Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55692 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ 0.8899 1.0904 0.8161 [X:[], M:[0.7425, 0.7425], q:[0.6288, 0.6288, 0.6288], qb:[0.6288, 0.7307, 0.5997], phi:[0.5386]] [X:[], M:[[0, 1, 1, -7, 1], [0, -1, -1, 0, 0]], q:[[-1, -1, -1, 7, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, 0, 0, -2, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2q_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$ . -9 2*t^2.23 + t^3.23 + 4*t^3.69 + 4*t^3.77 + t^3.99 + 4*t^4.08 + 3*t^4.45 + t^5.21 + 4*t^5.3 + 10*t^5.39 + 2*t^5.46 + 4*t^5.91 - 9*t^6. - 4*t^6.09 + 2*t^6.22 + 4*t^6.31 - t^6.39 + t^6.46 + 4*t^6.68 + 4*t^6.92 + 4*t^7. + 10*t^7.37 + 2*t^7.44 + 12*t^7.46 + 4*t^7.53 + 9*t^7.55 + 4*t^7.62 + 4*t^7.68 + 3*t^7.69 - 4*t^7.7 + 14*t^7.76 + 12*t^7.85 + 4*t^8.14 - 12*t^8.23 - 4*t^8.31 - t^8.38 + t^8.4 + 4*t^8.45 - 4*t^8.46 + 8*t^8.53 + 8*t^8.62 + 2*t^8.69 - t^8.77 + 4*t^8.9 + 5*t^8.91 + 14*t^8.99 - t^4.62/y - (2*t^6.84)/y + t^7.38/y + t^7.45/y - t^7.85/y + (2*t^8.39)/y + (2*t^8.46)/y + (8*t^8.91)/y - t^4.62*y - 2*t^6.84*y + t^7.38*y + t^7.45*y - t^7.85*y + 2*t^8.39*y + 2*t^8.46*y + 8*t^8.91*y t^2.23/(g2*g3) + (g2*g3*g5*t^2.23)/g4^7 + t^3.23/g4^4 + (g4^7*t^3.69)/(g1*g2*g3) + g1*g5*t^3.69 + g2*g5*t^3.69 + g3*g5*t^3.69 + g1*g2*t^3.77 + g1*g3*t^3.77 + (g4^7*t^3.77)/(g1*g2*g5) + (g4^7*t^3.77)/(g1*g3*g5) + g4*g5*t^3.99 + g1*g4*t^4.08 + g2*g4*t^4.08 + g3*g4*t^4.08 + (g4^8*t^4.08)/(g1*g2*g3*g5) + t^4.45/(g2^2*g3^2) + (g5*t^4.45)/g4^7 + (g2^2*g3^2*g5^2*t^4.45)/g4^14 + (g5^2*t^5.21)/g4^2 + (g4^5*t^5.3)/(g1*g2*g3) + (g1*g5*t^5.3)/g4^2 + (g2*g5*t^5.3)/g4^2 + (g3*g5*t^5.3)/g4^2 + (g1^2*t^5.39)/g4^2 + (g1*g2*t^5.39)/g4^2 + (g2^2*t^5.39)/g4^2 + (g1*g3*t^5.39)/g4^2 + (g2*g3*t^5.39)/g4^2 + (g3^2*t^5.39)/g4^2 + (g4^12*t^5.39)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*t^5.39)/(g1*g2*g5) + (g4^5*t^5.39)/(g1*g3*g5) + (g4^5*t^5.39)/(g2*g3*g5) + t^5.46/(g2*g3*g4^4) + (g2*g3*g5*t^5.46)/g4^11 + (g4^7*t^5.91)/(g1*g2^2*g3^2) + (g1*g5*t^5.91)/(g2*g3) + (g2^2*g3*g5^2*t^5.91)/g4^7 + (g2*g3^2*g5^2*t^5.91)/g4^7 - 5*t^6. - (g2*t^6.)/g3 - (g3*t^6.)/g2 - (g4^7*t^6.)/(g1^2*g2*g3*g5) - (g1^2*g2*g3*g5*t^6.)/g4^7 - (g4^7*t^6.09)/(g1*g2*g3*g5^2) - (g1*t^6.09)/g5 - (g2*t^6.09)/g5 - (g3*t^6.09)/g5 + (g4*g5*t^6.22)/(g2*g3) + (g2*g3*g5^2*t^6.22)/g4^6 + (g1*g4*t^6.31)/(g2*g3) + (g4^8*t^6.31)/(g1*g2^2*g3^2*g5) + (g2^2*g3*g5*t^6.31)/g4^6 + (g2*g3^2*g5*t^6.31)/g4^6 - (g4*t^6.39)/g5 + t^6.46/g4^8 + t^6.68/(g2^3*g3^3) + (g5*t^6.68)/(g2*g3*g4^7) + (g2*g3*g5^2*t^6.68)/g4^14 + (g2^3*g3^3*g5^3*t^6.68)/g4^21 + (g4^3*t^6.92)/(g1*g2*g3) + (g1*g5*t^6.92)/g4^4 + (g2*g5*t^6.92)/g4^4 + (g3*g5*t^6.92)/g4^4 + (g1*g2*t^7.)