Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47868 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | t^2.847 + t^2.933 + t^2.957 + 2*t^3.043 + t^3.918 + 3*t^4.028 + t^4.139 + t^4.904 + 2*t^5.014 + t^5.124 + 2*t^5.495 + 2*t^5.605 + t^5.695 + t^5.78 + t^5.805 + t^5.865 + t^5.89 + t^5.915 + 2*t^5.975 - 2*t^6. + 3*t^6.085 - 2*t^6.11 + 2*t^6.48 + 2*t^6.591 + t^6.766 + t^6.851 + 2*t^6.876 + 5*t^6.961 + t^6.986 + 7*t^7.071 - t^7.096 + 2*t^7.181 + 2*t^7.356 + 2*t^7.686 + t^7.751 + 2*t^7.837 + t^7.861 + 6*t^7.947 + t^7.972 + 9*t^8.057 - t^8.082 + 4*t^8.167 + t^8.277 + 2*t^8.427 - 2*t^8.452 + 6*t^8.537 + t^8.542 - 4*t^8.562 + t^8.627 + 4*t^8.647 + t^8.652 - 2*t^8.672 + t^8.712 + t^8.737 + t^8.762 + t^8.798 + 2*t^8.822 - 2*t^8.847 + t^8.872 + 2*t^8.908 + t^8.933 - t^8.957 + t^8.957/y^2 - t^3.986/y - t^4.972/y - t^6.833/y - t^6.918/y - t^6.943/y - (2*t^7.028)/y - t^7.819/y - t^7.904/y - t^7.929/y - (2*t^8.014)/y + t^8.78/y + t^8.805/y + (2*t^8.89)/y + (2*t^8.975)/y - t^3.986*y - t^4.972*y - t^6.833*y - t^6.918*y - t^6.943*y - 2*t^7.028*y - t^7.819*y - t^7.904*y - t^7.929*y - 2*t^8.014*y + t^8.78*y + t^8.805*y + 2*t^8.89*y + 2*t^8.975*y + t^8.957*y^2 | (g1*g3*t^2.847)/g4^6 + g1*g3*t^2.933 + t^2.957/g4^3 + g1*g2*t^3.043 + (g4^6*t^3.043)/(g1*g2) + (g1*g3*t^3.918)/g4 + (g1*g2*t^4.028)/g4 + g4^2*t^4.028 + (g4^5*t^4.028)/(g1*g2) + (g4^5*t^4.139)/(g1*g3) + (g1*g3*t^4.904)/g4^2 + (g1*g2*t^5.014)/g4^2 + (g4^4*t^5.014)/(g1*g2) + (g4^4*t^5.124)/(g1*g3) + (g2*g3^2*t^5.495)/g4 + (g1*g4^5*t^5.495)/(g2*g3) + (g2^2*g3*t^5.605)/g4 + (g4^11*t^5.605)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^5.695)/g4^12 + (g1^2*g3^2*t^5.78)/g4^6 + (g1*g3*t^5.805)/g4^9 + g1^2*g3^2*t^5.865 + (g1*g3*t^5.89)/g4^3 + t^5.915/g4^6 + g1^2*g2*g3*t^5.975 + (g3*g4^6*t^5.975)/g2 - 4*t^6. + (g1*g2*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g2) + g1^2*g2^2*t^6.085 + g4^6*t^6.085 + (g4^12*t^6.085)/(g1^2*g2^2) - (g2*t^6.11)/g3 - (g4^6*t^6.11)/(g1^2*g2*g3) + (g2*g3^2*t^6.48)/g4^2 + (g1*g4^4*t^6.48)/(g2*g3) + (g2^2*g3*t^6.591)/g4^2 + (g4^10*t^6.591)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.766)/g4^7 + (g1^2*g3^2*t^6.851)/g4 + (2*g1*g3*t^6.876)/g4^4 + (2*g1^2*g2*g3*t^6.961)/g4 + g1*g3*g4^2*t^6.961 + (2*g3*g4^5*t^6.961)/g2 + (g1*g2*t^6.986)/g4^4 - t^6.986/g4 + (g4^2*t^6.986)/(g1*g2) + (g1^2*g2^2*t^7.071)/g4 + g1*g2*g4^2*t^7.071 + 3*g4^5*t^7.071 + (g4^8*t^7.071)/(g1*g2) + (g4^11*t^7.071)/(g1^2*g2^2) - (g2*t^7.096)/(g3*g4) + (g4^2*t^7.096)/(g1*g3) - (g4^5*t^7.096)/(g1^2*g2*g3) + (g2*g4^5*t^7.181)/g3 + (g4^11*t^7.181)/(g1^2*g2*g3) + (g1^3*t^7.356)/g4^3 + (g3^3*t^7.356)/g4^3 - (g1*g2^2*g3^2*t^7.466)/g4^6 + (g2*g3^2*t^7.466)/g4^3 + (g1*g4^3*t^7.466)/(g2*g3) - (g4^6*t^7.466)/(g2^2*g3) - (g2*g3*t^7.576)/g1 + (g2^2*g3*t^7.576)/g4^3 - (g4^6*t^7.576)/(g2*g3^2) + (g4^9*t^7.576)/(g1*g2^2*g3^2) + (g2^3*t^7.686)/g4^3 + (g4^15*t^7.686)/(g1^3*g2^3*g3^3) + (g1^2*g3^2*t^7.751)/g4^8 + (2*g1^2*g3^2*t^7.837)/g4^2 + (g1*g3*t^7.861)/g4^5 + (3*g1^2*g2*g3*t^7.947)/g4^2 + (3*g3*g4^4*t^7.947)/g2 + (g1*g2*t^7.972)/g4^5 - t^7.972/g4^2 + (g4*t^7.972)/(g1*g2) + (2*g1^2*g2^2*t^8.057)/g4^2 + 5*g4^4*t^8.057 + (2*g4^10*t^8.057)/(g1^2*g2^2) - (g2*t^8.082)/(g3*g4^2) + (g4*t^8.082)/(g1*g3) - (g4^4*t^8.082)/(g1^2*g2*g3) + (2*g2*g4^4*t^8.167)/g3 + (2*g4^10*t^8.167)/(g1^2*g2*g3) + (g4^10*t^8.277)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.427)/g4 + (g1^2*g4^5*t^8.427)/g2 - (g1*g2^2*g3^2*t^8.452)/g4^7 + (g2*g3^2*t^8.452)/g4^4 - (g1^2*t^8.452)/(g3*g4) - (g3^2*t^8.452)/(g1*g4) + (g1*g4^2*t^8.452)/(g2*g3) - (g4^5*t^8.452)/(g2^2*g3) + (2*g1*g2^2*g3^2*t^8.537)/g4 + (g1^2*g4^5*t^8.537)/g3 + (g3^2*g4^5*t^8.537)/g1 + (2*g4^11*t^8.537)/(g2^2*g3) + (g1^3*g3^3*t^8.542)/g4^18 - (g1*g2^3*g3*t^8.562)/g4^7 + (g2^2*g3*t^8.562)/g4^4 - (2*g2*g3*t^8.562)/(g1*g4) - (2*g4^5*t^8.562)/(g2*g3^2) + (g4^8*t^8.562)/(g1*g2^2*g3^2) - (g4^11*t^8.562)/(g1^2*g2^3*g3^2) + (g1^3*g3^3*t^8.627)/g4^12 + (g1*g2^3*g3*t^8.647)/g4 + (g2*g3*g4^5*t^8.647)/g1 + (g4^11*t^8.647)/(g2*g3^2) + (g4^17*t^8.647)/(g1^2*g2^3*g3^2) + (g1^2*g3^2*t^8.652)/g4^15 - (g2^2*t^8.672)/(g1*g4) - (g4^11*t^8.672)/(g1^2*g2^2*g3^3) + (g1^3*g3^3*t^8.712)/g4^6 + (g1^2*g3^2*t^8.737)/g4^9 + (g1*g3*t^8.762)/g4^12 + g1^3*g3^3*t^8.798 + (2*g1^2*g3^2*t^8.822)/g4^3 - (2*g1*g3*t^8.847)/g4^6 + t^8.872/g4^9 + g1^3*g2*g3^2*t^8.908 + (g1*g3^2*g4^6*t^8.908)/g2 - 5*g1*g3*t^8.933 + (3*g1^2*g2*g3*t^8.933)/g4^3 + (3*g3*g4^3*t^8.933)/g2 + t^8.957/(g1*g2) + (g1*g2*t^8.957)/g4^6 - (3*t^8.957)/g4^3 + t^8.957/(g4^3*y^2) - t^3.986/(g4*y) - t^4.972/(g4^2*y) - (g1*g3*t^6.833)/(g4^7*y) - (g1*g3*t^6.918)/(g4*y) - t^6.943/(g4^4*y) - (g1*g2*t^7.028)/(g4*y) - (g4^5*t^7.028)/(g1*g2*y) - (g1*g3*t^7.819)/(g4^8*y) - (g1*g3*t^7.904)/(g4^2*y) - t^7.929/(g4^5*y) - (g1*g2*t^8.014)/(g4^2*y) - (g4^4*t^8.014)/(g1*g2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g1*g3*t^8.805)/(g4^9*y) + (g3*t^8.89)/(g2*y) + (g1^2*g2*g3*t^8.89)/(g4^6*y) + (g1^2*g2*g3*t^8.975)/y + (g3*g4^6*t^8.975)/(g2*y) - (t^3.986*y)/g4 - (t^4.972*y)/g4^2 - (g1*g3*t^6.833*y)/g4^7 - (g1*g3*t^6.918*y)/g4 - (t^6.943*y)/g4^4 - (g1*g2*t^7.028*y)/g4 - (g4^5*t^7.028*y)/(g1*g2) - (g1*g3*t^7.819*y)/g4^8 - (g1*g3*t^7.904*y)/g4^2 - (t^7.929*y)/g4^5 - (g1*g2*t^8.014*y)/g4^2 - (g4^4*t^8.014*y)/(g1*g2) + (g1^2*g3^2*t^8.78*y)/g4^6 + (g1*g3*t^8.805*y)/g4^9 + (g3*t^8.89*y)/g2 + (g1^2*g2*g3*t^8.89*y)/g4^6 + g1^2*g2*g3*t^8.975*y + (g3*g4^6*t^8.975*y)/g2 + (t^8.957*y^2)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47951 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4539 | 1.6446 | 0.884 | [X:[1.3264], M:[0.9896], q:[0.5052, 0.4845], qb:[0.5052, 0.4845], phi:[0.3368]] | t^2.907 + 3*t^2.969 + t^3.031 + t^3.917 + 3*t^3.979 + t^4.041 + t^4.928 + 2*t^4.99 + t^5.052 + 2*t^5.433 + 2*t^5.495 + t^5.814 + 3*t^5.876 + 5*t^5.938 - t^6. - t^4.01/y - t^5.021/y - t^4.01*y - t^5.021*y | detail | |
47901 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ | 1.4535 | 1.6383 | 0.8872 | [X:[1.3429], M:[0.9857], q:[0.5072, 0.5072], qb:[0.5072, 0.5072], phi:[0.3286]] | 2*t^2.957 + 3*t^3.043 + 5*t^4.029 + 4*t^5.014 + 4*t^5.55 + 3*t^5.914 - 2*t^6. - t^3.986/y - t^4.971/y - t^3.986*y - t^4.971*y | detail | |
47893 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4759 | 1.6818 | 0.8776 | [X:[1.3444], M:[0.9513, 0.6879], q:[0.5244, 0.4922], qb:[0.5244, 0.4922], phi:[0.3278]] | t^2.064 + t^2.854 + t^2.95 + t^2.953 + 2*t^3.05 + 3*t^4.033 + t^4.127 + t^4.13 + t^4.917 + t^4.92 + t^5.014 + 3*t^5.017 + 3*t^5.113 + 2*t^5.51 + 2*t^5.606 + t^5.708 + t^5.804 + t^5.807 + t^5.901 + t^5.903 + t^5.906 - 2*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y | detail | |
47954 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4552 | 1.6484 | 0.8828 | [X:[1.3241], M:[0.9774, 0.9862], q:[0.5113, 0.4749], qb:[0.5113, 0.4749], phi:[0.3379]] | t^2.85 + t^2.932 + 3*t^2.959 + t^3.863 + 3*t^3.972 + t^4.082 + t^4.877 + 2*t^4.986 + t^5.095 + 2*t^5.397 + 2*t^5.506 + t^5.699 + t^5.782 + 3*t^5.808 + t^5.865 + t^5.891 + 6*t^5.917 - 4*t^6. - t^4.014/y - t^5.028/y - t^4.014*y - t^5.028*y | detail | |
47913 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4595 | 1.6464 | 0.8865 | [X:[1.3609], M:[0.922, 0.922], q:[0.52, 0.52], qb:[0.558, 0.4848], phi:[0.3195]] | 2*t^2.766 + t^2.876 + 2*t^3.015 + 2*t^3.973 + t^4.083 + 2*t^4.193 + 2*t^4.932 + 2*t^5.151 + 3*t^5.532 + t^5.542 + 2*t^5.639 + 2*t^5.642 + t^5.751 + t^5.761 + 3*t^5.781 + 2*t^5.89 - 6*t^6. - t^3.959/y - t^4.917/y - t^3.959*y - t^4.917*y | detail | |
47885 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 1.4561 | 1.6383 | 0.8888 | [X:[1.3617], M:[0.9574, 0.9574], q:[0.5213, 0.5213], qb:[0.5213, 0.5213], phi:[0.3191]] | 3*t^2.872 + 2*t^3.128 + 5*t^4.085 + 4*t^5.043 + 4*t^5.649 + 6*t^5.744 - 2*t^6. - t^3.957/y - t^4.915/y - t^3.957*y - t^4.915*y | detail | |
