Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55601 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ 0.881 1.0826 0.8138 [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] [X:[], M:[[0, -3, 1, -3, 1], [0, -1, -1, 0, 0]], q:[[-1, 3, -1, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, -1, 0, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ M_2^2$, $ M_1M_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$ . -7 t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^6.01 + 2*t^6.07 - t^6.11 + t^6.23 + 2*t^6.25 + t^6.38 + t^6.42 - t^6.45 - t^6.46 - t^6.47 + t^6.65 + 2*t^6.7 + 2*t^6.79 + 2*t^6.81 + t^6.92 + t^6.99 + 2*t^7.08 + 2*t^7.1 + t^7.12 + t^7.13 + t^7.15 + 2*t^7.17 + 3*t^7.19 + 3*t^7.2 + 2*t^7.23 + 2*t^7.24 + t^7.28 + 3*t^7.33 + t^7.39 + t^7.4 + 2*t^7.42 + 2*t^7.44 + 2*t^7.51 + 4*t^7.53 + 4*t^7.54 + 3*t^7.55 + t^7.57 - t^7.59 - 2*t^7.6 + 2*t^7.62 + 6*t^7.64 + 5*t^7.66 + 2*t^7.67 - 2*t^7.7 - 2*t^7.71 + t^7.82 + t^7.84 + t^7.85 + t^7.87 + t^7.88 + 2*t^7.96 + 4*t^7.98 + t^8. + 3*t^8.01 - 7*t^8.04 - t^8.05 + 3*t^8.07 + 6*t^8.11 - 2*t^8.14 + t^8.15 + t^8.27 + t^8.28 + t^8.29 - 3*t^8.31 - t^8.36 + 2*t^8.4 + 3*t^8.41 + t^8.45 - t^8.48 + 3*t^8.51 + t^8.52 + t^8.54 + t^8.55 + t^8.56 + t^8.58 + t^8.59 + t^8.61 + 2*t^8.67 + t^8.68 + 4*t^8.69 + 4*t^8.7 + 2*t^8.71 + t^8.72 + t^8.74 - t^8.75 - t^8.76 - 2*t^8.77 + 3*t^8.78 + 6*t^8.79 + 2*t^8.81 + 2*t^8.83 + 2*t^8.85 + 4*t^8.89 + 4*t^8.9 + t^8.95 - t^4.6/y - t^6.64/y - t^6.91/y + t^7.34/y + t^7.4/y - t^7.81/y + t^8.24/y + t^8.3/y + t^8.51/y + t^8.53/y + t^8.57/y + (2*t^8.62)/y + (2*t^8.64)/y - t^8.68/y + t^8.8/y + (2*t^8.89)/y + (2*t^8.91)/y - t^8.95/y + t^8.96/y + t^8.98/y + t^8.99/y - t^4.6*y - t^6.64*y - t^6.91*y + t^7.34*y + t^7.4*y - t^7.81*y + t^8.24*y + t^8.3*y + t^8.51*y + t^8.53*y + t^8.57*y + 2*t^8.62*y + 2*t^8.64*y - t^8.68*y + t^8.8*y + 2*t^8.89*y + 2*t^8.91*y - t^8.95*y + t^8.96*y + t^8.98*y + t^8.99*y