Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55431 | SU2adj1nf3 | ${}M_{1}q_{1}q_{2}$ | 0.8785 | 1.0704 | 0.8208 | [M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] | [M:[[-4, -4, 0, 0, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{2}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{1}q_{3}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$ | ${}$ | -20 | t^2.146 + t^3.342 + 6*t^3.731 + 8*t^3.792 + t^4.293 + 10*t^5.402 + 8*t^5.463 + t^5.489 + 3*t^5.525 + 6*t^5.877 - 20*t^6. - 8*t^6.061 + t^6.439 + t^6.685 + 6*t^7.073 + 8*t^7.135 + 20*t^7.462 + 40*t^7.523 + 10*t^7.548 + 30*t^7.585 + t^7.635 - 16*t^7.671 - 8*t^7.733 + 6*t^8.023 - 10*t^8.06 - 8*t^8.121 - 17*t^8.146 - 3*t^8.183 + 10*t^8.269 + t^8.585 + 10*t^8.744 + 8*t^8.806 + t^8.831 + 3*t^8.867 - t^4.671/y - t^6.817/y + t^7.329/y - t^8.013/y + t^8.489/y + t^8.525/y + (6*t^8.877)/y + (8*t^8.939)/y - t^8.964/y - t^4.671*y - t^6.817*y + t^7.329*y - t^8.013*y + t^8.489*y + t^8.525*y + 6*t^8.877*y + 8*t^8.939*y - t^8.964*y | t^2.146/(g1^4*g2^4) + t^3.342/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g3^4*g4^4*t^3.731 + g3^4*g5^4*t^3.731 + g4^4*g5^4*t^3.731 + g3^4*g6^4*t^3.731 + g4^4*g6^4*t^3.731 + g5^4*g6^4*t^3.731 + g1^4*g3^4*t^3.792 + g2^4*g3^4*t^3.792 + g1^4*g4^4*t^3.792 + g2^4*g4^4*t^3.792 + g1^4*g5^4*t^3.792 + g2^4*g5^4*t^3.792 + g1^4*g6^4*t^3.792 + g2^4*g6^4*t^3.792 + t^4.293/(g1^8*g2^8) + (g3^7*t^5.402)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.402)/(g1*g2*g5*g6) + (g4^7*t^5.402)/(g1*g2*g3*g5*g6) + (g3^3*g5^3*t^5.402)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.402)/(g1*g2*g3*g6) + (g5^7*t^5.402)/(g1*g2*g3*g4*g6) + (g3^3*g6^3*t^5.402)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.402)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.402)/(g1*g2*g3*g4) + (g6^7*t^5.402)/(g1*g2*g3*g4*g5) + (g1^3*g3^3*t^5.463)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.463)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.463)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.463)/(g1*g3*g5*g6) + (g1^3*g5^3*t^5.463)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.463)/(g1*g3*g4*g6) + (g1^3*g6^3*t^5.463)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.463)/(g1*g3*g4*g5) + t^5.489/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^7*t^5.525)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.525)/(g3*g4*g5*g6) + (g2^7*t^5.525)/(g1*g3*g4*g5*g6) + (g3^4*g4^4*t^5.877)/(g1^4*g2^4) + (g3^4*g5^4*t^5.877)/(g1^4*g2^4) + (g4^4*g5^4*t^5.877)/(g1^4*g2^4) + (g3^4*g6^4*t^5.877)/(g1^4*g2^4) + (g4^4*g6^4*t^5.877)/(g1^4*g2^4) + (g5^4*g6^4*t^5.877)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g3^4*t^6.)/g6^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g3^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.061)/g3^4 - (g2^4*t^6.061)/g3^4 - (g1^4*t^6.061)/g4^4 - (g2^4*t^6.061)/g4^4 - (g1^4*t^6.061)/g5^4 - (g2^4*t^6.061)/g5^4 - (g1^4*t^6.061)/g6^4 - (g2^4*t^6.061)/g6^4 + t^6.439/(g1^12*g2^12) + t^6.685/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g3^2*g4^2*t^7.073)/(g1^2*g2^2*g5^2*g6^2) + (g3^2*g5^2*t^7.073)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.073)/(g1^2*g2^2*g3^2*g6^2) + (g3^2*g6^2*t^7.073)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.073)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.073)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g3^2*t^7.135)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.135)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.135)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.135)/(g1^2*g3^2*g5^2*g6^2) + (g1^2*g5^2*t^7.135)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.135)/(g1^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.135)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.135)/(g1^2*g3^2*g4^2*g5^2) + g3^8*g4^8*t^7.462 + g3^8*g4^4*g5^4*t^7.462 + g3^4*g4^8*g5^4*t^7.462 + g3^8*g5^8*t^7.462 + g3^4*g4^4*g5^8*t^7.462 + g4^8*g5^8*t^7.462 + g3^8*g4^4*g6^4*t^7.462 + g3^4*g4^8*g6^4*t^7.462 + g3^8*g5^4*g6^4*t^7.462 + 2*g3^4*g4^4*g5^4*g6^4*t^7.462 + g4^8*g5^4*g6^4*t^7.462 + g3^4*g5^8*g6^4*t^7.462 + g4^4*g5^8*g6^4*t^7.462 + g3^8*g6^8*t^7.462 + g3^4*g4^4*g6^8*t^7.462 + g4^8*g6^8*t^7.462 + g3^4*g5^4*g6^8*t^7.462 + g4^4*g5^4*g6^8*t^7.462 + g5^8*g6^8*t^7.462 + g1^4*g3^8*g4^4*t^7.523 + g2^4*g3^8*g4^4*t^7.523 + g1^4*g3^4*g4^8*t^7.523 + g2^4*g3^4*g4^8*t^7.523 + g1^4*g3^8*g5^4*t^7.523 + g2^4*g3^8*g5^4*t^7.523 + 2*g1^4*g3^4*g4^4*g5^4*t^7.523 + 2*g2^4*g3^4*g4^4*g5^4*t^7.523 + g1^4*g4^8*g5^4*t^7.523 + g2^4*g4^8*g5^4*t^7.523 + g1^4*g3^4*g5^8*t^7.523 + g2^4*g3^4*g5^8*t^7.523 + g1^4*g4^4*g5^8*t^7.523 + g2^4*g4^4*g5^8*t^7.523 + g1^4*g3^8*g6^4*t^7.523 + g2^4*g3^8*g6^4*t^7.523 + 2*g1^4*g3^4*g4^4*g6^4*t^7.523 + 2*g2^4*g3^4*g4^4*g6^4*t^7.523 + g1^4*g4^8*g6^4*t^7.523 + g2^4*g4^8*g6^4*t^7.523 + 2*g1^4*g3^4*g5^4*g6^4*t^7.523 + 2*g2^4*g3^4*g5^4*g6^4*t^7.523 + 2*g1^4*g4^4*g5^4*g6^4*t^7.523 + 2*g2^4*g4^4*g5^4*g6^4*t^7.523 + g1^4*g5^8*g6^4*t^7.523 + g2^4*g5^8*g6^4*t^7.523 + g1^4*g3^4*g6^8*t^7.523 + g2^4*g3^4*g6^8*t^7.523 + g1^4*g4^4*g6^8*t^7.523 + g2^4*g4^4*g6^8*t^7.523 + g1^4*g5^4*g6^8*t^7.523 + g2^4*g5^4*g6^8*t^7.523 + (g3^7*t^7.548)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.548)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.548)/(g1^5*g2^5*g3*g5*g6) + (g3^3*g5^3*t^7.548)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.548)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.548)/(g1^5*g2^5*g3*g4*g6) + (g3^3*g6^3*t^7.548)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.548)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.548)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.548)/(g1^5*g2^5*g3*g4*g5) + g1^8*g3^8*t^7.585 + g1^4*g2^4*g3^8*t^7.585 + g2^8*g3^8*t^7.585 + g1^8*g3^4*g4^4*t^7.585 + g1^4*g2^4*g3^4*g4^4*t^7.585 + g2^8*g3^4*g4^4*t^7.585 + g1^8*g4^8*t^7.585 + g1^4*g2^4*g4^8*t^7.585 + g2^8*g4^8*t^7.585 + g1^8*g3^4*g5^4*t^7.585 + g1^4*g2^4*g3^4*g5^4*t^7.585 + g2^8*g3^4*g5^4*t^7.585 + g1^8*g4^4*g5^4*t^7.585 + g1^4*g2^4*g4^4*g5^4*t^7.585 + g2^8*g4^4*g5^4*t^7.585 + g1^8*g5^8*t^7.585 + g1^4*g2^4*g5^8*t^7.585 + g2^8*g5^8*t^7.585 + g1^8*g3^4*g6^4*t^7.585 + g1^4*g2^4*g3^4*g6^4*t^7.585 + g2^8*g3^4*g6^4*t^7.585 + g1^8*g4^4*g6^4*t^7.585 + g1^4*g2^4*g4^4*g6^4*t^7.585 + g2^8*g4^4*g6^4*t^7.585 + g1^8*g5^4*g6^4*t^7.585 + g1^4*g2^4*g5^4*g6^4*t^7.585 + g2^8*g5^4*g6^4*t^7.585 + g1^8*g6^8*t^7.585 + g1^4*g2^4*g6^8*t^7.585 + g2^8*g6^8*t^7.585 + t^7.635/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) - (g3^3*t^7.671)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.671)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.671)/(g1*g2*g3*g4*g6^5) - (g3^3*t^7.671)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.671)/(g1*g2*g3*g5^5*g6) - (g3^3*t^7.671)/(g1*g2*g4^5*g5*g6) - (4*t^7.671)/(g1*g2*g3*g4*g5*g6) - (g4^3*t^7.671)/(g1*g2*g3^5*g5*g6) - (g5^3*t^7.671)/(g1*g2*g3*g4^5*g6) - (g5^3*t^7.671)/(g1*g2*g3^5*g4*g6) - (g6^3*t^7.671)