Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55684 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.9091 | 1.129 | 0.8052 | [X:[], M:[0.7433, 0.7433, 0.8559], q:[0.6284, 0.6284, 0.6284], qb:[0.6284, 0.5991, 0.5991], phi:[0.5721]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [2, 2, 2, 2, 2, 2]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_2M_3$, $ M_1M_3$, $ M_3^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_1\tilde{q}_2$ | . | -12 | 2*t^2.23 + t^2.57 + t^3.59 + 8*t^3.68 + 4*t^3.77 + 3*t^4.46 + 2*t^4.8 + t^5.14 + 3*t^5.31 + 8*t^5.4 + 10*t^5.49 + 2*t^5.82 + 8*t^5.91 - 12*t^6. - 8*t^6.09 + t^6.16 + 8*t^6.25 + 4*t^6.34 + 4*t^6.69 + 3*t^7.03 + t^7.19 + 8*t^7.28 + 36*t^7.36 + 24*t^7.45 + 15*t^7.54 + 8*t^7.63 + t^7.7 + t^7.72 - 8*t^7.8 + 3*t^8.05 + 8*t^8.14 - 18*t^8.23 - 8*t^8.32 + 2*t^8.39 + 3*t^8.41 + 8*t^8.48 - 12*t^8.57 - 8*t^8.66 + t^8.73 + 8*t^8.82 + 7*t^8.91 + 5*t^8.92 + 24*t^8.99 - t^4.72/y - (2*t^6.95)/y + t^7.46/y + (2*t^7.8)/y + (2*t^8.49)/y + (2*t^8.82)/y + (16*t^8.91)/y - t^4.72*y - 2*t^6.95*y + t^7.46*y + 2*t^7.8*y + 2*t^8.49*y + 2*t^8.82*y + 16*t^8.91*y | t^2.23/(g1^4*g2^4) + t^2.23/(g3^4*g4^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.57 + g5^4*g6^4*t^3.59 + g1^4*g5^4*t^3.68 + g2^4*g5^4*t^3.68 + g3^4*g5^4*t^3.68 + g4^4*g5^4*t^3.68 + g1^4*g6^4*t^3.68 + g2^4*g6^4*t^3.68 + g3^4*g6^4*t^3.68 + g4^4*g6^4*t^3.68 + g1^4*g3^4*t^3.77 + g2^4*g3^4*t^3.77 + g1^4*g4^4*t^3.77 + g2^4*g4^4*t^3.77 + t^4.46/(g1^8*g2^8) + t^4.46/(g3^8*g4^8) + t^4.46/(g1^4*g2^4*g3^4*g4^4) + (g1^2*g2^2*g5^2*g6^2*t^4.8)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^4.8)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.14 + (g5^7*t^5.31)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.31)/(g1*g2*g3*g4) + (g6^7*t^5.31)/(g1*g2*g3*g4*g5) + (g1^3*g5^3*t^5.4)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.4)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.4)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.4)/(g1*g2*g3*g6) + (g1^3*g6^3*t^5.4)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.4)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.4)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.4)/(g1*g2*g3*g5) + (g1^7*t^5.49)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.49)/(g3*g4*g5*g6) + (g2^7*t^5.49)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.49)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.49)/(g1*g4*g5*g6) + (g3^7*t^5.49)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.49)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.49)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.49)/(g1*g2*g5*g6) + (g4^7*t^5.49)/(g1*g2*g3*g5*g6) + (g5^4*g6^4*t^5.82)/(g1^4*g2^4) + (g5^4*g6^4*t^5.82)/(g3^4*g4^4) + (g3^4*g5^4*t^5.91)/(g1^4*g2^4) + (g1^4*g5^4*t^5.91)/(g3^4*g4^4) + (g2^4*g5^4*t^5.91)/(g3^4*g4^4) + (g4^4*g5^4*t^5.91)/(g1^4*g2^4) + (g3^4*g6^4*t^5.91)/(g1^4*g2^4) + (g1^4*g6^4*t^5.91)/(g3^4*g4^4) + (g2^4*g6^4*t^5.91)/(g3^4*g4^4) + (g4^4*g6^4*t^5.91)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.09)/g5^4 - (g2^4*t^6.09)/g5^4 - (g3^4*t^6.09)/g5^4 - (g4^4*t^6.09)/g5^4 - (g1^4*t^6.09)/g6^4 - (g2^4*t^6.09)/g6^4 - (g3^4*t^6.09)/g6^4 - (g4^4*t^6.09)/g6^4 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.16 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.25 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.25 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.25 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.25 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.25 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.25 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.25 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.25 + g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*t^6.34 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.34 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.34 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.34 + t^6.69/(g1^12*g2^12) + t^6.69/(g3^12*g4^12) + t^6.69/(g1^4*g2^4*g3^8*g4^8) + t^6.69/(g1^8*g2^8*g3^4*g4^4) + (g1^2*g2^2*g5^2*g6^2*t^7.03)/(g3^6*g4^6) + (g5^2*g6^2*t^7.03)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^7.03)/(g1^6*g2^6) + g5^8*g6^8*t^7.19 + g1^4*g5^8*g6^4*t^7.28 + g2^4*g5^8*g6^4*t^7.28 + g3^4*g5^8*g6^4*t^7.28 + g4^4*g5^8*g6^4*t^7.28 + g1^4*g5^4*g6^8*t^7.28 + g2^4*g5^4*g6^8*t^7.28 + g3^4*g5^4*g6^8*t^7.28 + g4^4*g5^4*g6^8*t^7.28 + g1^8*g5^8*t^7.36 + g1^4*g2^4*g5^8*t^7.36 + g2^8*g5^8*t^7.36 + g1^4*g3^4*g5^8*t^7.36 + g2^4*g3^4*g5^8*t^7.36 + g3^8*g5^8*t^7.36 + g1^4*g4^4*g5^8*t^7.36 + g2^4*g4^4*g5^8*t^7.36 + g3^4*g4^4*g5^8*t^7.36 + g4^8*g5^8*t^7.36 + g1^8*g5^4*g6^4*t^7.36 + 2*g1^4*g2^4*g5^4*g6^4*t^7.36 + g2^8*g5^4*g6^4*t^7.36 + 2*g1^4*g3^4*g5^4*g6^4*t^7.36 + 2*g2^4*g3^4*g5^4*g6^4*t^7.36 + g3^8*g5^4*g6^4*t^7.36 + 2*g1^4*g4^4*g5^4*g6^4*t^7.36 + 2*g2^4*g4^4*g5^4*g6^4*t^7.36 + 2*g3^4*g4^4*g5^4*g6^4*t^7.36 + g4^8*g5^4*g6^4*t^7.36 + g1^8*g6^8*t^7.36 + g1^4*g2^4*g6^8*t^7.36 + g2^8*g6^8*t^7.36 + g1^4*g3^4*g6^8*t^7.36 + g2^4*g3^4*g6^8*t^7.36 + g3^8*g6^8*t^7.36 + g1^4*g4^4*g6^8*t^7.36 + g2^4*g4^4*g6^8*t^7.36 + g3^4*g4^4*g6^8*t^7.36 + g4^8*g6^8*t^7.36 + g1^8*g3^4*g5^4*t^7.45 + g1^4*g2^4*g3^4*g5^4*t^7.45 + g2^8*g3^4*g5^4*t^7.45 + g1^4*g3^8*g5^4*t^7.45 + g2^4*g3^8*g5^4*t^7.45 + g1^8*g4^4*g5^4*t^7.45 + g1^4*g2^4*g4^4*g5^4*t^7.45 + g2^8*g4^4*g5^4*t^7.45 + g1^4*g3^4*g4^4*g5^4*t^7.45 + g2^4*g3^4*g4^4*g5^4*t^7.45 + g1^4*g4^8*g5^4*t^7.45 + g2^4*g4^8*g5^4*t^7.45 + g1^8*g3^4*g6^4*t^7.45 + g1^4*g2^4*g3^4*g6^4*t^7.45 + g2^8*g3^4*g6^4*t^7.45 + g1^4*g3^8*g6^4*t^7.45 + g2^4*g3^8*g6^4*t^7.45 + g1^8*g4^4*g6^4*t^7.45 + g1^4*g2^4*g4^4*g6^4*t^7.45 + g2^8*g4^4*g6^4*t^7.45 + g1^4*g3^4*g4^4*g6^4*t^7.45 + g2^4*g3^4*g4^4*g6^4*t^7.45 + g1^4*g4^8*g6^4*t^7.45 + g2^4*g4^8*g6^4*t^7.45 + g1^8*g3^8*t^7.54 + g1^4*g2^4*g3^8*t^7.54 + g2^8*g3^8*t^7.54 + g1^8*g3^4*g4^4*t^7.54 + g1^4*g2^4*g3^4*g4^4*t^7.54 + g2^8*g3^4*g4^4*t^7.54 + g1^8*g4^8*t^7.54 + g1^4*g2^4*g4^8*t^7.54 + g2^8*g4^8*t^7.54 + (g5^7*t^7.54)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.54)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.54)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.54)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.54)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.54)/(g1^5*g2^5*g3*g4*g5) + (g1^3*g5^3*t^7.63)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.63)/(g1*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.63)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.63)/(g1^5*g2^5*g3*g6) + (g1^3*g6^3*t^7.63)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.63)/(g1*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.63)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.63)/(g1^5*g2^5*g3*g5) + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.7 - (g5^3*t^7.72)/(g1*g2*g3*g4*g6^5) + (g1^7*t^7.72)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.72)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.72)/(g1*g3^5*g4^5*g5*g6) - (3*t^7.72)/(g1*g2*g3*g4*g5*g6) + (g3^7*t^7.72)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.72)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.72)/(g1^5*g2^5*g3*g5*g6) - (g6^3*t^7.72)/(g1*g2*g3*g4*g5^5) - (g1^3*t^7.8)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.8)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.8)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.8)/(g1*g2*g3*g5*g6^5) - (g1^3*t^7.8)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.8)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.8)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.8)/(g1*g2*g3*g5^5*g6) + (g5^4*g6^4*t^8.05)/(g1^8*g2^8) + (g5^4*g6^4*t^8.05)/(g3^8*g4^8) + (g5^4*g6^4*t^8.05)/(g1^4*g2^4*g3^4*g4^4) + (g3^4*g5^4*t^8.14)/(g1^8*g2^8) + (g1^4*g5^4*t^8.14)/(g3^8*g4^8) + (g2^4*g5^4*t^8.14)/(g3^8*g4^8) + (g4^4*g5^4*t^8.14)/(g1^8*g2^8) + (g3^4*g6^4*t^8.14)/(g1^8*g2^8) + (g1^4*g6^4*t^8.14)/(g3^8*g4^8) + (g2^4*g6^4*t^8.14)/(g3^8*g4^8) + (g4^4*g6^4*t^8.14)/(g1^8*g2^8) - (5*t^8.23)/(g1^4*g2^4) - (5*t^8.23)/(g3^4*g4^4) - (g1^4*t^8.23)/(g2^4*g3^4*g4^4) - (g2^4*t^8.23)/(g1^4*g3^4*g4^4) - (g3^4*t^8.23)/(g1^4*g2^4*g4^4) - (g4^4*t^8.23)/(g1^4*g2^4*g3^4) - (g5^4*t^8.23)/(g1^4*g2^4*g6^4) - (g5^4*t^8.23)/(g3^4*g4^4*g6^4) - (g6^4*t^8.23)/(g1^4*g2^4*g5^4) - (g6^4*t^8.23)/(g3^4*g4^4*g5^4) - (g3^4*t^8.32)/(g1^4*g2^4*g5^4) - (g1^4*t^8.32)/(g3^4*g4^4*g5^4) - (g2^4*t^8.32)/(g3^4*g4^4*g5^4) - (g4^4*t^8.32)/(g1^4*g2^4*g5^4) - (g3^4*t^8.32)/(g1^4*g2^4*g6^4) - (g1^4*t^8.32)/(g3^4*g4^4*g6^4) - (g2^4*t^8.32)/(g3^4*g4^4*g6^4) - (g4^4*t^8.32)/(g1^4*g2^4*g6^4) + (g1^2*g2^2*g5^6*g6^6*t^8.39)/(g3^2*g4^2) + (g3^2*g4^2*g5^6*g6^6*t^8.39)/(g1^2*g2^2) + t^8.41/g5^8 + t^8.41/g6^8 + t^8.41/(g5^4*g6^4) + (g1^6*g2^2*g5^6*g6^2*t^8.48)/(g3^2*g4^2) + (g1^2*g2^6*g5^6*g6^2*t^8.48)/(g3^2*g4^2) + (g3^6*g4^2*g5^6*g6^2*t^8.48)/(g1^2*g2^2) + (g3^2*g4^6*g5^6*g6^2*t^8.48)/(g1^2*g2^2) + (g1^6*g2^2*g5^2*g6^6*t^8.48)/(g3^2*g4^2) + (g1^2*g2^6*g5^2*g6^6*t^8.48)/(g3^2*g4^2) + (g3^6*g4^2*g5^2*g6^6*t^8.48)/(g1^2*g2^2) + (g3^2*g4^6*g5^2*g6^6*t^8.48)/(g1^2*g2^2) - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.57)/g6^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.57)/g4^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.57)/g2^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.57 - (g2^6*g3^2*g4^2*g5^2*g6^2*t^8.57)/g1^2 - (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.57)/g3^2 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.57)/g5^2 - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.66)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.66)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.66)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.66)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.66)/g5^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.66)/g5^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.66)/g5^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.66)/g5^2 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.73 + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.82 + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.82 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.82 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.82 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.82 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.82 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.82 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.82 + (g5^11*g6^3*t^8.91)/(g1*g2*g3*g4) + g1^8*g2^4*g3^8*g4^4*g5^4*g6^4*t^8.91 + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.91 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.91 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.91 + (g5^7*g6^7*t^8.91)/(g1*g2*g3*g4) + (g5^3*g6^11*t^8.91)/(g1*g2*g3*g4) + t^8.92/(g1^16*g2^16) + t^8.92/(g3^16*g4^16) + t^8.92/(g1^4*g2^4*g3^12*g4^12) + t^8.92/(g1^8*g2^8*g3^8*g4^8) + t^8.92/(g1^12*g2^12*g3^4*g4^4) + (g1^3*g5^11*t^8.99)/(g2*g3*g4*g6) + (g2^3*g5^11*t^8.99)/(g1*g3*g4*g6) + (g3^3*g5^11*t^8.99)/(g1*g2*g4*g6) + (g4^3*g5^11*t^8.99)/(g1*g2*g3*g6) + (2*g1^3*g5^7*g6^3*t^8.99)/(g2*g3*g4) + (2*g2^3*g5^7*g6^3*t^8.99)/(g1*g3*g4) + (2*g3^3*g5^7*g6^3*t^8.99)/(g1*g2*g4) + (2*g4^3*g5^7*g6^3*t^8.99)/(g1*g2*g3) + (2*g1^3*g5^3*g6^7*t^8.99)/(g2*g3*g4) + (2*g2^3*g5^3*g6^7*t^8.99)/(g1*g3*g4) + (2*g3^3*g5^3*g6^7*t^8.99)/(g1*g2*g4) + (2*g4^3*g5^3*g6^7*t^8.99)/(g1*g2*g3) + (g1^3*g6^11*t^8.99)/(g2*g3*g4*g5) + (g2^3*g6^11*t^8.99)/(g1*g3*g4*g5) + (g3^3*g6^11*t^8.99)/(g1*g2*g4*g5) + (g4^3*g6^11*t^8.99)/(g1*g2*g3*g5) - t^4.72/(g1*g2*g3*g4*g5*g6*y) - t^6.95/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.95/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.46/(g1^4*g2^4*g3^4*g4^4*y) + (g1^2*g2^2*g5^2*g6^2*t^7.8)/(g3^2*g4^2*y) + (g3^2*g4^2*g5^2*g6^2*t^7.8)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.49)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.49)/(g1*g2*g5*g6*y) + (g5^4*g6^4*t^8.82)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.82)/(g3^4*g4^4*y) + (g5^4*t^8.91)/(g1^4*y) + (g5^4*t^8.91)/(g2^4*y) + (g5^4*t^8.91)/(g3^4*y) + (g3^4*g5^4*t^8.91)/(g1^4*g2^4*y) + (g5^4*t^8.91)/(g4^4*y) + (g1^4*g5^4*t^8.91)/(g3^4*g4^4*y) + (g2^4*g5^4*t^8.91)/(g3^4*g4^4*y) + (g4^4*g5^4*t^8.91)/(g1^4*g2^4*y) + (g6^4*t^8.91)/(g1^4*y) + (g6^4*t^8.91)/(g2^4*y) + (g6^4*t^8.91)/(g3^4*y) + (g3^4*g6^4*t^8.91)/(g1^4*g2^4*y) + (g6^4*t^8.91)/(g4^4*y) + (g1^4*g6^4*t^8.91)/(g3^4*g4^4*y) + (g2^4*g6^4*t^8.91)/(g3^4*g4^4*y) + (g4^4*g6^4*t^8.91)/(g1^4*g2^4*y) - (t^4.72*y)/(g1*g2*g3*g4*g5*g6) - (t^6.95*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.95*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.46*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^2*g2^2*g5^2*g6^2*t^7.8*y)/(g3^2*g4^2) + (g3^2*g4^2*g5^2*g6^2*t^7.8*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.49*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.49*y)/(g1*g2*g5*g6) + (g5^4*g6^4*t^8.82*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.82*y)/(g3^4*g4^4) + (g5^4*t^8.91*y)/g1^4 + (g5^4*t^8.91*y)/g2^4 + (g5^4*t^8.91*y)/g3^4 + (g3^4*g5^4*t^8.91*y)/(g1^4*g2^4) + (g5^4*t^8.91*y)/g4^4 + (g1^4*g5^4*t^8.91*y)/(g3^4*g4^4) + (g2^4*g5^4*t^8.91*y)/(g3^4*g4^4) + (g4^4*g5^4*t^8.91*y)/(g1^4*g2^4) + (g6^4*t^8.91*y)/g1^4 + (g6^4*t^8.91*y)/g2^4 + (g6^4*t^8.91*y)/g3^4 + (g3^4*g6^4*t^8.91*y)/(g1^4*g2^4) + (g6^4*t^8.91*y)/g4^4 + (g1^4*g6^4*t^8.91*y)/(g3^4*g4^4) + (g2^4*g6^4*t^8.91*y)/(g3^4*g4^4) + (g4^4*g6^4*t^8.91*y)/(g1^4*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55728 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_2q_1\tilde{q}_2$ | 0.9089 | 1.1282 | 0.8057 | [X:[], M:[0.7377, 0.7556, 0.8569], q:[0.6362, 0.6261, 0.6222], qb:[0.6222, 0.6082, 0.5988], phi:[0.5715]] | t^2.21 + t^2.27 + t^2.57 + t^3.62 + 2*t^3.66 + t^3.67 + 2*t^3.69 + t^3.7 + t^3.71 + t^3.73 + 2*t^3.74 + 2*t^3.78 + t^4.43 + t^4.48 + t^4.53 + t^4.78 + t^4.84 + t^5.14 + t^5.31 + t^5.34 + t^5.36 + 2*t^5.38 + t^5.39 + 2*t^5.41 + 2*t^5.42 + 4*t^5.45 + 2*t^5.46 + t^5.47 + 2*t^5.49 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.88 + t^5.89 + 2*t^5.9 + t^5.94 - 7*t^6. - t^4.71/y - t^4.71*y | detail | |
55771 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_2$ | 0.9282 | 1.1625 | 0.7984 | [X:[], M:[0.7319, 0.7478, 0.8682, 0.7319], q:[0.6474, 0.6206, 0.6261], qb:[0.6261, 0.6206, 0.5956], phi:[0.5659]] | 2*t^2.2 + t^2.24 + t^2.6 + 2*t^3.65 + 2*t^3.67 + t^3.72 + t^3.73 + 4*t^3.74 + 2*t^3.82 + 3*t^4.39 + 2*t^4.44 + t^4.49 + 2*t^4.8 + t^4.85 + t^5.21 + t^5.27 + 2*t^5.35 + 2*t^5.36 + 3*t^5.42 + t^5.43 + 4*t^5.44 + 3*t^5.45 + 2*t^5.5 + 2*t^5.52 + t^5.58 + 3*t^5.84 + 4*t^5.86 + 2*t^5.89 + 6*t^5.94 + 2*t^5.97 - 10*t^6. - t^4.7/y - t^4.7*y | detail | |
55753 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ M_4\tilde{q}_2\tilde{q}_3$ | 0.9271 | 1.1576 | 0.8009 | [X:[], M:[0.7502, 0.7502, 0.8747, 0.7502], q:[0.6249, 0.6249, 0.6249], qb:[0.6249, 0.6249, 0.6249], phi:[0.5626]] | 3*t^2.25 + t^2.62 + 12*t^3.75 + 6*t^4.5 + 3*t^4.87 + t^5.25 + 21*t^5.44 - t^4.69/y - t^4.69*y | detail | |
55721 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\phi_1^2$ + $ \phi_1q_1q_3$ | 0.8951 | 1.118 | 0.8007 | [X:[], M:[0.7024, 0.7024, 0.8655], q:[0.7164, 0.5812, 0.7164], qb:[0.5812, 0.5679, 0.5679], phi:[0.5672]] | 2*t^2.11 + t^2.6 + t^3.41 + 4*t^3.45 + t^3.49 + 4*t^3.85 + 2*t^3.89 + 3*t^4.21 + t^4.3 + 2*t^4.7 + 3*t^5.11 + 4*t^5.15 + 4*t^5.19 + 2*t^5.51 + 8*t^5.55 + 2*t^5.59 + 4*t^5.96 - 4*t^6. - t^4.7/y - t^4.7*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55457 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ | 0.8981 | 1.1052 | 0.8127 | [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] | 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y | detail |