56 + g2^4*g4^8*t^7.56 + (g2^4*g3*g4^8*t^7.56)/g1^2 + (g2^4*g3^2*g4^8*t^7.56)/g1^4 + (g4^3*t^7.58)/(g1^3*g2^3) + (g1^3*g4^3*t^7.58)/(g2^3*g3^3) + (g1*g4^3*t^7.58)/(g2^3*g3^2) + (g4^3*t^7.58)/(g1*g2^3*g3) + g1^8*g2^2*g4^4*t^7.58 + 2*g1^6*g2^2*g3*g4^4*t^7.58 + 3*g1^4*g2^2*g3^2*g4^4*t^7.58 + 3*g1^2*g2^2*g3^3*g4^4*t^7.58 + 2*g2^2*g3^4*g4^4*t^7.58 + (g2^2*g3^5*g4^4*t^7.58)/g1^2 + (g4^3*t^7.6)/(g1^3*g2*g3^2) + g1^12*g3^2*t^7.61 + g1^10*g3^3*t^7.61 + 2*g1^8*g3^4*t^7.61 + g1^6*g3^5*t^7.61 + g1^4*g3^6*t^7.61 + g1^4*g2^4*g4^4*t^7.61 + 2*g1^2*g2^4*g3*g4^4*t^7.61 + 2*g2^4*g3^2*g4^4*t^7.61 + (2*g2^4*g3^3*g4^4*t^7.61)/g1^2 + (g2^4*g3^4*g4^4*t^7.61)/g1^4 + (g1*t^7.62)/(g2^3*g4) + (g1^7*t^7.62)/(g2^3*g3^3*g4) + (g1^5*t^7.62)/(g2^3*g3^2*g4) + (g1^3*t^7.62)/(g2^3*g3*g4) + (g3*t^7.62)/(g1*g2^3*g4) + (g3^2*t^7.62)/(g1^3*g2^3*g4) + g1^10*g2^2*g3*t^7.63 + 2*g1^8*g2^2*g3^2*t^7.63 + 2*g1^6*g2^2*g3^3*t^7.63 + 2*g1^4*g2^2*g3^4*t^7.63 + 2*g1^2*g2^2*g3^5*t^7.63 + g2^2*g3^6*t^7.63 + (g2^6*g3*g4^4*t^7.63)/g1^2 + (g2^6*g3^2*g4^4*t^7.63)/g1^4 + t^7.64/(g1^2*g2^6*g3^6*g4^2) + t^7.64/(g1^4*g2^6*g3^5*g4^2) + t^7.64/(g1^6*g2^6*g3^4*g4^2) - t^7.65/(g1*g2*g3*g4) + g1^8*g2^4*t^7.66 + g1^6*g2^4*g3*t^7.66 + 2*g1^4*g2^4*g3^2*t^7.66 + 2*g1^2*g2^4*g3^3*t^7.66 + 2*g2^4*g3^4*t^7.66 + (g2^4*g3^5*t^7.66)/g1^2 + (g2^4*g3^6*t^7.66)/g1^4 + g1^2*g2^6*g3*t^7.68 + g2^6*g3^2*t^7.68 + (g2^6*g3^3*t^7.68)/g1^2 + (g2^6*g3^4*t^7.68)/g1^4 - (g1*t^7.69)/(g2*g4^5) - (g1^3*t^7.69)/(g2*g3*g4^5) - (g3*t^7.69)/(g1*g2*g4^5) + (g2^8*g3^2*t^7.7)/g1^4 - (g2*t^7.72)/(g1^3*g4^5) - (g2*t^7.72)/(g1*g3*g4^5) - g1*g2*g3*g4^9*t^8.06 + (g4^4*t^8.1)/(g1^4*g2^4) + (g1^4*g4^4*t^8.1)/(g2^4*g3^4) + (g1^2*g4^4*t^8.1)/(g2^4*g3^3) + (g4^4*t^8.1)/(g2^4*g3^2) + (g4^4*t^8.1)/(g1^2*g2^4*g3) - g1^5*g2*g3*g4^5*t^8.11 - g1^3*g2*g3^2*g4^5*t^8.11 - g1*g2*g3^3*g4^5*t^8.11 - g1*g2^3*g3*g4^5*t^8.13 - (g2^3*g3^2*g4^5*t^8.13)/g1 - g1^9*g2*g3*g4*t^8.16 - g1^7*g2*g3^2*g4*t^8.16 - 2*g1^5*g2*g3^3*g4*t^8.16 - g1^3*g2*g3^4*g4*t^8.16 - g1*g2*g3^5*g4*t^8.16 - t^8.17/(g1^4*g2^2) - (g1^2*t^8.17)/(g2^2*g3^3) - (4*t^8.17)/(g2^2*g3^2) - (4*t^8.17)/(g1^2*g2^2*g3) - g1^5*g2^3*g3*g4*t^8.18 - 2*g1^3*g2^3*g3^2*g4*t^8.18 - 2*g1*g2^3*g3^3*g4*t^8.18 - (g2^3*g3^4*g4*t^8.18)/g1 - t^8.2/(g1^2*g3^3) - t^8.2/(g1^4*g3^2) - t^8.2/(g1^6*g3) - g1*g2^5*g3*g4*t^8.2 - (g2^5*g3^2*g4*t^8.2)/g1 - (g2^5*g3^3*g4*t^8.2)/g1^3 - t^8.22/(g2^2*g4^4) - (g1^4*t^8.22)/(g2^2*g3^2*g4^4) - (g1^2*t^8.22)/(g2^2*g3*g4^4) - (g3*t^8.22)/(g1^2*g2^2*g4^4) - t^8.24/(g1^2*g3*g4^4) + t^8.29/g4^8 + (g4^5*t^8.65)/(g1^3*g2^3*g3^3) + t^8.69/(g2^8*g3^8) + t^8.69/(g1^2*g2^8*g3^7) + t^8.69/(g1^4*g2^8*g3^6) + t^8.69/(g1^6*g2^8*g3^5) + t^8.69/(g1^8*g2^8*g3^4) + (g1*g4*t^8.7)/(g2^3*g3^3) + (g4*t^8.7)/(g1*g2^3*g3^2) + (g4*t^8.7)/(g1^3*g2^3*g3) + (g4*t^8.72)/(g1^3*g2*g3^3) + (g4*t^8.72)/(g1^5*g2*g3^2) + t^8.74/(g1*g2^3*g4^3) + (g1^5*t^8.74)/(g2^3*g3^3*g4^3) + (g1^3*t^8.74)/(g2^3*g3^2*g4^3) + (2*g1*t^8.74)/(g2^3*g3*g4^3) + (g3*t^8.74)/(g1^3*g2^3*g4^3) + t^8.76/(g1^4*g2^6*g3^6*g4^4) + t^8.76/(g1^6*g2^6*g3^5*g4^4) + t^8.77/(g1^5*g2*g4^3) + (g1*t^8.77)/(g2*g3^3*g4^3) + (2*t^8.77)/(g1*g2*g3^2*g4^3) + (2*t^8.77)/(g1^3*g2*g3*g4^3) + (g2*t^8.79)/(g1^3*g3^3*g4^3) + (g2*t^8.79)/(g1^5*g3^2*g4^3) + (g2*t^8.79)/(g1^7*g3*g4^3) - t^4.65/(g1*g2*g3*g4*y) - t^6.82/(g1*g2^3*g3^3*g4*y) - t^6.82/(g1^3*g2^3*g3^2*g4*y) + t^7.34/(g1^2*g2^4*g3^3*y) + (g1*g2*g3*g4*t^7.35)/y - t^7.94/(g1^3*g2^3*g3^3*g4^3*y) + t^8.47/(g1^2*g2^4*g3^4*g4^2*y) + t^8.47/(g1^4*g2^4*g3^3*g4^2*y) + (g1*g2*t^8.47)/(g4*y) + (g2*g3*t^8.47)/(g1*g4*y) + (2*g4^4*t^8.93)/(g2^2*y) + (g1^4*g4^4*t^8.93)/(g2^2*g3^2*y) + (2*g1^2*g4^4*t^8.93)/(g2^2*g3*y) + (g3*g4^4*t^8.93)/(g1^2*g2^2*y) + (g4^4*t^8.95)/(g1^4*y) + (g4^4*t^8.95)/(g3^2*y) + (2*g4^4*t^8.95)/(g1^2*g3*y) + (2*g1^4*t^8.98)/(g2^2*y) + (g1^6*t^8.98)/(g2^2*g3*y) + (2*g1^2*g3*t^8.98)/(g2^2*y) + (g3^2*t^8.98)/(g2^2*y) - t^8.99/(g1*g2^5*g3^5*g4*y) - t^8.99/(g1^3*g2^5*g3^4*g4*y) - t^8.99/(g1^5*g2^5*g3^3*g4*y) - (t^4.65*y)/(g1*g2*g3*g4) - (t^6.82*y)/(g1*g2^3*g3^3*g4) - (t^6.82*y)/(g1^3*g2^3*g3^2*g4) + (t^7.34*y)/(g1^2*g2^4*g3^3) + g1*g2*g3*g4*t^7.35*y - (t^7.94*y)/(g1^3*g2^3*g3^3*g4^3) + (t^8.47*y)/(g1^2*g2^4*g3^4*g4^2) + (t^8.47*y)/(g1^4*g2^4*g3^3*g4^2) + (g1*g2*t^8.47*y)/g4 + (g2*g3*t^8.47*y)/(g1*g4) + (2*g4^4*t^8.93*y)/g2^2 + (g1^4*g4^4*t^8.93*y)/(g2^2*g3^2) + (2*g1^2*g4^4*t^8.93*y)/(g2^2*g3) + (g3*g4^4*t^8.93*y)/(g1^2*g2^2) + (g4^4*t^8.95*y)/g1^4 + (g4^4*t^8.95*y)/g3^2 + (2*g4^4*t^8.95*y)/(g1^2*g3) + (2*g1^4*t^8.98*y)/g2^2 + (g1^6*t^8.98*y)/(g2^2*g3) + (2*g1^2*g3*t^8.98*y)/g2^2 + (g3^2*t^8.98*y)/g2^2 - (t^8.99*y)/(g1*g2^5*g3^5*g4) - (t^8.99*y)/(g1^3*g2^5*g3^4*g4) - (t^8.99*y)/(g1^5*g2^5*g3^3*g4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55674 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_2q_2\tilde{q}_1$ | 0.8984 | 1.1064 | 0.8119 | [X:[], M:[0.7053, 0.722], q:[0.6474, 0.6474, 0.6306], qb:[0.6306, 0.6193, 0.6193], phi:[0.5514]] | t^2.12 + t^2.17 + t^3.31 + t^3.72 + 4*t^3.75 + t^3.78 + 4*t^3.8 + 3*t^3.83 + t^4.23 + t^4.28 + t^4.33 + 3*t^5.37 + 4*t^5.4 + t^5.42 + 3*t^5.44 + 4*t^5.45 + t^5.47 + 4*t^5.49 + 3*t^5.54 + t^5.83 + 4*t^5.87 + t^5.88 + t^5.9 + 4*t^5.92 - 9*t^6. - t^4.65/y - t^4.65*y | detail |