Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55431 | SU2adj1nf3 | $M_1q_1q_2$ | 0.8785 | 1.0704 | 0.8208 | [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] | [X:[], M:[[-4, -4, 0, 0, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_3$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_1q_3\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$ | . | -20 | t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - 8*t^6.06 + t^6.44 + t^6.68 + 6*t^7.07 + 8*t^7.13 + 20*t^7.46 + 40*t^7.52 + 10*t^7.55 + 30*t^7.58 + t^7.63 - 16*t^7.67 - 8*t^7.73 + 6*t^8.02 - 10*t^8.06 - 8*t^8.12 - 17*t^8.15 - 3*t^8.18 + 10*t^8.27 + t^8.59 + 10*t^8.74 + 8*t^8.81 + t^8.83 + 3*t^8.87 - t^4.67/y - t^6.82/y + t^7.33/y - t^8.01/y + t^8.49/y + t^8.52/y + (6*t^8.88)/y + (8*t^8.94)/y - t^8.96/y - t^4.67*y - t^6.82*y + t^7.33*y - t^8.01*y + t^8.49*y + t^8.52*y + 6*t^8.88*y + 8*t^8.94*y - t^8.96*y | t^2.15/(g1^4*g2^4) + t^3.34/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g3^4*g4^4*t^3.73 + g3^4*g5^4*t^3.73 + g4^4*g5^4*t^3.73 + g3^4*g6^4*t^3.73 + g4^4*g6^4*t^3.73 + g5^4*g6^4*t^3.73 + g1^4*g3^4*t^3.79 + g2^4*g3^4*t^3.79 + g1^4*g4^4*t^3.79 + g2^4*g4^4*t^3.79 + g1^4*g5^4*t^3.79 + g2^4*g5^4*t^3.79 + g1^4*g6^4*t^3.79 + g2^4*g6^4*t^3.79 + t^4.29/(g1^8*g2^8) + (g3^7*t^5.4)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.4)/(g1*g2*g5*g6) + (g4^7*t^5.4)/(g1*g2*g3*g5*g6) + (g3^3*g5^3*t^5.4)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.4)/(g1*g2*g3*g6) + (g5^7*t^5.4)/(g1*g2*g3*g4*g6) + (g3^3*g6^3*t^5.4)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.4)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.4)/(g1*g2*g3*g4) + (g6^7*t^5.4)/(g1*g2*g3*g4*g5) + (g1^3*g3^3*t^5.46)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.46)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.46)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.46)/(g1*g3*g5*g6) + (g1^3*g5^3*t^5.46)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.46)/(g1*g3*g4*g6) + (g1^3*g6^3*t^5.46)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.46)/(g1*g3*g4*g5) + t^5.49/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^7*t^5.52)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.52)/(g3*g4*g5*g6) + (g2^7*t^5.52)/(g1*g3*g4*g5*g6) + (g3^4*g4^4*t^5.88)/(g1^4*g2^4) + (g3^4*g5^4*t^5.88)/(g1^4*g2^4) + (g4^4*g5^4*t^5.88)/(g1^4*g2^4) + (g3^4*g6^4*t^5.88)/(g1^4*g2^4) + (g4^4*g6^4*t^5.88)/(g1^4*g2^4) + (g5^4*g6^4*t^5.88)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g3^4*t^6.)/g6^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g3^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.06)/g3^4 - (g2^4*t^6.06)/g3^4 - (g1^4*t^6.06)/g4^4 - (g2^4*t^6.06)/g4^4 - (g1^4*t^6.06)/g5^4 - (g2^4*t^6.06)/g5^4 - (g1^4*t^6.06)/g6^4 - (g2^4*t^6.06)/g6^4 + t^6.44/(g1^12*g2^12) + t^6.68/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g3^2*g4^2*t^7.07)/(g1^2*g2^2*g5^2*g6^2) + (g3^2*g5^2*t^7.07)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.07)/(g1^2*g2^2*g3^2*g6^2) + (g3^2*g6^2*t^7.07)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.07)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.07)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g3^2*t^7.13)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.13)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.13)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.13)/(g1^2*g3^2*g5^2*g6^2) + (g1^2*g5^2*t^7.13)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.13)/(g1^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.13)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.13)/(g1^2*g3^2*g4^2*g5^2) + g3^8*g4^8*t^7.46 + g3^8*g4^4*g5^4*t^7.46 + g3^4*g4^8*g5^4*t^7.46 + g3^8*g5^8*t^7.46 + g3^4*g4^4*g5^8*t^7.46 + g4^8*g5^8*t^7.46 + g3^8*g4^4*g6^4*t^7.46 + g3^4*g4^8*g6^4*t^7.46 + g3^8*g5^4*g6^4*t^7.46 + 2*g3^4*g4^4*g5^4*g6^4*t^7.46 + g4^8*g5^4*g6^4*t^7.46 + g3^4*g5^8*g6^4*t^7.46 + g4^4*g5^8*g6^4*t^7.46 + g3^8*g6^8*t^7.46 + g3^4*g4^4*g6^8*t^7.46 + g4^8*g6^8*t^7.46 + g3^4*g5^4*g6^8*t^7.46 + g4^4*g5^4*g6^8*t^7.46 + g5^8*g6^8*t^7.46 + g1^4*g3^8*g4^4*t^7.52 + g2^4*g3^8*g4^4*t^7.52 + g1^4*g3^4*g4^8*t^7.52 + g2^4*g3^4*g4^8*t^7.52 + g1^4*g3^8*g5^4*t^7.52 + g2^4*g3^8*g5^4*t^7.52 + 2*g1^4*g3^4*g4^4*g5^4*t^7.52 + 2*g2^4*g3^4*g4^4*g5^4*t^7.52 + g1^4*g4^8*g5^4*t^7.52 + g2^4*g4^8*g5^4*t^7.52 + g1^4*g3^4*g5^8*t^7.52 + g2^4*g3^4*g5^8*t^7.52 + g1^4*g4^4*g5^8*t^7.52 + g2^4*g4^4*g5^8*t^7.52 + g1^4*g3^8*g6^4*t^7.52 + g2^4*g3^8*g6^4*t^7.52 + 2*g1^4*g3^4*g4^4*g6^4*t^7.52 + 2*g2^4*g3^4*g4^4*g6^4*t^7.52 + g1^4*g4^8*g6^4*t^7.52 + g2^4*g4^8*g6^4*t^7.52 + 2*g1^4*g3^4*g5^4*g6^4*t^7.52 + 2*g2^4*g3^4*g5^4*g6^4*t^7.52 + 2*g1^4*g4^4*g5^4*g6^4*t^7.52 + 2*g2^4*g4^4*g5^4*g6^4*t^7.52 + g1^4*g5^8*g6^4*t^7.52 + g2^4*g5^8*g6^4*t^7.52 + g1^4*g3^4*g6^8*t^7.52 + g2^4*g3^4*g6^8*t^7.52 + g1^4*g4^4*g6^8*t^7.52 + g2^4*g4^4*g6^8*t^7.52 + g1^4*g5^4*g6^8*t^7.52 + g2^4*g5^4*g6^8*t^7.52 + (g3^7*t^7.55)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.55)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.55)/(g1^5*g2^5*g3*g5*g6) + (g3^3*g5^3*t^7.55)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.55)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.55)/(g1^5*g2^5*g3*g4*g6) + (g3^3*g6^3*t^7.55)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.55)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.55)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.55)/(g1^5*g2^5*g3*g4*g5) + g1^8*g3^8*t^7.58 + g1^4*g2^4*g3^8*t^7.58 + g2^8*g3^8*t^7.58 + g1^8*g3^4*g4^4*t^7.58 + g1^4*g2^4*g3^4*g4^4*t^7.58 + g2^8*g3^4*g4^4*t^7.58 + g1^8*g4^8*t^7.58 + g1^4*g2^4*g4^8*t^7.58 + g2^8*g4^8*t^7.58 + g1^8*g3^4*g5^4*t^7.58 + g1^4*g2^4*g3^4*g5^4*t^7.58 + g2^8*g3^4*g5^4*t^7.58 + g1^8*g4^4*g5^4*t^7.58 + g1^4*g2^4*g4^4*g5^4*t^7.58 + g2^8*g4^4*g5^4*t^7.58 + g1^8*g5^8*t^7.58 + g1^4*g2^4*g5^8*t^7.58 + g2^8*g5^8*t^7.58 + g1^8*g3^4*g6^4*t^7.58 + g1^4*g2^4*g3^4*g6^4*t^7.58 + g2^8*g3^4*g6^4*t^7.58 + g1^8*g4^4*g6^4*t^7.58 + g1^4*g2^4*g4^4*g6^4*t^7.58 + g2^8*g4^4*g6^4*t^7.58 + g1^8*g5^4*g6^4*t^7.58 + g1^4*g2^4*g5^4*g6^4*t^7.58 + g2^8*g5^4*g6^4*t^7.58 + g1^8*g6^8*t^7.58 + g1^4*g2^4*g6^8*t^7.58 + g2^8*g6^8*t^7.58 + t^7.63/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) - (g3^3*t^7.67)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.67)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.67)/(g1*g2*g3*g4*g6^5) - (g3^3*t^7.67)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.67)/(g1*g2*g3*g5^5*g6) - (g3^3*t^7.67)/(g1*g2*g4^5*g5*g6) - (4*t^7.67)/(g1*g2*g3*g4*g5*g6) - (g4^3*t^7.67)/(g1*g2*g3^5*g5*g6) - (g5^3*t^7.67)/(g1*g2*g3*g4^5*g6) - (g5^3*t^7.67)/(g1*g2*g3^5*g4*g6) - (g6^3*t^7.67)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.67)/(g1*g2*g3*g4^5*g5) - (g6^3*t^7.67)/(g1*g2*g3^5*g4*g5) - (g1^3*t^7.73)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.73)/(g1*g3*g4*g5*g6^5) - (g1^3*t^7.73)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.73)/(g1*g3*g4*g5^5*g6) - (g1^3*t^7.73)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.73)/(g1*g3*g4^5*g5*g6) - (g1^3*t^7.73)/(g2*g3^5*g4*g5*g6) - (g2^3*t^7.73)/(g1*g3^5*g4*g5*g6) + (g3^4*g4^4*t^8.02)/(g1^8*g2^8) + (g3^4*g5^4*t^8.02)/(g1^8*g2^8) + (g4^4*g5^4*t^8.02)/(g1^8*g2^8) + (g3^4*g6^4*t^8.02)/(g1^8*g2^8) + (g4^4*g6^4*t^8.02)/(g1^8*g2^8) + (g5^4*g6^4*t^8.02)/(g1^8*g2^8) - g1*g2*g3^9*g4*g5*g6*t^8.06 - g1*g2*g3^5*g4^5*g5*g6*t^8.06 - g1*g2*g3*g4^9*g5*g6*t^8.06 - g1*g2*g3^5*g4*g5^5*g6*t^8.06 - g1*g2*g3*g4^5*g5^5*g6*t^8.06 - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3^5*g4*g5*g6^5*t^8.06 - g1*g2*g3*g4^5*g5*g6^5*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 - g1^5*g2*g3^5*g4*g5*g6*t^8.12 - g1*g2^5*g3^5*g4*g5*g6*t^8.12 - g1^5*g2*g3*g4^5*g5*g6*t^8.12 - g1*g2^5*g3*g4^5*g5*g6*t^8.12 - g1^5*g2*g3*g4*g5^5*g6*t^8.12 - g1*g2^5*g3*g4*g5^5*g6*t^8.12 - g1^5*g2*g3*g4*g5*g6^5*t^8.12 - g1*g2^5*g3*g4*g5*g6^5*t^8.12 - (5*t^8.15)/(g1^4*g2^4) - (g3^4*t^8.15)/(g1^4*g2^4*g4^4) - (g4^4*t^8.15)/(g1^4*g2^4*g3^4) - (g3^4*t^8.15)/(g1^4*g2^4*g5^4) - (g4^4*t^8.15)/(g1^4*g2^4*g5^4) - (g5^4*t^8.15)/(g1^4*g2^4*g3^4) - (g5^4*t^8.15)/(g1^4*g2^4*g4^4) - (g3^4*t^8.15)/(g1^4*g2^4*g6^4) - (g4^4*t^8.15)/(g1^4*g2^4*g6^4) - (g5^4*t^8.15)/(g1^4*g2^4*g6^4) - (g6^4*t^8.15)/(g1^4*g2^4*g3^4) - (g6^4*t^8.15)/(g1^4*g2^4*g4^4) - (g6^4*t^8.15)/(g1^4*g2^4*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.18 - g1^5*g2^5*g3*g4*g5*g6*t^8.18 - g1*g2^9*g3*g4*g5*g6*t^8.18 + t^8.27/g3^8 + t^8.27/g4^8 + t^8.27/(g3^4*g4^4) + t^8.27/g5^8 + t^8.27/(g3^4*g5^4) + t^8.27/(g4^4*g5^4) + t^8.27/g6^8 + t^8.27/(g3^4*g6^4) + t^8.27/(g4^4*g6^4) + t^8.27/(g5^4*g6^4) + t^8.59/(g1^16*g2^16) + (g3^5*t^8.74)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.74)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.74)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.74)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.74)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.74)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g3*g6*t^8.74)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.74)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.74)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.74)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (g1*g3*t^8.81)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.81)/(g1^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.81)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.81)/(g1^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.81)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.81)/(g1^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.81)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.81)/(g1^3*g3^3*g4^3*g5^3) + t^8.83/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g1^5*t^8.87)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.87)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.87)/(g1^3*g3^3*g4^3*g5^3*g6^3) - t^4.67/(g1*g2*g3*g4*g5*g6*y) - t^6.82/(g1^5*g2^5*g3*g4*g5*g6*y) + (g1*g2*g3*g4*g5*g6*t^7.33)/y - t^8.01/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.49/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.52)/(g3*g4*g5*g6*y) + (g3^4*g4^4*t^8.88)/(g1^4*g2^4*y) + (g3^4*g5^4*t^8.88)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.88)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.88)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.88)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.88)/(g1^4*g2^4*y) + (g3^4*t^8.94)/(g1^4*y) + (g3^4*t^8.94)/(g2^4*y) + (g4^4*t^8.94)/(g1^4*y) + (g4^4*t^8.94)/(g2^4*y) + (g5^4*t^8.94)/(g1^4*y) + (g5^4*t^8.94)/(g2^4*y) + (g6^4*t^8.94)/(g1^4*y) + (g6^4*t^8.94)/(g2^4*y) - t^8.96/(g1^9*g2^9*g3*g4*g5*g6*y) - (t^4.67*y)/(g1*g2*g3*g4*g5*g6) - (t^6.82*y)/(g1^5*g2^5*g3*g4*g5*g6) + g1*g2*g3*g4*g5*g6*t^7.33*y - (t^8.01*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.49*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.52*y)/(g3*g4*g5*g6) + (g3^4*g4^4*t^8.88*y)/(g1^4*g2^4) + (g3^4*g5^4*t^8.88*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.88*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.88*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.88*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.88*y)/(g1^4*g2^4) + (g3^4*t^8.94*y)/g1^4 + (g3^4*t^8.94*y)/g2^4 + (g4^4*t^8.94*y)/g1^4 + (g4^4*t^8.94*y)/g2^4 + (g5^4*t^8.94*y)/g1^4 + (g5^4*t^8.94*y)/g2^4 + (g6^4*t^8.94*y)/g1^4 + (g6^4*t^8.94*y)/g2^4 - (t^8.96*y)/(g1^9*g2^9*g3*g4*g5*g6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55443 | $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8782 | 1.0685 | 0.8219 | [X:[], M:[0.7317], q:[0.6342, 0.6342, 0.621], qb:[0.6342, 0.6342, 0.621], phi:[0.5553]] | t^2.19 + t^3.33 + t^3.73 + 8*t^3.77 + 5*t^3.81 + t^4.39 + 3*t^5.39 + 8*t^5.43 + 10*t^5.47 + t^5.53 + t^5.92 - 15*t^6. - t^4.67/y - t^4.67*y | detail | |
55441 | $M_1q_1q_2$ + $ M_2\phi_1^2$ | 0.8907 | 1.0986 | 0.8108 | [X:[], M:[0.7371, 0.8394], q:[0.6314, 0.6314, 0.604], qb:[0.604, 0.604, 0.604], phi:[0.5803]] | t^2.21 + t^2.52 + 6*t^3.62 + 8*t^3.71 + t^4.42 + t^4.73 + t^5.04 + 10*t^5.36 + 8*t^5.45 + 3*t^5.53 + 6*t^5.84 - 20*t^6. - t^4.74/y - t^4.74*y | detail | |
55444 | $M_1q_1q_2$ + $ M_2q_1q_3$ | 0.8986 | 1.1079 | 0.8111 | [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] | 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y | detail | |
55457 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ | 0.8981 | 1.1052 | 0.8127 | [X:[], M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] | 2*t^2.16 + t^3.3 + t^3.71 + 8*t^3.78 + 4*t^3.84 + 3*t^4.31 + 3*t^5.36 + 8*t^5.43 + 2*t^5.46 + 10*t^5.49 + 2*t^5.87 + 8*t^5.93 - 12*t^6. - t^4.65/y - t^4.65*y | detail | |
55451 | $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ | 0.8602 | 1.0422 | 0.8254 | [X:[], M:[0.7683], q:[0.6158, 0.6158, 0.732], qb:[0.732, 0.5801, 0.5801], phi:[0.536]] | t^2.3 + t^3.22 + t^3.48 + 4*t^3.59 + 4*t^3.94 + 4*t^4.04 + t^4.39 + t^4.61 + 3*t^5.09 + 4*t^5.2 + 3*t^5.3 + t^5.52 + t^5.79 - 9*t^6. - t^4.61/y - t^4.61*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55428 | SU2adj1nf3 | . | 0.8588 | 1.0348 | 0.8299 | [X:[], M:[], q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] | t^3.38 + 15*t^3.75 + 21*t^5.44 - 36*t^6. - t^4.69/y - t^4.69*y | detail |