Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55695 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ 0.9175 1.1389 0.8056 [X:[], M:[0.7232, 0.7232, 0.7232], q:[0.6384, 0.6384, 0.6384], qb:[0.6384, 0.6384, 0.6384], phi:[0.5424]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [0, 0, -4, -4, 0, 0], [0, 0, 0, 0, -4, -4]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6 {a: 51103/55696, c: 31717/27848, M1: 128/177, M2: 128/177, M3: 128/177, q1: 113/177, q2: 113/177, q3: 113/177, qb1: 113/177, qb2: 113/177, qb3: 113/177, phi1: 32/59}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ q_1q_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ $M_3q_1q_3$, $ M_3q_2q_3$, $ M_3q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$ 0 3*t^2.17 + t^3.25 + 12*t^3.83 + 6*t^4.34 + 3*t^5.42 + 21*t^5.46 + 11*t^6.51 + 12*t^7.08 + 6*t^7.59 + 28*t^7.63 + 63*t^7.66 - 15*t^8.17 - 21*t^8.2 + 18*t^8.68 + 21*t^8.71 - t^4.63/y - (3*t^6.8)/y + (3*t^7.34)/y + t^7.37/y - t^7.88/y + (3*t^8.42)/y + (3*t^8.46)/y - (6*t^8.97)/y - t^4.63*y - 3*t^6.8*y + 3*t^7.34*y + t^7.37*y - t^7.88*y + 3*t^8.42*y + 3*t^8.46*y - 6*t^8.97*y t^2.17/(g1^4*g2^4) + t^2.17/(g3^4*g4^4) + t^2.17/(g5^4*g6^4) + t^3.25/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g1^4*g3^4*t^3.83 + g2^4*g3^4*t^3.83 + g1^4*g4^4*t^3.83 + g2^4*g4^4*t^3.83 + g1^4*g5^4*t^3.83 + g2^4*g5^4*t^3.83 + g3^4*g5^4*t^3.83 + g4^4*g5^4*t^3.83 + g1^4*g6^4*t^3.83 + g2^4*g6^4*t^3.83 + g3^4*g6^4*t^3.83 + g4^4*g6^4*t^3.83 + t^4.34/(g1^8*g2^8) + t^4.34/(g3^8*g4^8) + t^4.34/(g1^4*g2^4*g3^4*g4^4) + t^4.34/(g5^8*g6^8) + t^4.34/(g1^4*g2^4*g5^4*g6^4) + t^4.34/(g3^4*g4^4*g5^4*g6^4) + t^5.42/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6) + t^5.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + t^5.42/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^7*t^5.46)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.46)/(g3*g4*g5*g6) + (g2^7*t^5.46)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.46)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.46)/(g1*g4*g5*g6) + (g3^7*t^5.46)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.46)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.46)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.46)/(g1*g2*g5*g6) + (g4^7*t^5.46)/(g1*g2*g3*g5*g6) + (g1^3*g5^3*t^5.46)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.46)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.46)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.46)/(g1*g2*g3*g6) + (g5^7*t^5.46)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.46)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.46)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.46)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.46)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.46)/(g1*g2*g3*g4) + (g6^7*t^5.46)/(g1*g2*g3*g4*g5) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 + (g3^4*g5^4*t^6.)