Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55683 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8977 1.103 0.8139 [X:[], M:[0.7364, 0.72], q:[0.6318, 0.6318, 0.64], qb:[0.64, 0.6318, 0.6318], phi:[0.5482]] [X:[], M:[[0, 0, 0, -2, -2], [0, -4, -4, 0, 0]], q:[[-1, 0, 0, 2, 2], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 4, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 2]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$ . -15 t^2.16 + t^2.21 + t^3.29 + 5*t^3.79 + 8*t^3.82 + t^4.32 + t^4.37 + t^4.42 + 10*t^5.44 + t^5.45 + 8*t^5.46 + 3*t^5.48 + t^5.5 + 5*t^5.95 - 15*t^6. + t^6.48 + t^6.53 + 2*t^6.58 + t^6.63 + 5*t^7.08 + 8*t^7.1 + 14*t^7.58 + 10*t^7.6 + 33*t^7.61 + 30*t^7.63 - 6*t^7.64 + t^7.66 + 3*t^7.69 + t^7.71 + 5*t^8.11 - 10*t^8.15 - 12*t^8.16 - 8*t^8.17 - 3*t^8.2 - 5*t^8.21 + t^8.64 + t^8.69 + 10*t^8.72 + 2*t^8.74 + 8*t^8.75 + 3*t^8.77 + 2*t^8.79 + t^8.84 - t^4.64/y - t^6.8/y - t^6.85/y + t^7.36/y + t^7.37/y - t^7.93/y + t^8.44/y + t^8.45/y + t^8.48/y + t^8.5/y + (5*t^8.95)/y - t^8.96/y + (8*t^8.98)/y - t^4.64*y - t^6.8*y - t^6.85*y + t^7.36*y + t^7.37*y - t^7.93*y + t^8.44*y + t^8.45*y + t^8.48*y + t^8.5*y + 5*t^8.95*y - t^8.96*y + 8*t^8.98*y t^2.16/(g2^4*g3^4) + t^2.21/(g4^2*g5^2) + t^3.29/(g2^2*g3^2*g4^2*g5^2) + g1*g4^2*t^3.79 + g1*g5^2*t^3.79 + g4^2*g5^2*t^3.79 + (g4^4*g5^2*t^3.79)/g1 + (g4^2*g5^4*t^3.79)/g1 + g1*g2^4*t^3.82 + g1*g3^4*t^3.82 + g2^4*g4^2*t^3.82 + g3^4*g4^2*t^3.82 + g2^4*g5^2*t^3.82 + g3^4*g5^2*t^3.82 + (g2^4*g4^2*g5^2*t^3.82)/g1 + (g3^4*g4^2*g5^2*t^3.82)/g1 + t^4.32/(g2^8*g3^8) + t^4.37/(g2^4*g3^4*g4^2*g5^2) + t^4.42/(g4^4*g5^4) + (g1^2*t^5.44)/(g2*g3*g4*g5) + (g1*g4*t^5.44)/(g2*g3*g5) + (g4^3*t^5.44)/(g2*g3*g5) + (g1*g5*t^5.44)/(g2*g3*g4) + (2*g4*g5*t^5.44)/(g2*g3) + (g4^3*g5*t^5.44)/(g1*g2*g3) + (g5^3*t^5.44)/(g2*g3*g4) + (g4*g5^3*t^5.44)/(g1*g2*g3) + (g4^3*g5^3*t^5.44)/(g1^2*g2*g3) + t^5.45/(g2^6*g3^6*g4^2*g5^2) + (g1*g2^3*t^5.46)/(g3*g4*g5) + (g1*g3^3*t^5.46)/(g2*g4*g5) + (g2^3*g4*t^5.46)/(g3*g5) + (g3^3*g4*t^5.46)/(g2*g5) + (g2^3*g5*t^5.46)/(g3*g4) + (g3^3*g5*t^5.46)