/g4^4 + (g1*g3*t^7.)/g4^4 + (g4^3*t^7.)/(g1*g2*g5) + (g4^3*t^7.)/(g1*g3*g5) + (g4^14*t^7.37)/(g1^2*g2^2*g3^2) + (g4^7*g5*t^7.37)/(g1*g2) + (g4^7*g5*t^7.37)/(g1*g3) + (g4^7*g5*t^7.37)/(g2*g3) + g1^2*g5^2*t^7.37 + g1*g2*g5^2*t^7.37 + g2^2*g5^2*t^7.37 + g1*g3*g5^2*t^7.37 + g2*g3*g5^2*t^7.37 + g3^2*g5^2*t^7.37 + (g5^2*t^7.44)/(g2*g3*g4^2) + (g2*g3*g5^3*t^7.44)/g4^9 + (g4^7*t^7.46)/g1 + (g4^7*t^7.46)/g2 + (g4^7*t^7.46)/g3 + (g2*g4^7*t^7.46)/(g1*g3) + (g3*g4^7*t^7.46)/(g1*g2) + (g4^14*t^7.46)/(g1^2*g2*g3^2*g5) + (g4^14*t^7.46)/(g1^2*g2^2*g3*g5) + g1^2*g2*g5*t^7.46 + g1*g2^2*g5*t^7.46 + g1^2*g3*g5*t^7.46 + g1*g2*g3*g5*t^7.46 + g1*g3^2*g5*t^7.46 + (g4^5*t^7.53)/(g1*g2^2*g3^2) + (g1*g5*t^7.53)/(g2*g3*g4^2) + (g2^2*g3*g5^2*t^7.53)/g4^9 + (g2*g3^2*g5^2*t^7.53)/g4^9 + g1^2*g2^2*t^7.55 + g1^2*g2*g3*t^7.55 + g1^2*g3^2*t^7.55 + (g4^14*t^7.55)/(g1^2*g2^2*g5^2) + (g4^14*t^7.55)/(g1^2*g3^2*g5^2) + (g4^14*t^7.55)/(g1^2*g2*g3*g5^2) + (g4^7*t^7.55)/g5 + (g2*g4^7*t^7.55)/(g3*g5) + (g3*g4^7*t^7.55)/(g2*g5) - (2*t^7.62)/g4^2 + (g1^2*t^7.62)/(g2*g3*g4^2) + (g4^12*t^7.62)/(g1^2*g2^3*g3^3*g5^2) + (g4^5*t^7.62)/(g2^2*g3^2*g5) + (g2^3*g3*g5*t^7.62)/g4^9 + (g2^2*g3^2*g5*t^7.62)/g4^9 + (g2*g3^3*g5*t^7.62)/g4^9 + (g4^8*g5*t^7.68)/(g1*g2*g3) + g1*g4*g5^2*t^7.68 + g2*g4*g5^2*t^7.68 + g3*g4*g5^2*t^7.68 + t^7.69/(g2^2*g3^2*g4^4) + (g5*t^7.69)/g4^11 + (g2^2*g3^2*g5^2*t^7.69)/g4^18 - (g4^5*t^7.7)/(g1*g2*g3*g5^2) - (g1*t^7.7)/(g4^2*g5) - (g2*t^7.7)/(g4^2*g5) - (g3*t^7.7)/(g4^2*g5) + (2*g4^8*t^7.76)/(g1*g2) + (2*g4^8*t^7.76)/(g1*g3) + (g4^8*t^7.76)/(g2*g3) + (g4^15*t^7.76)/(g1^2*g2^2*g3^2*g5) + g1^2*g4*g5*t^7.76 + 2*g1*g2*g4*g5*t^7.76 + g2^2*g4*g5*t^7.76 + 2*g1*g3*g4*g5*t^7.76 + g2*g3*g4*g5*t^7.76 + g3^2*g4*g5*t^7.76 + g1^2*g2*g4*t^7.85 + g1*g2^2*g4*t^7.85 + g1^2*g3*g4*t^7.85 + g1*g2*g3*g4*t^7.85 + g1*g3^2*g4*t^7.85 + (g4^15*t^7.85)/(g1^2*g2*g3^2*g5^2) + (g4^15*t^7.85)/(g1^2*g2^2*g3*g5^2) + (g4^8*t^7.85)/(g1*g5) + (g4^8*t^7.85)/(g2*g5) + (g4^8*t^7.85)/(g3*g5) + (g2*g4^8*t^7.85)/(g1*g3*g5) + (g3*g4^8*t^7.85)/(g1*g2*g5) + (g4^7*t^8.14)/(g1*g2^3*g3^3) + (g1*g5*t^8.14)/(g2^2*g3^2) + (g2^3*g3^2*g5^3*t^8.14)/g4^14 + (g2^2*g3^3*g5^3*t^8.14)/g4^14 - (4*t^8.23)/(g2*g3) - (g4^7*t^8.23)/(g1^2*g2^2*g3^2*g5) - (g1^2*g5*t^8.23)/g4^7 - (g2^2*g5*t^8.23)/g4^7 - (4*g2*g3*g5*t^8.23)/g4^7 - (g3^2*g5*t^8.23)/g4^7 - (g2^2*g3*t^8.31)/g4^7 - (g2*g3^2*t^8.31)/g4^7 - (g4^7*t^8.31)/(g1*g2^2*g3^2*g5^2) - (g1*t^8.31)/(g2*g3*g5) - g4^3*g5*t^8.38 + t^8.4/g5^2 + (g4*g5*t^8.45)/(g2^2*g3^2) + (2*g5^2*t^8.45)/g4^6 + (g2^2*g3^2*g5^3*t^8.45)/g4^13 - g1*g4^3*t^8.46 - g2*g4^3*t^8.46 - g3*g4^3*t^8.46 - (g4^10*t^8.46)/(g1*g2*g3*g5) + (g1*g4*t^8.53)/(g2^2*g3^2) + (g4*t^8.53)/(g1*g2*g3) + (g4^8*t^8.53)/(g1*g2^3*g3^3*g5) + (g1*g5*t^8.53)/g4^6 + (g2*g5*t^8.53)/g4^6 + (g3*g5*t^8.53)/g4^6 + (g2^3*g3^2*g5^2*t^8.53)/g4^13 + (g2^2*g3^3*g5^2*t^8.53)/g4^13 + (g1^2*t^8.62)/g4^6 + (g1*g2*t^8.62)/g4^6 + (g2^2*t^8.62)/g4^6 + (g1*g3*t^8.62)/g4^6 + (g3^2*t^8.62)/g4^6 + (g4^8*t^8.62)/(g1^2*g2^2*g3^2*g5^2) + (g4*t^8.62)/(g1*g2*g5) + (g4*t^8.62)/(g1*g3*g5) + t^8.69/(g2*g3*g4^8) + (g2*g3*g5*t^8.69)/g4^15 - g4^4*t^8.77 + (g4^5*g5^2*t^8.9)/(g1*g2*g3) + (g1*g5^3*t^8.9)/g4^2 + (g2*g5^3*t^8.9)/g4^2 + (g3*g5^3*t^8.9)/g4^2 + t^8.91/(g2^4*g3^4) + (g5*t^8.91)/(g2^2*g3^2*g4^7) + (g5^2*t^8.91)/g4^14 + (g2^2*g3^2*g5^3*t^8.91)/g4^21 + (g2^4*g3^4*g5^4*t^8.91)/g4^28 + (g4^12*t^8.99)/(g1^2*g2^2*g3^2) + (2*g4^5*g5*t^8.99)/(g1*g2) + (2*g4^5*g5*t^8.99)/(g1*g3) + (g4^5*g5*t^8.99)/(g2*g3) + (g1^2*g5^2*t^8.99)/g4^2 + (2*g1*g2*g5^2*t^8.99)/g4^2 + (g2^2*g5^2*t^8.99)/g4^2 + (2*g1*g3*g5^2*t^8.99)/g4^2 + (g2*g3*g5^2*t^8.99)/g4^2 + (g3^2*g5^2*t^8.99)/g4^2 - t^4.62/(g4^2*y) - t^6.84/(g2*g3*g4^2*y) - (g2*g3*g5*t^6.84)/(g4^9*y) + (g4^2*t^7.38)/y + (g5*t^7.45)/(g4^7*y) - t^7.85/(g4^6*y) + (g2*g3*t^8.39)/(g4^2*y) + (g4^5*t^8.39)/(g2*g3*g5*y) + t^8.46/(g2*g3*g4^4*y) + (g2*g3*g5*t^8.46)/(g4^11*y) + (g4^7*t^8.91)/(g1*g2^2*g3^2*y) + (g5*t^8.91)/(g1*y) + (g5*t^8.91)/(g2*y) + (g5*t^8.91)/(g3*y) + (g1*g5*t^8.91)/(g2*g3*y) + (g1*g2*g3*g5^2*t^8.91)/(g4^7*y) + (g2^2*g3*g5^2*t^8.91)/(g4^7*y) + (g2*g3^2*g5^2*t^8.91)/(g4^7*y) - (t^4.62*y)/g4^2 - (t^6.84*y)/(g2*g3*g4^2) - (g2*g3*g5*t^6.84*y)/g4^9 + g4^2*t^7.38*y + (g5*t^7.45*y)/g4^7 - (t^7.85*y)/g4^6 + (g2*g3*t^8.39*y)/g4^2 + (g4^5*t^8.39*y)/(g2*g3*g5) + (t^8.46*y)/(g2*g3*g4^4) + (g2*g3*g5*t^8.46*y)/g4^11 + (g4^7*t^8.91*y)/(g1*g2^2*g3^2) + (g5*t^8.91*y)/g1 + (g5*t^8.91*y)/g2 + (g5*t^8.91*y)/g3 + (g1*g5*t^8.91*y)/(g2*g3) + (g1*g2*g3*g5^2*t^8.91*y)/g4^7 + (g2^2*g3*g5^2*t^8.91*y)/g4^7 + (g2*g3^2*g5^2*t^8.91*y)/g4^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55457 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ 0.8981 1.1052 0.8127 [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y detail