/(g1^4*g2^4) + (g1^4*g5^4*t^6.)/(g3^4*g4^4) + (g2^4*g5^4*t^6.)/(g3^4*g4^4) + (g4^4*g5^4*t^6.)/(g1^4*g2^4) + (g1^4*g3^4*t^6.)/(g5^4*g6^4) + (g2^4*g3^4*t^6.)/(g5^4*g6^4) + (g1^4*g4^4*t^6.)/(g5^4*g6^4) + (g2^4*g4^4*t^6.)/(g5^4*g6^4) - (g5^4*t^6.)/g6^4 + (g3^4*g6^4*t^6.)/(g1^4*g2^4) + (g1^4*g6^4*t^6.)/(g3^4*g4^4) + (g2^4*g6^4*t^6.)/(g3^4*g4^4) + (g4^4*g6^4*t^6.)/(g1^4*g2^4) - (g6^4*t^6.)/g5^4 + t^6.51/(g1^12*g2^12) + t^6.51/(g3^12*g4^12) + t^6.51/(g1^4*g2^4*g3^8*g4^8) + t^6.51/(g1^8*g2^8*g3^4*g4^4) + t^6.51/(g5^12*g6^12) + t^6.51/(g1^4*g2^4*g5^8*g6^8) + t^6.51/(g3^4*g4^4*g5^8*g6^8) + t^6.51/(g1^8*g2^8*g5^4*g6^4) + t^6.51/(g3^8*g4^8*g5^4*g6^4) + (2*t^6.51)/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g1^2*g3^2*t^7.08)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.08)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.08)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.08)/(g1^2*g3^2*g5^2*g6^2) + (g1^2*g5^2*t^7.08)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.08)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.08)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.08)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.08)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.08)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.08)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.08)/(g1^2*g2^2*g3^2*g5^2) + t^7.59/(g1^2*g2^2*g3^2*g4^2*g5^10*g6^10) + t^7.59/(g1^2*g2^2*g3^6*g4^6*g5^6*g6^6) + t^7.59/(g1^6*g2^6*g3^2*g4^2*g5^6*g6^6) + t^7.59/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + t^7.59/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.59/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g1^7*t^7.63)/(g2*g3*g4*g5^5*g6^5) + (g1^3*g2^3*t^7.63)/(g3*g4*g5^5*g6^5) + (g2^7*t^7.63)/(g1*g3*g4*g5^5*g6^5) + (g1^3*g3^3*t^7.63)/(g2*g4*g5^5*g6^5) + (g2^3*g3^3*t^7.63)/(g1*g4*g5^5*g6^5) + (g3^7*t^7.63)/(g1*g2*g4*g5^5*g6^5) + (g1^3*g4^3*t^7.63)/(g2*g3*g5^5*g6^5) + (g2^3*g4^3*t^7.63)/(g1*g3*g5^5*g6^5) + (g3^3*g4^3*t^7.63)/(g1*g2*g5^5*g6^5) + (g4^7*t^7.63)/(g1*g2*g3*g5^5*g6^5) + (g1^7*t^7.63)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.63)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.63)/(g1*g3^5*g4^5*g5*g6) - (2*t^7.63)/(g1*g2*g3*g4*g5*g6) + (g3^7*t^7.63)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.63)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.63)/(g1^5*g2^5*g3*g5*g6) + (g1^3*g5^3*t^7.63)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.63)/(g1*g3^5*g4^5*g6) + (g3^3*g5^3*t^7.63)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.63)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.63)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.63)/(g1^5*g2^5