/(g2*g4) + (g2^3*g4*g5*t^5.46)/(g1*g3) + (g3^3*g4*g5*t^5.46)/(g1*g2) + (g2^7*t^5.48)/(g3*g4*g5) + (g2^3*g3^3*t^5.48)/(g4*g5) + (g3^7*t^5.48)/(g2*g4*g5) + t^5.5/(g2^2*g3^2*g4^4*g5^4) + (g1*g4^2*t^5.95)/(g2^4*g3^4) + (g1*g5^2*t^5.95)/(g2^4*g3^4) + (g4^2*g5^2*t^5.95)/(g2^4*g3^4) + (g4^4*g5^2*t^5.95)/(g1*g2^4*g3^4) + (g4^2*g5^4*t^5.95)/(g1*g2^4*g3^4) - 5*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1*t^6.)/g4^2 - (g4^2*t^6.)/g1 - (g1*t^6.)/g5^2 - (g1^2*t^6.)/(g4^2*g5^2) - (g4^2*t^6.)/g5^2 - (g5^2*t^6.)/g1 - (g5^2*t^6.)/g4^2 - (g4^2*g5^2*t^6.)/g1^2 + t^6.48/(g2^12*g3^12) + t^6.53/(g2^8*g3^8*g4^2*g5^2) + (2*t^6.58)/(g2^4*g3^4*g4^4*g5^4) + t^6.63/(g4^6*g5^6) + t^7.08/(g2^2*g3^2) + (g1*t^7.08)/(g2^2*g3^2*g4^2) + (g4^2*t^7.08)/(g1*g2^2*g3^2) + (g1*t^7.08)/(g2^2*g3^2*g5^2) + (g5^2*t^7.08)/(g1*g2^2*g3^2) + (g2^2*t^7.1)/(g1*g3^2) + (g3^2*t^7.1)/(g1*g2^2) + (g2^2*t^7.1)/(g3^2*g4^2) + (g3^2*t^7.1)/(g2^2*g4^2) + (g2^2*t^7.1)/(g3^2*g5^2) + (g3^2*t^7.1)/(g2^2*g5^2) + (g1*g2^2*t^7.1)/(g3^2*g4^2*g5^2) + (g1*g3^2*t^7.1)/(g2^2*g4^2*g5^2) + g1^2*g4^4*t^7.58 + g1^2*g4^2*g5^2*t^7.58 + g1*g4^4*g5^2*t^7.58 + g4^6*g5^2*t^7.58 + g1^2*g5^4*t^7.58 + g1*g4^2*g5^4*t^7.58 + 2*g4^4*g5^4*t^7.58 + (g4^6*g5^4*t^7.58)/g1 + (g4^8*g5^4*t^7.58)/g1^2 + g4^2*g5^6*t^7.58 + (g4^4*g5^6*t^7.58)/g1 + (g4^6*g5^6*t^7.58)/g1^2 + (g4^4*g5^8*t^7.58)/g1^2 + (g1^2*t^7.6)/(g2^5*g3^5*g4*g5) + (g1*g4*t^7.6)/(g2^5*g3^5*g5) + (g4^3*t^7.6)/(g2^5*g3^5*g5) + (g1*g5*t^7.6)/(g2^5*g3^5*g4) + (2*g4*g5*t^7.6)/(g2^5*g3^5) + (g4^3*g5*t^7.6)/(g1*g2^5*g3^5) + (g5^3*t^7.6)/(g2^5*g3^5*g4) + (g4*g5^3*t^7.6)/(g1*g2^5*g3^5) + (g4^3*g5^3*t^7.6)/(g1^2*g2^5*g3^5) + g1^2*g2^4*g4^2*t^7.61 + g1^2*g3^4*g4^2*t^7.61 + g1*g2^4*g4^4*t^7.61 + g1*g3^4*g4^4*t^7.61 + t^7.61/(g2^10*g3^10*g4^2*g5^2) + g1^2*g2^4*g5^2*t^7.61 + g1^2*g3^4*g5^2*t^7.61 + 2*g1*g2^4*g4^2*g5^2*t^7.61 + 2*g1*g3^4*g4^2*g5^2*t^7.61 + 2*g2^4*g4^4*g5^2*t^7.61 + 2*g3^4*g4^4*g5^2*t^7.61 + (g2^4*g4^6*g5^2*t^7.61)/g1 + (g3^4*g4^6*g5^2*t^7.61)/g1 + g1*g2^4*g5^4*t^7.61 + g1*g3^4*g5^4*t^7.61 + 2*g2^4*g4^2*g5^4*t^7.61 + 2*g3^4*g4^2*g5^4*t^7.61 + (2*g2^4*g4^4*g5^4*t^7.61)/g1 + (2*g3^4*g4^4*g5^4*t^7.61)/g1 + (g2^4*g4^6*g5^4*t^7.61)/g1^2 + (g3^4*g4^6*g5^4*t^7.61)/g1^2 + (g2^4*g4^2*g5^6*t^7.61)/g1 + (g3^4*g4^2*g5^6*t^7.61)/g1 + (g2^4*g4^4*g5^6*t^7.61)/g1^2 + (g3^4*g4^4*g5^6*t^7.61)/g1^2 + g1^2*g2^8*t^7.63 + g1^2*g2^4*g3^4*t^7.63 + g1^2*g3^8*t^7.63 + g1*g2^8*g4^2*t^7.63 + g1*g2^4*g3^4*g4^2*t^7.63 + g1*g3^8*g4^2*t^7.63 + g2^8*g4^4*t^7.63 + g2^4*g3^4*g4^4*t^7.63 + g3^8*g4^4*t^7.63 + g1*g2^8*g5^2*t^7.63 + g1*g2^4*g3^4*g5^2*t^7.63 + g1*g3^8*g5^2*t^7.63 + 2*g2^8*g4^2*g5^2*t^7.63 + 2*g2^4*g3^4*g4^2*g5^2*t^7.63 + 2*g3^8*g4^2*g5^2*t^7.63 + (g2^8*g4^4*g5^2*t^7.63)/g1 + (g2^4*g3^4*g4^4*g5^2*t^7.63)/g1 + (g3^8*g4^4*g5^2*t^7.63)/g1 + g2^8*g5^4*t^7.63 + g2^4*g3^4*g5^4*t^7.63 + g3^8*g5^4*t^7.63 + (g2^8*g4^2*g5^4*t^7.63)/g1 + (g2^4*g3^4*g4^2*g5^4*t^7.63)/g1 + (g3^8*g4^2*g5^4*t^7.63)/g1 + (g2^8*g4^4*g5^4*t^7.63)/g1^2 + (g2^4*g3^4*g4^4*g5^4*t^7.63)/g1^2 + (g3^8*g4^4*g5^4*t^7.63)/g1^2 - (g1*t^7.64)/(g2*g3*g4*g5^3) - (g1*t^7.64)/(g2*g3*g4^3*g5) - (2*t^7.64)/(g2*g3*g4*g5) - (g4*t^7.64)/(g1*g2*g3*g5) - (g5*t^7.64)/(g1*g2*g3*g4) + t^7.66/(g2^6*g3^6*g4^4*g5^4) + (g2^7*t^7.69)/(g3*g4^3*g5^3) + (g2^3*g3^3*t^7.69)/(g4^3*g5^3) + (g3^7*t^7.69)/(g2*g4^3*g5^3) + t^7.71/(g2^2*g3^2*g4^6*g5^6) + (g1*g4^2*t^8.11)/(g2^8*g3^8) + (g1*g5^2*t^8.11)/(g2^8*g3^8) + (g4^2*g5^2*t^8.11)/(g2^8*g3^8) + (g4^4*g5^2*t^8.11)/(g1*g2^8*g3^8) + (g4^2*g5^4*t^8.11)/(g1*g2^8*g3^8) - g1^2*g2*g3*g4*g5*t^8.15 - g1*g2*g3*g4^3*g5*t^8.15 - g2*g3*g4^5*g5*t^8.15 - g1*g2*g3*g4*g5^3*t^8.15 - 2*g2*g3*g4^3*g5^3*t^8.15 - (g2*g3*g4^5*g5^3*t^8.15)/g1 - g2*g3*g4*g5^5*t^8.15 - (g2*g3*g4^3*g5^5*t^8.15)/g1 - (g2*g3*g4^5*g5^5*t^8.15)/g1^2 - (4*t^8.16)/(g2^4*g3^4) - (g1*t^8.16)/(g2^4*g3^4*g4^2) - (g4^2*t^8.16)/(g1*g2^4*g3^4) - (g1*t^8.16)/(g2^4*g3^4*g5^2) - (g1^2*t^8.16)/(g2^4*g3^4*g4^2*g5^2) - (g4^2*t^8.16)/(g2^4*g3^4*g5^2) - (g5^2*t^8.16)/(g1*g2^4*g3^4) - (g5^2*t^8.16)/(g2^4*g3^4*g4^2) - (g4^2*g5^2*t^8.16)/(g1^2*g2^4*g3^4) - g1*g2^5*g3*g4*g5*t^8.17 - g1*g2*g3^5*g4*g5*t^8.17 - g2^5*g3*g4^3*g5*t^8.17 - g2*g3^5*g4^3*g5*t^8.17 - g2^5*g3*g4*g5^3*t^8.17 - g2*g3^5*g4*g5^3*t^8.17 - (g2^5*g3*g4^3*g5^3*t^8.17)/g1 - (g2*g3^5*g4^3*g5^3*t^8.17)/g1 - g2^9*g3*g4*g5*t^8.2 - g2^5*g3^5*g4*g5*t^8.2 - g2*g3^9*g4*g5*t^8.2 - (3*t^8.21)/(g4^2*g5^2) - (g2^4*t^8.21)/(g3^4*g4^2*g5^2) - (g3^4*t^8.21)/(g2^4*g4^2*g5^2) + t^8.64/(g2^16*g3^16) + t^8.69/(g2^12*g3^12*g4^2*g5^2) + (g1^2*t^8.72)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.72)/(g2^3*g3^3*g4*g5^3) + (g4*t^8.72)/(g2^3*g3^3*g5^3) + (g1*t^8.72)/(g2^3*g3^3*g4^3*g5) + (2*t^8.72)/(g2^3*g3^3*g4*g5) + (g4*t^8.72)/(g1*g2^3*g3^3*g5) + (g5*t^8.72)/(g2^3*g3^3*g4^3) + (g5*t^8.72)/(g1*g2^3*g3^3*g4) + (g4*g5*t^8.72)/(g1^2*g2^3*g3^3) + (2*t^8.74)/(g2^8*g3^8*g4^4*g5^4) + (g1*g2*t^8.75)/(g3^3*g4^3*g5^3) + (g1*g3*t^8.75)/(g2^3*g4^3*g5^3) + (g2*t^8.75)/(g3^3*g4*g5^3) + (g3*t^8.75)/(g2^3*g4*g5^3) + (g2*t^8.75)/(g3^3*g4^3*g5) + (g3*t^8.75)/(g2^3*g4^3*g5) + (g2*t^8.75)/(g1*g3^3*g4*g5) + (g3*t^8.75)/(g1*g2^3*g4*g5) + (g2^5*t^8.77)/(g3^3*g4^3*g5^3) + (g2*g3*t^8.77)/(g4^3*g5^3) + (g3^5*t^8.77)/(g2^3*g4^3*g5^3) + (2*t^8.79)/(g2^4*g3^4*g4^6*g5^6) + t^8.84/(g4^8*g5^8) - t^4.64/(g2*g3*g4*g5*y) - t^6.8/(g2^5*g3^5*g4*g5*y) - t^6.85/(g2*g3*g4^3*g5^3*y) + (g2*g3*g4*g5*t^7.36)/y + t^7.37/(g2^4*g3^4*g4^2*g5^2*y) - t^7.93/(g2^3*g3^3*g4^3*g5^3*y) + (g4*g5*t^8.44)/(g2*g3*y) + t^8.45/(g2^6*g3^6*g4^2*g5^2*y) + (g2^3*g3^3*t^8.48)/(g4*g5*y) + t^8.5/(g2^2*g3^2*g4^4*g5^4*y) + (g1*g4^2*t^8.95)/(g2^4*g3^4*y) + (g1*g5^2*t^8.95)/(g2^4*g3^4*y) + (g4^2*g5^2*t^8.95)/(g2^4*g3^4*y) + (g4^4*g5^2*t^8.95)/(g1*g2^4*g3^4*y) + (g4^2*g5^4*t^8.95)/(g1*g2^4*g3^4*y) - t^8.96/(g2^9*g3^9*g4*g5*y) + (g1*t^8.98)/(g2^4*y) + (g1*t^8.98)/(g3^4*y) + (g4^2*t^8.98)/(g2^4*y) + (g4^2*t^8.98)/(g3^4*y) + (g5^2*t^8.98)/(g2^4*y) + (g5^2*t^8.98)/(g3^4*y) + (g4^2*g5^2*t^8.98)/(g1*g2^4*y) + (g4^2*g5^2*t^8.98)/(g1*g3^4*y) - (t^4.64*y)/(g2*g3*g4*g5) - (t^6.8*y)/(g2^5*g3^5*g4*g5) - (t^6.85*y)/(g2*g3*g4^3*g5^3) + g2*g3*g4*g5*t^7.36*y + (t^7.37*y)/(g2^4*g3^4*g4^2*g5^2) - (t^7.93*y)/(g2^3*g3^3*g4^3*g5^3) + (g4*g5*t^8.44*y)/(g2*g3) + (t^8.45*y)/(g2^6*g3^6*g4^2*g5^2) + (g2^3*g3^3*t^8.48*y)/(g4*g5) + (t^8.5*y)/(g2^2*g3^2*g4^4*g5^4) + (g1*g4^2*t^8.95*y)/(g2^4*g3^4) + (g1*g5^2*t^8.95*y)/(g2^4*g3^4) + (g4^2*g5^2*t^8.95*y)/(g2^4*g3^4) + (g4^4*g5^2*t^8.95*y)/(g1*g2^4*g3^4) + (g4^2*g5^4*t^8.95*y)/(g1*g2^4*g3^4) - (t^8.96*y)/(g2^9*g3^9*g4*g5) + (g1*t^8.98*y)/g2^4 + (g1*t^8.98*y)/g3^4 + (g4^2*t^8.98*y)/g2^4 + (g4^2*t^8.98*y)/g3^4 + (g5^2*t^8.98*y)/g2^4 + (g5^2*t^8.98*y)/g3^4 + (g4^2*g5^2*t^8.98*y)/(g1*g2^4) + (g4^2*g5^2*t^8.98*y)/(g1*g3^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55819 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ M_1\phi_1^2$ 0.8901 1.1031 0.8069 [X:[], M:[0.8151, 0.7398], q:[0.5925, 0.5925, 0.6301], qb:[0.6301, 0.5925, 0.5925], phi:[0.5925]] t^2.22 + t^2.45 + 6*t^3.55 + 8*t^3.67 + t^4.44 + t^4.66 + t^4.89 + 10*t^5.33 + 8*t^5.45 + 3*t^5.56 + 6*t^5.77 - 14*t^6. - t^4.78/y - t^4.78*y detail
55806 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ M_2\phi_1^2$ 0.8897 1.099 0.8095 [X:[], M:[0.7624, 0.8251], q:[0.6188, 0.6188, 0.5875], qb:[0.5875, 0.6188, 0.6188], phi:[0.5875]] t^2.29 + t^2.48 + t^3.52 + 8*t^3.62 + 5*t^3.71 + t^4.57 + t^4.76 + t^4.95 + 3*t^5.29 + 8*t^5.38 + 10*t^5.48 + t^5.81 - 14*t^6. - t^4.76/y - t^4.76*y detail
55822 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ M_2^2$ 0.8544 1.0609 0.8054 [X:[], M:[0.7026, 1.0], q:[0.6487, 0.6487, 0.5], qb:[0.5, 0.6487, 0.6487], phi:[0.6013]] t^2.11 + t^3. + 8*t^3.45 + t^3.61 + 5*t^3.89 + t^4.22 + 3*t^4.8 + t^5.11 + 8*t^5.25 + 10*t^5.7 + t^5.72 - 14*t^6. - t^4.8/y - t^4.8*y detail
55707 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ \phi_1q_2\tilde{q}_2$ 0.881 1.0821 0.8141 [X:[], M:[0.6838, 0.7686], q:[0.5832, 0.733, 0.6157], qb:[0.6157, 0.733, 0.5832], phi:[0.534]] t^2.05 + t^2.31 + t^3.2 + t^3.5 + 4*t^3.6 + 3*t^3.95 + 4*t^4.05 + t^4.1 + t^4.36 + t^4.4 + t^4.61 + 3*t^5.1 + 4*t^5.2 + t^5.26 + 3*t^5.3 + t^5.51 + t^5.55 + 4*t^5.65 + t^5.81 - 6*t^6. - t^4.6/y - t^4.6*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55457 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ 0.8981 1.1052 0.8127 [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y detail