47942 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ | 1.1311 | 1.2662 | 0.8933 | [X:[1.5234], M:[0.6981], q:[0.407, 0.8669], qb:[0.8948, 0.4015], phi:[0.2383]] | t^2.094 + t^2.145 + t^2.426 + t^3.14 + t^3.805 + t^3.855 + t^4.189 + t^4.239 + t^4.289 + t^4.52 + 2*t^4.57 + t^4.851 + t^5.235 + 2*t^5.285 + t^5.566 + 2*t^5.758 + 2*t^5.808 + t^5.899 + t^5.95 - 2*t^6. - t^3.715/y - t^4.43/y - t^5.809/y - t^5.86/y - t^3.715*y - t^4.43*y - t^5.809*y - t^5.86*y | detail | |
47939 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.446 | 1.6242 | 0.8903 | [X:[1.3694], M:[0.9321], q:[0.5113, 0.4763], qb:[0.5565, 0.5641], phi:[0.3153]] | t^2.796 + t^2.838 + t^3.098 + t^3.121 + t^3.226 + t^4.044 + t^4.067 + t^4.108 + t^4.149 + t^4.172 + t^4.99 + t^5.013 + t^5.095 + t^5.118 + t^5.337 + t^5.443 + t^5.593 + t^5.634 + t^5.675 + t^5.917 + t^5.936 + t^5.959 - 3*t^6. - t^3.946/y - t^4.892/y - t^3.946*y - t^4.892*y | detail | |
47897 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4497 | 1.6322 | 0.8882 | [X:[1.3628], M:[0.9023], q:[0.5128, 0.4792], qb:[0.585, 0.5115], phi:[0.3186]] | t^2.707 + t^2.867 + t^2.972 + t^3.073 + t^3.192 + t^3.928 + t^4.029 + t^4.088 + t^4.148 + t^4.249 + t^4.884 + t^4.984 + t^5.104 + t^5.205 + t^5.369 + t^5.414 + t^5.47 + t^5.574 + t^5.679 + t^5.735 + t^5.779 + t^5.839 + t^5.94 + t^5.944 - 3*t^6. - t^3.956/y - t^4.912/y - t^3.956*y - t^4.912*y | detail | |
47931 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | 1.3411 | 1.5094 | 0.8885 | [X:[1.4098], M:[0.848], q:[0.4222, 0.68], qb:[0.7297, 0.3974], phi:[0.2951]] | t^2.459 + t^2.544 + t^2.656 + t^3.232 + t^3.344 + t^4.117 + 3*t^4.229 + t^4.341 + t^4.917 + t^5.003 + t^5.088 + 2*t^5.115 + t^5.2 + t^5.312 + 2*t^5.459 + t^5.691 + t^5.776 + t^5.803 + t^5.888 - 2*t^6. - t^3.885/y - t^4.771/y - t^3.885*y - t^4.771*y | detail | |
47884 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ | 1.314 | 1.4609 | 0.8994 | [X:[1.4124], M:[1.1752], q:[0.4124, 0.7062], qb:[0.4124, 0.7062], phi:[0.2938]] | t^2.644 + 3*t^3.356 + t^3.526 + 5*t^4.237 + t^5.119 + t^5.288 + 2*t^5.474 - 2*t^6. - t^3.881/y - t^4.763/y - t^3.881*y - t^4.763*y | detail | |
47889 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{6}$ | 1.4548 | 1.6446 | 0.8846 | [X:[1.3333], M:[0.9634], q:[0.5183, 0.4817], qb:[0.5183, 0.4817], phi:[0.3333]] | 2*t^2.89 + 3*t^3. + t^3.89 + 3*t^4. + t^4.11 + t^4.89 + 2*t^5. + t^5.11 + 2*t^5.445 + 2*t^5.555 + 3*t^5.78 + 4*t^5.89 + 2*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47866 | SU3adj1nf2 | ${}$ | 1.4743 | 1.6854 | 0.8748 | [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] | t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y | detail |