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.671)/(g1*g2*g3*g4^5*g5) - (g6^3*t^7.671)/(g1*g2*g3^5*g4*g5) - (g1^3*t^7.733)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.733)/(g1*g3*g4*g5*g6^5) - (g1^3*t^7.733)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.733)/(g1*g3*g4*g5^5*g6) - (g1^3*t^7.733)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.733)/(g1*g3*g4^5*g5*g6) - (g1^3*t^7.733)/(g2*g3^5*g4*g5*g6) - (g2^3*t^7.733)/(g1*g3^5*g4*g5*g6) + (g3^4*g4^4*t^8.023)/(g1^8*g2^8) + (g3^4*g5^4*t^8.023)/(g1^8*g2^8) + (g4^4*g5^4*t^8.023)/(g1^8*g2^8) + (g3^4*g6^4*t^8.023)/(g1^8*g2^8) + (g4^4*g6^4*t^8.023)/(g1^8*g2^8) + (g5^4*g6^4*t^8.023)/(g1^8*g2^8) - g1*g2*g3^9*g4*g5*g6*t^8.06 - g1*g2*g3^5*g4^5*g5*g6*t^8.06 - g1*g2*g3*g4^9*g5*g6*t^8.06 - g1*g2*g3^5*g4*g5^5*g6*t^8.06 - g1*g2*g3*g4^5*g5^5*g6*t^8.06 - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3^5*g4*g5*g6^5*t^8.06 - g1*g2*g3*g4^5*g5*g6^5*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 - g1^5*g2*g3^5*g4*g5*g6*t^8.121 - g1*g2^5*g3^5*g4*g5*g6*t^8.121 - g1^5*g2*g3*g4^5*g5*g6*t^8.121 - g1*g2^5*g3*g4^5*g5*g6*t^8.121 - g1^5*g2*g3*g4*g5^5*g6*t^8.121 - g1*g2^5*g3*g4*g5^5*g6*t^8.121 - g1^5*g2*g3*g4*g5*g6^5*t^8.121 - g1*g2^5*g3*g4*g5*g6^5*t^8.121 - (5*t^8.146)/(g1^4*g2^4) - (g3^4*t^8.146)/(g1^4*g2^4*g4^4) - (g4^4*t^8.146)/(g1^4*g2^4*g3^4) - (g3^4*t^8.146)/(g1^4*g2^4*g5^4) - (g4^4*t^8.146)/(g1^4*g2^4*g5^4) - (g5^4*t^8.146)/(g1^4*g2^4*g3^4) - (g5^4*t^8.146)/(g1^4*g2^4*g4^4) - (g3^4*t^8.146)/(g1^4*g2^4*g6^4) - (g4^4*t^8.146)/(g1^4*g2^4*g6^4) - (g5^4*t^8.146)/(g1^4*g2^4*g6^4) - (g6^4*t^8.146)/(g1^4*g2^4*g3^4) - (g6^4*t^8.146)/(g1^4*g2^4*g4^4) - (g6^4*t^8.146)/(g1^4*g2^4*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.183 - g1^5*g2^5*g3*g4*g5*g6*t^8.183 - g1*g2^9*g3*g4*g5*g6*t^8.183 + t^8.269/g3^8 + t^8.269/g4^8 + t^8.269/(g3^4*g4^4) + t^8.269/g5^8 + t^8.269/(g3^4*g5^4) + t^8.269/(g4^4*g5^4) + t^8.269/g6^8 + t^8.269/(g3^4*g6^4) + t^8.269/(g4^4*g6^4) + t^8.269/(g5^4*g6^4) + t^8.585/(g1^16*g2^16) + (g3^5*t^8.744)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.744)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.744)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g3*g5*t^8.744)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.744)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.744)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g3*g6*t^8.744)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.744)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.744)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.744)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (g1*g3*t^8.806)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.806)/(g1^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.806)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.806)/(g1^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.806)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.806)/(g1^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.806)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.806)/(g1^3*g3^3*g4^3*g5^3) + t^8.831/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g1^5*t^8.867)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.867)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.867)/(g1^3*g3^3*g4^3*g5^3*g6^3) - t^4.671/(g1*g2*g3*g4*g5*g6*y) - t^6.817/(g1^5*g2^5*g3*g4*g5*g6*y) + (g1*g2*g3*g4*g5*g6*t^7.329)/y - t^8.013/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.489/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.525)/(g3*g4*g5*g6*y) + (g3^4*g4^4*t^8.877)/(g1^4*g2^4*y) + (g3^4*g5^4*t^8.877)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.877)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.877)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.877)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.877)/(g1^4*g2^4*y) + (g3^4*t^8.939)/(g1^4*y) + (g3^4*t^8.939)/(g2^4*y) + (g4^4*t^8.939)/(g1^4*y) + (g4^4*t^8.939)/(g2^4*y) + (g5^4*t^8.939)/(g1^4*y) + (g5^4*t^8.939)/(g2^4*y) + (g6^4*t^8.939)/(g1^4*y) + (g6^4*t^8.939)/(g2^4*y) - t^8.964/(g1^9*g2^9*g3*g4*g5*g6*y) - (t^4.671*y)/(g1*g2*g3*g4*g5*g6) - (t^6.817*y)/(g1^5*g2^5*g3*g4*g5*g6) + g1*g2*g3*g4*g5*g6*t^7.329*y - (t^8.013*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.489*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.525*y)/(g3*g4*g5*g6) + (g3^4*g4^4*t^8.877*y)/(g1^4*g2^4) + (g3^4*g5^4*t^8.877*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.877*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.877*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.877*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.877*y)/(g1^4*g2^4) + (g3^4*t^8.939*y)/g1^4 + (g3^4*t^8.939*y)/g2^4 + (g4^4*t^8.939*y)/g1^4 + (g4^4*t^8.939*y)/g2^4 + (g5^4*t^8.939*y)/g1^4 + (g5^4*t^8.939*y)/g2^4 + (g6^4*t^8.939*y)/g1^4 + (g6^4*t^8.939*y)/g2^4 - (t^8.964*y)/(g1^9*g2^9*g3*g4*g5*g6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55443 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.8782 | 1.0685 | 0.8219 | [M:[0.7317], q:[0.6342, 0.6342, 0.621], qb:[0.6342, 0.6342, 0.621], phi:[0.5553]] | t^2.195 + t^3.332 + t^3.726 + 8*t^3.766 + 5*t^3.805 + t^4.39 + 3*t^5.392 + 8*t^5.432 + 10*t^5.471 + t^5.527 + t^5.921 - 15*t^6. - t^4.666/y - t^4.666*y | detail | |
55441 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.8907 | 1.0986 | 0.8108 | [M:[0.7371, 0.8394], q:[0.6314, 0.6314, 0.604], qb:[0.604, 0.604, 0.604], phi:[0.5803]] | t^2.211 + t^2.518 + 6*t^3.624 + 8*t^3.706 + t^4.423 + t^4.73 + t^5.036 + 10*t^5.365 + 8*t^5.447 + 3*t^5.53 + 6*t^5.835 - 20*t^6. - t^4.741/y - t^4.741*y | detail | |
55444 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}q_{3}$ | 0.8986 | 1.1079 | 0.8111 | [M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] | 2*t^2.123 + t^3.316 + 3*t^3.719 + 6*t^3.771 + t^3.823 + 3*t^3.825 + 3*t^4.246 + 6*t^5.377 + 6*t^5.429 + 2*t^5.439 + 3*t^5.481 + 3*t^5.484 + 2*t^5.535 + t^5.59 + 6*t^5.842 + 9*t^5.894 - 14*t^6. - t^4.658/y - t^4.658*y | detail | |
55457 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ | 0.8981 | 1.1052 | 0.8127 | [M:[0.719, 0.719], q:[0.6405, 0.6405, 0.6405], qb:[0.6405, 0.6188, 0.6188], phi:[0.5501]] | 2*t^2.157 + t^3.301 + t^3.713 + 8*t^3.778 + 4*t^3.843 + 3*t^4.314 + 3*t^5.363 + 8*t^5.428 + 2*t^5.458 + 10*t^5.493 + 2*t^5.87 + 8*t^5.935 - 12*t^6. - t^4.65/y - t^4.65*y | detail | |
55451 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ | 0.8602 | 1.0422 | 0.8254 | [M:[0.7683], q:[0.6158, 0.6158, 0.732], qb:[0.732, 0.5801, 0.5801], phi:[0.536]] | t^2.305 + t^3.216 + t^3.481 + 4*t^3.588 + 4*t^3.936 + 4*t^4.044 + t^4.392 + t^4.61 + 3*t^5.089 + 4*t^5.196 + 3*t^5.303 + t^5.521 + t^5.786 - 9*t^6. - t^4.608/y - t^4.608*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55428 | SU2adj1nf3 | ${}$ | 0.8588 | 1.0348 | 0.8299 | [q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] | t^3.379 + 15*t^3.747 + 21*t^5.437 - 36*t^6. - t^4.69/y - t^4.69*y | detail |