*g3*g4*g6) + (g1^3*g6^3*t^7.63)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.63)/(g1*g3^5*g4^5*g5) + (g3^3*g6^3*t^7.63)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.63)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.63)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.63)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.63)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.63)/(g1^5*g2^5*g3*g4*g5) + g1^8*g3^8*t^7.66 + g1^4*g2^4*g3^8*t^7.66 + g2^8*g3^8*t^7.66 + g1^8*g3^4*g4^4*t^7.66 + g1^4*g2^4*g3^4*g4^4*t^7.66 + g2^8*g3^4*g4^4*t^7.66 + g1^8*g4^8*t^7.66 + g1^4*g2^4*g4^8*t^7.66 + g2^8*g4^8*t^7.66 + g1^8*g3^4*g5^4*t^7.66 + g1^4*g2^4*g3^4*g5^4*t^7.66 + g2^8*g3^4*g5^4*t^7.66 + g1^4*g3^8*g5^4*t^7.66 + g2^4*g3^8*g5^4*t^7.66 + g1^8*g4^4*g5^4*t^7.66 + g1^4*g2^4*g4^4*g5^4*t^7.66 + g2^8*g4^4*g5^4*t^7.66 + g1^4*g3^4*g4^4*g5^4*t^7.66 + g2^4*g3^4*g4^4*g5^4*t^7.66 + g1^4*g4^8*g5^4*t^7.66 + g2^4*g4^8*g5^4*t^7.66 + g1^8*g5^8*t^7.66 + g1^4*g2^4*g5^8*t^7.66 + g2^8*g5^8*t^7.66 + g1^4*g3^4*g5^8*t^7.66 + g2^4*g3^4*g5^8*t^7.66 + g3^8*g5^8*t^7.66 + g1^4*g4^4*g5^8*t^7.66 + g2^4*g4^4*g5^8*t^7.66 + g3^4*g4^4*g5^8*t^7.66 + g4^8*g5^8*t^7.66 + g1^8*g3^4*g6^4*t^7.66 + g1^4*g2^4*g3^4*g6^4*t^7.66 + g2^8*g3^4*g6^4*t^7.66 + g1^4*g3^8*g6^4*t^7.66 + g2^4*g3^8*g6^4*t^7.66 + g1^8*g4^4*g6^4*t^7.66 + g1^4*g2^4*g4^4*g6^4*t^7.66 + g2^8*g4^4*g6^4*t^7.66 + g1^4*g3^4*g4^4*g6^4*t^7.66 + g2^4*g3^4*g4^4*g6^4*t^7.66 + g1^4*g4^8*g6^4*t^7.66 + g2^4*g4^8*g6^4*t^7.66 + g1^8*g5^4*g6^4*t^7.66 + g1^4*g2^4*g5^4*g6^4*t^7.66 + g2^8*g5^4*g6^4*t^7.66 + g1^4*g3^4*g5^4*g6^4*t^7.66 + g2^4*g3^4*g5^4*g6^4*t^7.66 + g3^8*g5^4*g6^4*t^7.66 + g1^4*g4^4*g5^4*g6^4*t^7.66 + g2^4*g4^4*g5^4*g6^4*t^7.66 + g3^4*g4^4*g5^4*g6^4*t^7.66 + g4^8*g5^4*g6^4*t^7.66 + g1^8*g6^8*t^7.66 + g1^4*g2^4*g6^8*t^7.66 + g2^8*g6^8*t^7.66 + g1^4*g3^4*g6^8*t^7.66 + g2^4*g3^4*g6^8*t^7.66 + g3^8*g6^8*t^7.66 + g1^4*g4^4*g6^8*t^7.66 + g2^4*g4^4*g6^8*t^7.66 + g3^4*g4^4*g6^8*t^7.66 + g4^8*g6^8*t^7.66 - (5*t^8.17)/(g1^4*g2^4) - (5*t^8.17)/(g3^4*g4^4) - (g1^4*t^8.17)/(g2^4*g3^4*g4^4) - (g2^4*t^8.17)/(g1^4*g3^4*g4^4) - (g3^4*t^8.17)/(g1^4*g2^4*g4^4) - (g4^4*t^8.17)/(g1^4*g2^4*g3^4) + (g3^4*g5^4*t^8.17)/(g1^8*g2^8) + (g1^4*g5^4*t^8.17)/(g3^8*g4^8) + (g2^4*g5^4*t^8.17)/(g3^8*g4^8) + (g4^4*g5^4*t^8.17)/(g1^8*g2^8) + (g1^4*g3^4*t^8.17)/(g5^8*g6^8) + (g2^4*g3^4*t^8.17)/(g5^8*g6^8) + (g1^4*g4^4*t^8.17)/(g5^8*g6^8) + (g2^4*g4^4*t^8.17)/(g5^8*g6^8) - (5*t^8.17)/(g5^4*g6^4) - (g1^4*t^8.17)/(g2^4*g5^4*g6^4) - (g2^4*t^8.17)/(g1^4*g5^4*g6^4) - (g3^4*t^8.17)/(g4^4*g5^4*g6^4) - (g4^4*t^8.17)/(g3^4*g5^4*g6^4) - (g5^4*t^8.17)/(g1^4*g2^4*g6^4) - (g5^4*t^8.17)/(g3^4*g4^4*g6^4) + (g3^4*g6^4*t^8.17)/(g1^8*g2^8) + (g1^4*g6^4*t^8.17)/(g3^8*g4^8) + (g2^4*g6^4*t^8.17)/(g3^8*g4^8) + (g4^4*g6^4*t^8.17)/(g1^8*g2^8) - (g6^4*t^8.17)/(g1^4*g2^4*g5^4) - (g6^4*t^8.17)/(g3^4*g4^4*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.2 - g1^5*g2^5*g3*g4*g5*g6*t^8.2 - g1*g2^9*g3*g4*g5*g6*t^8.2 - g1^5*g2*g3^5*g4*g5*g6*t^8.2 - g1*g2^5*g3^5*g4*g5*g6*t^8.2 - g1*g2*g3^9*g4*g5*g6*t^8.2 - g1^5*g2*g3*g4^5*g5*g6*t^8.2 - g1*g2^5*g3*g4^5*g5*g6*t^8.2 - g1*g2*g3^5*g4^5*g5*g6*t^8.2 - g1*g2*g3*g4^9*g5*g6*t^8.2 - g1^5*g2*g3*g4*g5^5*g6*t^8.2 - g1*g2^5*g3*g4*g5^5*g6*t^8.2 - g1*g2*g3^5*g4*g5^5*g6*t^8.2 - g1*g2*g3*g4^5*g5^5*g6*t^8.2 - g1*g2*g3*g4*g5^9*g6*t^8.2 - g1^5*g2*g3*g4*g5*g6^5*t^8.2 - g1*g2^5*g3*g4*g5*g6^5*t^8.2 - g1*g2*g3^5*g4*g5*g6^5*t^8.2 - g1*g2*g3*g4^5*g5*g6^5*t^8.2 - g1*g2*g3*g4*g5^5*g6^5*t^8.2 - g1*g2*g3*g4*g5*g6^9*t^8.2 + t^8.68/(g1^16*g2^16) + t^8.68/(g3^16*g4^16) + t^8.68/(g1^4*g2^4*g3^12*g4^12) + t^8.68/(g1^8*g2^8*g3^8*g4^8) + t^8.68/(g1^12*g2^12*g3^4*g4^4) + t^8.68/(g5^16*g6^16) + t^8.68/(g1^4*g2^4*g5^12*g6^12) + t^8.68/(g3^4*g4^4*g5^12*g6^12) + t^8.68/(g1^8*g2^8*g5^8*g6^8) + t^8.68/(g3^8*g4^8*g5^8*g6^8) + (2*t^8.68)/(g1^4*g2^4*g3^4*g4^4*g5^8*g6^8) + t^8.68/(g1^12*g2^12*g5^4*g6^4) + t^8.68/(g3^12*g4^12*g5^4*g6^4) + (2*t^8.68)/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + (2*t^8.68)/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g1^5*t^8.71)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.71)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.71)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.71)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.71)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.71)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.71)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.71)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.71)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.71)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.71)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.71)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.71)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.71)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.71)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.71)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.71)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.71)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.71)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.71)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.71)/(g1^3*g2^3*g3^3*g4^3*g5^3) - t^4.63/(g1*g2*g3*g4*g5*g6*y) - t^6.8/(g1*g2*g3*g4*g5^5*g6^5*y) - t^6.8/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.8/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.34/(g1^4*g2^4*g3^4*g4^4*y) + t^7.34/(g1^4*g2^4*g5^4*g6^4*y) + t^7.34/(g3^4*g4^4*g5^4*g6^4*y) + (g1*g2*g3*g4*g5*g6*t^7.37)/y - t^7.88/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.42/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*y) + t^8.42/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + t^8.42/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.46)/(g3*g4*g5*g6*y) + (g3^3*g4^3*t^8.46)/(g1*g2*g5*g6*y) + (g5^3*g6^3*t^8.46)/(g1*g2*g3*g4*y) - t^8.97/(g1*g2*g3*g4*g5^9*g6^9*y) - t^8.97/(g1*g2*g3^5*g4^5*g5^5*g6^5*y) - t^8.97/(g1^5*g2^5*g3*g4*g5^5*g6^5*y) - t^8.97/(g1*g2*g3^9*g4^9*g5*g6*y) - t^8.97/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.97/(g1^9*g2^9*g3*g4*g5*g6*y) - (t^4.63*y)/(g1*g2*g3*g4*g5*g6) - (t^6.8*y)/(g1*g2*g3*g4*g5^5*g6^5) - (t^6.8*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.8*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.34*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.34*y)/(g1^4*g2^4*g5^4*g6^4) + (t^7.34*y)/(g3^4*g4^4*g5^4*g6^4) + g1*g2*g3*g4*g5*g6*t^7.37*y - (t^7.88*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.42*y)/(g1^2*g2^2*g3^2*g4^2*g5^6*g6^6) + (t^8.42*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (t^8.42*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.46*y)/(g3*g4*g5*g6) + (g3^3*g4^3*t^8.46*y)/(g1*g2*g5*g6) + (g5^3*g6^3*t^8.46*y)/(g1*g2*g3*g4) - (t^8.97*y)/(g1*g2*g3*g4*g5^9*g6^9) - (t^8.97*y)/(g1*g2*g3^5*g4^5*g5^5*g6^5) - (t^8.97*y)/(g1^5*g2^5*g3*g4*g5^5*g6^5) - (t^8.97*y)/(g1*g2*g3^9*g4^9*g5*g6) - (t^8.97*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.97*y)/(g1^9*g2^9*g3*g4*g5*g6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55757 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ + $ M_1\phi_1^2$ 0.9086 1.1324 0.8023 [X:[], M:[0.8361, 0.7458, 0.7458], q:[0.5819, 0.5819, 0.6271], qb:[0.6271, 0.6271, 0.6271], phi:[0.5819]] 2*t^2.24 + t^2.51 + t^3.49 + 8*t^3.63 + 4*t^3.76 + 3*t^4.47 + 2*t^4.75 + t^5.02 + 3*t^5.24 + 8*t^5.37 + 10*t^5.51 + 2*t^5.73 + 8*t^5.86 - 11*t^6. - t^4.75/y - t^4.75*y detail
55792 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ + $ M_1^2$ 0.875 1.0999 0.7956 [X:[], M:[1.0, 0.6955, 0.6955], q:[0.5, 0.5, 0.6523], qb:[0.6523, 0.6523, 0.6523], phi:[0.5977]] 2*t^2.09 + t^3. + 8*t^3.46 + t^3.59 + 4*t^3.91 + 3*t^4.17 + 3*t^4.79 + 2*t^5.09 + 8*t^5.25 + 8*t^5.54 + 2*t^5.67 + 10*t^5.71 - 11*t^6. - t^4.79/y - t^4.79*y detail
55700 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ + $ \phi_1q_1\tilde{q}_2$ 0.9017 1.1225 0.8033 [X:[], M:[0.681, 0.7688, 0.681], q:[0.7337, 0.5854, 0.6156], qb:[0.6156, 0.7337, 0.5854], phi:[0.5327]] 2*t^2.04 + t^2.31 + t^3.2 + t^3.51 + 4*t^3.6 + 2*t^3.96 + 4*t^4.05 + 3*t^4.09 + 2*t^4.35 + t^4.4 + t^4.61 + 3*t^5.11 + 4*t^5.2 + 2*t^5.24 + 3*t^5.29 + t^5.5 + 2*t^5.56 + 8*t^5.65 + t^5.82 - 5*t^6. - t^4.6/y - t^4.6*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55457 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ 0.8981 1.1052 0.8127 [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y detail