t^2.04/(g2*g3) + (g3*g5*t^2.31)/(g2^3*g4^3) + t^3.21/(g2^2*g4^2) + g3*g5*t^3.49 + (g2^3*g4^3*t^3.59)/(g1*g3) + g1*g5*t^3.59 + g1*g3*t^3.6 + (g2^3*g4^3*t^3.6)/(g1*g5) + g4*g5*t^3.93 + g3*g4*t^3.94 + g2*g5*t^3.95 + g1*g4*t^4.03 + (g2^3*g4^4*t^4.03)/(g1*g3*g5) + g1*g2*t^4.06 + (g2^4*g4^3*t^4.06)/(g1*g3*g5) + t^4.07/(g2^2*g3^2) + (g5*t^4.34)/(g2^4*g4^3) + g2*g4*t^4.4 + (g3^2*g5^2*t^4.61)/(g2^6*g4^6) + (g5^2*t^5.08)/(g2*g4) + (g3*g5*t^5.1)/(g2*g4) + (g3^2*t^5.11)/(g2*g4) + (g2^2*g4^2*t^5.19)/(g1*g3) + (g1*g5*t^5.19)/(g2*g4) + (g1*g3*t^5.21)/(g2*g4) + (g2^2*g4^2*t^5.21)/(g1*g5) + t^5.24/(g2^3*g3*g4^2) + (g1^2*t^5.3)/(g2*g4) + (g2^5*g4^5*t^5.3)/(g1^2*g3^2*g5^2) + (g2^2*g4^2*t^5.3)/(g3*g5) + (g3*g5*t^5.51)/(g2^5*g4^5) + (g5*t^5.53)/g2 + (g2^2*g4^3*t^5.62)/(g1*g3^2) + (g1*g5*t^5.62)/(g2*g3) + (g1*t^5.64)/g2 + (g2^2*g4^3*t^5.64)/(g1*g3*g5) + (g3^2*g5^2*t^5.8)/(g2^3*g4^3) + (g4*g5*t^5.96)/(g2*g3) + (g4*t^5.98)/g2 - 5*t^6. - (g2^3*g4^3*t^6.)/(g1^2*g3*g5) - (g1^2*g3*g5*t^6.)/(g2^3*g4^3) - (g3*t^6.01)/g5 + (g1*g4*t^6.07)/(g2*g3) + (g2^2*g4^4*t^6.07)/(g1*g3^2*g5) + t^6.11/(g2^3*g3^3) - (g2^3*g4^3*t^6.11)/(g1*g3*g5^2) - (g1*t^6.11)/g5 + (g3*g5^2*t^6.23)/(g2^3*g4^2) + (g3^2*g5*t^6.25)/(g2^3*g4^2) + (g3*g5^2*t^6.25)/(g2^2*g4^3) + (g5*t^6.38)/(g2^5*g3*g4^3) + t^6.42/(g2^4*g4^4) - (g4*t^6.45)/g5 - (g2*t^6.46)/g3 - (g2*t^6.47)/g5 + (g3*g5^2*t^6.65)/(g2^7*g4^6) + (2*g3*g5*t^6.7)/(g2^2*g4^2) + (g2*g4*t^6.79)/(g1*g3) + (g1*g5*t^6.79)/(g2^2*g4^2) + (g1*g3*t^6.81)/(g2^2*g4^2) + (g2*g4*t^6.81)/(g1*g5) + (g3^3*g5^3*t^6.92)/(g2^9*g4^9) + g3^2*g5^2*t^6.99 + (g2^3*g4^3*g5*t^7.08)/g1 + g1*g3*g5^2*t^7.08 + (g2^3*g3*g4^3*t^7.1)/g1 + g1*g3^2*g5*t^7.1 + (g5^2*t^7.12)/(g2^2*g3*g4) + (g5*t^7.13)/(g2^2*g4) + (g3*t^7.15)/(g2^2*g4) - (g3*t^7.17)/(g2*g4^2) + (g2^6*g4^6*t^7.17)/(g1^2*g3^2) + (g2^3*g4^3*g5*t^7.17)/g3 + g1^2*g5^2*t^7.17 + g2^3*g4^3*t^7.19 + (g2^6*g4^6*t^7.19)/(g1^2*g3*g5) + g1^2*g3*g5*t^7.19 + g1^2*g3^2*t^7.2 + (g2^6*g4^6*t^7.2)/(g1^2*g5^2) + (g2^3*g3*g4^3*t^7.2)/g5 + (g2*g4^2*t^7.23)/(g1*g3^2) + (g1*g5*t^7.23)/(g2^2*g3*g4) + (g1*t^7.24)/(g2^2*g4) + (g2*g4^2*t^7.24)/(g1*g3*g5) + t^7.28/(g2^4*g3^2*g4^2) + (g1^2*t^7.33)/(g2^2*g3*g4) + (g2^4*g4^5*t^7.33)/(g1^2*g3^3*g5^2) + (g2*g4^2*t^7.33)/(g3^2*g5) + (g3*g5^3*t^7.39)/(g2^4*g4^4) + (g3^2*g5^2*t^7.4)/(g2^4*g4^4) + (g3^3*g5*t^7.42)/(g2^4*g4^4) + g3*g4*g5^2*t^7.42 + g3^2*g4*g5*t^7.44 + g2*g3*g5^2*t^7.44 + (g2^3*g4^4*g5*t^7.51)/(g1*g3) + g1*g4*g5^2*t^7.51 + (2*g2^3*g4^4*t^7.53)/g1 + 2*g1*g3*g4*g5*t^7.53 + g1*g3^2*g4*t^7.54 + (g2^3*g3*g4^4*t^7.54)/(g1*g5) + (g2^4*g4^3*g5*t^7.54)/(g1*g3) + g1*g2*g5^2*t^7.54 + (g2^4*g4^3*t^7.55)/g1 + g1*g2*g3*g5*t^7.55 + (g5*t^7.55)/(g2^6*g4^5) + (g5*t^7.57)/(g2^2*g3) - (g5*t^7.59)/(g2*g3*g4) - (2*t^7.6)/(g2*g4) + (g2^3*g4^4*t^7.62)/g3 - (g3*t^7.62)/(g2*g4*g5) + (g2^6*g4^7*t^7.62)/(g1^2*g3^2*g5) + g1^2*g4*g5*t^7.62 + g1^2*g3*g4*t^7.64 + (g2^4*g4^3*t^7.64)/g3 + (g2^6*g4^7*t^7.64)/(g1^2*g3*g5^2) + (g2^3*g4^4*t^7.64)/g5 + (g2^7*g4^6*t^7.64)/(g1^2*g3^2*g5) + g1^2*g2*g5*t^7.64 + g1^2*g2*g3*t^7.66 + (g2*g4^3*t^7.66)/(g1*g3^3) + (g2^7*g4^6*t^7.66)/(g1^2*g3*g5^2) + (g2^4*g4^3*t^7.66)/g5 + (g1*g5*t^7.66)/(g2^2*g3^2) + (g1*t^7.67)/(g2^2*g3) + (g2*g4^3*t^7.67)/(g1*g3^2*g5) - (g1*t^7.7)/(g2*g3*g4) - (g2^2*g4^2*t^7.7)/(g1*g3^2*g5) - (g2^2*g4^2*t^7.71)/(g1*g3*g5^2) - (g1*t^7.71)/(g2*g4*g5) + (g3^2*g5^2*t^7.82)/(g2^8*g4^8) + (g3*g5^2*t^7.84)/(g2^4*g4^3) + g4^2*g5^2*t^7.85 + g3*g4^2*g5*t^7.87 + g3^2*g4^2*t^7.88 - g2*g3^2*g4*t^7.9 + g2^2*g5^2*t^7.9 + (g2^3*g4^5*t^7.96)/(g1*g3) + g1*g4^2*g5*t^7.96 + g1*g3*g4^2*t^7.98 + (g2^4*g4^4*t^7.98)/(g1*g3) + (g2^3*g4^5*t^7.98)/(g1*g5) + g1*g2*g4*g5*t^7.98 + (g4*g5*t^8.)/(g2^2*g3^2) + (g4*t^8.01)/(g2^2*g3) + (g2^5*g4^3*t^8.01)/(g1*g3) + g1*g2^2*g5*t^8.01 - (5*t^8.04)/(g2*g3) - (g2^2*g4^3*t^8.04)/(g1^2*g3^2*g5) - (g1^2*g5*t^8.04)/(g2^4*g4^3) - t^8.05/(g2*g5) + g1^2*g4^2*t^8.07 + (g2^6*g4^8*t^8.07)/(g1^2*g3^2*g5^2) + (g2^3*g4^5*t^8.07)/(g3*g5) + g1^2*g2^2*t^8.11 + (g1*g4*t^8.11)/(g2^2*g3^2) + (g2^8*g4^6*t^8.11)/(g1^2*g3^2*g5^2) + (g2^5*g4^3*t^8.11)/(g3*g5) + (g2*g4^4*t^8.11)/(g1*g3^3*g5) + (g3^3*g5^3*t^8.11)/(g2^6*g4^6) - (g2^2*g4^3*t^8.14)/(g1*g3^2*g5^2) - (g1*t^8.14)/(g2*g3*g5) + t^8.15/(g2^4*g3^4) + (g5^2*t^8.27)/(g2^4*g4^2) + (g3*g5*t^8.28)/(g2^4*g4^2) + (g5^2*t^8.29)/(g2^3*g4^3) - (3*g3*g5*t^8.31)/(g2^3*g4^3) - g2^2*g3*g4*t^8.36 + t^8.4/(g1*g3) + (g1*g5*t^8.4)/(g2^3*g4^3) + (g1*g3*t^8.41)/(g2^3*g4^3) + t^8.41/(g1*g5) + (g5*t^8.41)/(g2^6*g3^2*g4^3) + t^8.45/(g2^5*g3*g4^4) - (g4*t^8.48)/(g2*g3*g5) + (g1^2*t^8.51)/(g2^3*g4^3) + (g2^3*g4^3*t^8.51)/(g1^2*g3^2*g5^2) + t^8.51/(g3*g5) + t^8.52/g5^2 + (g3^2*g5^3*t^8.54)/(g2^6*g4^5) + (g3^3*g5^2*t^8.55)/(g2^6*g4^5) + (g3^2*g5^3*t^8.56)/(g2^5*g4^6) + (g3*g5^3*t^8.58)/(g2*g4) + (g3^2*g5^2*t^8.59)/(g2*g4) + (g3^3*g5*t^8.61)/(g2*g4) + (g2^2*g4^2*g5^2*t^8.67)/(g1*g3) + (g1*g5^3*t^8.67)/(g2*g4) + (g5^2*t^8.68)/(g2^8*g4^6) + (2*g2^2*g4^2*g5*t^8.69)/g1 + (2*g1*g3*g5^2*t^8.69)/(g2*g4) + (2*g2^2*g3*g4^2*t^8.7)/g1 + (2*g1*g3^2*g5*t^8.7)/(g2*g4) + (g1*g3^3*t^8.71)/(g2*g4) + (g2^2*g3^2*g4^2*t^8.71)/(g1*g5) + (g3*g5*t^8.72)/(g2^7*g4^7) + (g5*t^8.74)/(g2^3*g4^2) - (g3*t^8.75)/(g2^3*g4^2) - (g5*t^8.76)/(g2^2*g4^3) - (g3*t^8.77)/(g2^2*g4^3) - g2*g4^3*t^8.77 + (g2^5*g4^5*t^8.78)/(g1^2*g3^2) + (g2^2*g4^2*g5*t^8.78)/g3 + (g1^2*g5^2*t^8.78)/(g2*g4) + 2*g2^2*g4^2*t^8.79 + (2*g2^5*g4^5*t^8.79)/(g1^2*g3*g5) + (2*g1^2*g3*g5*t^8.79)/(g2*g4) + (g1^2*g3^2*t^8.81)/(g2*g4) - g2^3*g4*t^8.81 + (g2^5*g4^5*t^8.81)/(g1^2*g5^2) + (g2^2*g3*g4^2*t^8.81)/g5 + (g4*t^8.83)/(g1*g3^2) + (g1*g5*t^8.83)/(g2^3*g3*g4^2) + (g1*t^8.85)/(g2^3*g4^2) + (g4*t^8.85)/(g1*g3*g5) + (g1*g2^2*g4^2*t^8.89)/g3 + (g2^8*g4^8*t^8.89)/(g1^3*g3^3*g5^2) + (g2^5*g4^5*t^8.89)/(g1*g3^2*g5) + (g1^3*g5*t^8.89)/(g2*g4) + (g1^3*g3*t^8.9)/(g2*g4) + (g2^8*g4^8*t^8.9)/(g1^3*g3^2*g5^3) + (g2^5*g4^5*t^8.9)/(g1*g3*g5^2) + (g1*g2^2*g4^2*t^8.9)/g5 + (g3^2*g5^3*t^8.95)/(g2^10*g4^9) - t^4.6/(g2*g4*y) - t^6.64/(g2^2*g3*g4*y) - (g3*g5*t^6.91)/(g2^4*g4^4*y) + (g5*t^7.34)/(g2^4*g4^3*y) + (g2*g4*t^7.4)/y - t^7.81/(g2^3*g4^3*y) + t^8.24/(g2^3*g3*g4^2*y) + (g2^2*g4^2*t^8.3)/(g3*g5*y) + (g3*g5*t^8.51)/(g2^5*g4^5*y) + (g5*t^8.53)/(g2*y) + (g3*t^8.57)/(g4*y) + (g2^2*g4^3*t^8.62)/(g1*g3^2*y) + (g1*g5*t^8.62)/(g2*g3*y) + (g1*t^8.64)/(g2*y) + (g2^2*g4^3*t^8.64)/(g1*g3*g5*y) - t^8.68/(g2^3*g3^2*g4*y) + (g3^2*g5^2*t^8.8)/(g2^3*g4^3*y) + (g5*t^8.89)/(g1*y) + (g1*g3*g5^2*t^8.89)/(g2^3*g4^3*y) + (g3*t^8.91)/(g1*y) + (g1*g3^2*g5*t^8.91)/(g2^3*g4^3*y) - (g5*t^8.95)/(g2^5*g4^4*y) + (g4*g5*t^8.96)/(g2*g3*y) + (g4*t^8.98)/(g2*y) + (g5*t^8.99)/(g3*y) - (t^4.6*y)/(g2*g4) - (t^6.64*y)/(g2^2*g3*g4) - (g3*g5*t^6.91*y)/(g2^4*g4^4) + (g5*t^7.34*y)/(g2^4*g4^3) + g2*g4*t^7.4*y - (t^7.81*y)/(g2^3*g4^3) + (t^8.24*y)/(g2^3*g3*g4^2) + (g2^2*g4^2*t^8.3*y)/(g3*g5) + (g3*g5*t^8.51*y)/(g2^5*g4^5) + (g5*t^8.53*y)/g2 + (g3*t^8.57*y)/g4 + (g2^2*g4^3*t^8.62*y)/(g1*g3^2) + (g1*g5*t^8.62*y)/(g2*g3) + (g1*t^8.64*y)/g2 + (g2^2*g4^3*t^8.64*y)/(g1*g3*g5) - (t^8.68*y)/(g2^3*g3^2*g4) + (g3^2*g5^2*t^8.8*y)/(g2^3*g4^3) + (g5*t^8.89*y)/g1 + (g1*g3*g5^2*t^8.89*y)/(g2^3*g4^3) + (g3*t^8.91*y)/g1 + (g1*g3^2*g5*t^8.91*y)/(g2^3*g4^3) - (g5*t^8.95*y)/(g2^5*g4^4) + (g4*g5*t^8.96*y)/(g2*g3) + (g4*t^8.98*y)/g2 + (g5*t^8.99*y)/g3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55816 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ M_3q_3\tilde{q}_3$ 0.9018 1.1234 0.8027 [X:[], M:[0.7686, 0.6768, 0.6768], q:[0.6157, 0.6157, 0.7394], qb:[0.5839, 0.727, 0.5839], phi:[0.5336]] 2*t^2.03 + t^2.31 + t^3.2 + t^3.5 + 4*t^3.6 + 2*t^3.93 + 2*t^4.03 + 3*t^4.06 + 2*t^4.07 + 2*t^4.34 + t^4.4 + t^4.61 + 3*t^5.1 + 4*t^5.2 + 2*t^5.23 + 3*t^5.3 + t^5.51 + 2*t^5.53 + 8*t^5.63 + t^5.81 + 4*t^5.96 - 9*t^6. - t^4.6/y - t^4.6*y detail
55712 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ 0.9018 1.1232 0.8029 [X:[], M:[0.7687, 0.6779, 0.6779], q:[0.6157, 0.6157, 0.7333], qb:[0.5887, 0.7333, 0.5798], phi:[0.5334]] 2*t^2.03 + t^2.31 + t^3.2 + t^3.51 + 2*t^3.59 + 2*t^3.61 + 2*t^3.94 + 4*t^4.05 + 3*t^4.07 + 2*t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.11 + t^5.13 + 2*t^5.19 + 2*t^5.21 + 2*t^5.23 + 3*t^5.29 + t^5.51 + 2*t^5.54 + 4*t^5.62 + 4*t^5.65 + t^5.81 + 3*t^5.97 - 7*t^6. - t^4.6/y - t^4.6*y detail
55732 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1q_2\tilde{q}_2$ 0.8735 1.0719 0.8149 [X:[], M:[0.7282, 0.7282], q:[0.5861, 0.6857, 0.6857], qb:[0.5861, 0.7883, 0.5641], phi:[0.526]] 2*t^2.18 + t^3.16 + 2*t^3.45 + t^3.52 + 2*t^3.75 + 2*t^3.82 + t^4.06 + t^4.11 + 2*t^4.12 + 3*t^4.37 + 2*t^4.42 + t^4.96 + 2*t^5.03 + 3*t^5.09 + t^5.33 + 2*t^5.34 + 2*t^5.39 + 3*t^5.64 + t^5.69 + 2*t^5.93 - 4*t^6. - t^4.58/y - t^4.58*y detail
55800 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1q_2^2$ 0.8688 1.0717 0.8107 [X:[], M:[0.6989, 0.693], q:[0.5649, 0.7362, 0.7442], qb:[0.5628, 0.7282, 0.5533], phi:[0.5276]] t^2.08 + t^2.1 + t^3.17 + 2*t^3.35 + t^3.38 + t^3.84 + 2*t^3.87 + t^3.88 + t^3.89 + t^3.9 + t^3.93 + t^4.16 + t^4.18 + t^4.19 + t^4.39 + t^4.42 + t^4.44 + t^4.9 + t^4.93 + t^4.94 + t^4.96 + 2*t^4.97 + t^5.24 + t^5.26 + 2*t^5.43 + 2*t^5.45 + t^5.46 + t^5.48 + t^5.92 + t^5.94 + 2*t^5.95 + t^5.96 + t^5.97 + t^5.98 + t^5.99 - 4*t^6. - t^4.58/y - t^4.58*y detail
55780 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1\tilde{q}_2^2$ 0.881 1.0823 0.814 [X:[], M:[0.7686, 0.6814], q:[0.6157, 0.6157, 0.7329], qb:[0.5857, 0.7329, 0.58], phi:[0.5343]] t^2.04 + t^2.31 + t^3.21 + t^3.5 + 2*t^3.59 + 2*t^3.6 + 2*t^3.94 + t^3.96 + 4*t^4.05 + t^4.09 + t^4.35 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.12 + 2*t^5.19 + 2*t^5.21 + t^5.25 + 3*t^5.3 + t^5.51 + t^5.54 + 2*t^5.63 + 2*t^5.65 + t^5.8 + t^5.98 - 6*t^6. - t^4.6/y - t^4.6*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55457 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ 0.8981 1.1052 0.8127 [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y detail