Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47866 | SU3adj1nf2 | ${}$ | 1.4743 | 1.6854 | 0.8748 | [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] | [q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${2}\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | 0 | t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 + 2*t^6.079 + 4*t^6.467 + 16*t^6.934 + 5*t^7.013 + t^7.093 + 8*t^7.48 + 31*t^7.947 - 2*t^8.026 + 2*t^8.106 + 16*t^8.414 - 8*t^8.493 + 20*t^8.881 + 5*t^8.96 - t^4.013/y - t^5.026/y - t^6.04/y - (4*t^6.974)/y - (2*t^7.053)/y + t^7.987/y - t^8.066/y + (6*t^8.921)/y - t^4.013*y - t^5.026*y - t^6.04*y - 4*t^6.974*y - 2*t^7.053*y + t^7.987*y - t^8.066*y + 6*t^8.921*y | t^2.026/(g1^2*g2^2*g3^2*g4^2) + g1^6*g3^6*t^2.96 + g2^6*g3^6*t^2.96 + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g3^5*t^3.974)/(g2*g4) + (g2^5*g3^5*t^3.974)/(g1*g4) + (g1^5*g4^5*t^3.974)/(g2*g3) + (g2^5*g4^5*t^3.974)/(g1*g3) + t^4.053/(g1^4*g2^4*g3^4*g4^4) + (2*g1^4*g3^4*t^4.987)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.987)/(g1^2*g4^2) + (2*g1^4*g4^4*t^4.987)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.987)/(g1^2*g3^2) + t^5.066/(g1^5*g2^5*g3^5*g4^5) + (g1^11*g2^5*t^5.454)/(g3*g4) + (g1^5*g2^11*t^5.454)/(g3*g4) + (g3^11*g4^5*t^5.454)/(g1*g2) + (g3^5*g4^11*t^5.454)/(g1*g2) + g1^12*g3^12*t^5.921 + g1^6*g2^6*g3^12*t^5.921 + g2^12*g3^12*t^5.921 + g1^12*g3^6*g4^6*t^5.921 + 2*g1^6*g2^6*g3^6*g4^6*t^5.921 + g2^12*g3^6*g4^6*t^5.921 + g1^12*g4^12*t^5.921 + g1^6*g2^6*g4^12*t^5.921 + g2^12*g4^12*t^5.921 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (2*g1^3*g3^3*t^6.)/(g2^3*g4^3) + (2*g2^3*g3^3*t^6.)/(g1^3*g4^3) + (2*g1^3*g4^3*t^6.)/(g2^3*g3^3) + (2*g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + (2*t^6.079)/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.467)/(g3^2*g4^2) + (g1^4*g2^10*t^6.467)/(g3^2*g4^2) + (g3^10*g4^4*t^6.467)/(g1^2*g2^2) + (g3^4*g4^10*t^6.467)/(g1^2*g2^2) + (g1^11*g3^11*t^6.934)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.934)/g4 + (g2^11*g3^11*t^6.934)/(g1*g4) + (2*g1^11*g3^5*g4^5*t^6.934)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.934 + (2*g2^11*g3^5*g4^5*t^6.934)/g1 + (g1^11*g4^11*t^6.934)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.934)/g3 + (g2^11*g4^11*t^6.934)/(g1*g3) - (g3^5*t^7.013)/(g1*g2*g4^7) + (3*g1^2*g3^2*t^7.013)/(g2^4*g4^4) + (3*g2^2*g3^2*t^7.013)/(g1^4*g4^4) - (g1^5*t^7.013)/(g2^7*g3*g4) - (3*t^7.013)/(g1*g2*g3*g4) - (g2^5*t^7.013)/(g1^7*g3*g4) + (3*g1^2*g4^2*t^7.013)/(g2^4*g3^4) + (3*g2^2*g4^2*t^7.013)/(g1^4*g3^4) - (g4^5*t^7.013)/(g1*g2*g3^7) + t^7.093/(g1^7*g2^7*g3^7*g4^7) - (g1^6*g2^6*t^7.48)/g3^6 - (g1^6*g2^6*t^7.48)/g4^6 + (g1^15*t^7.48)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g2^15*t^7.48)/(g1^3*g3^3*g4^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.48)/(g1^3*g2^3) - (g3^6*g4^6*t^7.48)/g1^6 - (g3^6*g4^6*t^7.48)/g2^6 + (2*g3^3*g4^9*t^7.48)/(g1^3*g2^3) + (g4^15*t^7.48)/(g1^3*g2^3*g3^3) + (3*g1^10*g3^10*t^7.947)/(g2^2*g4^2) + (4*g1^4*g2^4*g3^10*t^7.947)/g4^2 + (3*g2^10*g3^10*t^7.947)/(g1^2*g4^2) - g1^7*g2*g3^7*g4*t^7.947 - g1*g2^7*g3^7*g4*t^7.947 + (4*g1^10*g3^4*g4^4*t^7.947)/g2^2 + 7*g1^4*g2^4*g3^4*g4^4*t^7.947 + (4*g2^10*g3^4*g4^4*t^7.947)/g1^2 - g1^7*g2*g3*g4^7*t^7.947 - g1*g2^7*g3*g4^7*t^7.947 + (3*g1^10*g4^10*t^7.947)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.947)/g3^2 + (3*g2^10*g4^10*t^7.947)/(g1^2*g3^2) - (2*g3^4*t^8.026)/(g1^2*g2^2*g4^8) + (3*g1*g3*t^8.026)/(g2^5*g4^5) + (3*g2*g3*t^8.026)/(g1^5*g4^5) - (2*g1^4*t^8.026)/(g2^8*g3^2*g4^2) - (6*t^8.026)/(g1^2*g2^2*g3^2*g4^2) - (2*g2^4*t^8.026)/(g1^8*g3^2*g4^2) + (3*g1*g4*t^8.026)/(g2^5*g3^5) + (3*g2*g4*t^8.026)/(g1^5*g3^5) - (2*g4^4*t^8.026)/(g1^2*g2^2*g3^8) + (2*t^8.106)/(g1^8*g2^8*g3^8*g4^8) + (g1^17*g2^5*g3^5*t^8.414)/g4 + (2*g1^11*g2^11*g3^5*t^8.414)/g4 + (g1^5*g2^17*g3^5*t^8.414)/g4 + (g1^17*g2^5*g4^5*t^8.414)/g3 + (2*g1^11*g2^11*g4^5*t^8.414)/g3 + (g1^5*g2^17*g4^5*t^8.414)/g3 + (g1^5*g3^17*g4^5*t^8.414)/g2 + (g2^5*g3^17*g4^5*t^8.414)/g1 + (2*g1^5*g3^11*g4^11*t^8.414)/g2 + (2*g2^5*g3^11*g4^11*t^8.414)/g1 + (g1^5*g3^5*g4^17*t^8.414)/g2 + (g2^5*g3^5*g4^17*t^8.414)/g1 - (g1^11*t^8.493)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.493)/(g3*g4^7) - (g2^11*t^8.493)/(g1*g3*g4^7) + (2*g1^8*g2^2*t^8.493)/(g3^4*g4^4) + (2*g1^2*g2^8*t^8.493)/(g3^4*g4^4) - (g1^11*t^8.493)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.493)/(g3^7*g4) - (g2^11*t^8.493)/(g1*g3^7*g4) - (g3^11*t^8.493)/(g1*g2^7*g4) - (g3^11*t^8.493)/(g1^7*g2*g4) + (2*g3^8*g4^2*t^8.493)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.493)/(g1*g2^7) - (2*g3^5*g4^5*t^8.493)/(g1^7*g2) + (2*g3^2*g4^8*t^8.493)/(g1^4*g2^4) - (g4^11*t^8.493)/(g1*g2^7*g3) - (g4^11*t^8.493)/(g1^7*g2*g3) + g1^18*g3^18*t^8.881 + g1^12*g2^6*g3^18*t^8.881 + g1^6*g2^12*g3^18*t^8.881 + g2^18*g3^18*t^8.881 + g1^18*g3^12*g4^6*t^8.881 + 2*g1^12*g2^6*g3^12*g4^6*t^8.881 + 2*g1^6*g2^12*g3^12*g4^6*t^8.881 + g2^18*g3^12*g4^6*t^8.881 + g1^18*g3^6*g4^12*t^8.881 + 2*g1^12*g2^6*g3^6*g4^12*t^8.881 + 2*g1^6*g2^12*g3^6*g4^12*t^8.881 + g2^18*g3^6*g4^12*t^8.881 + g1^18*g4^18*t^8.881 + g1^12*g2^6*g4^18*t^8.881 + g1^6*g2^12*g4^18*t^8.881 + g2^18*g4^18*t^8.881 - 7*g1^6*g3^6*t^8.96 - (g1^12*g3^6*t^8.96)/g2^6 - 7*g2^6*g3^6*t^8.96 - (g2^12*g3^6*t^8.96)/g1^6 - (g1^6*g3^12*t^8.96)/g4^6 - (g2^6*g3^12*t^8.96)/g4^6 + (3*g1^9*g3^9*t^8.96)/(g2^3*g4^3) + (5*g1^3*g2^3*g3^9*t^8.96)/g4^3 + (3*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + (5*g1^9*g3^3*g4^3*t^8.96)/g2^3 + 9*g1^3*g2^3*g3^3*g4^3*t^8.96 + (5*g2^9*g3^3*g4^3*t^8.96)/g1^3 - 7*g1^6*g4^6*t^8.96 - (g1^12*g4^6*t^8.96)/g2^6 - 7*g2^6*g4^6*t^8.96 - (g2^12*g4^6*t^8.96)/g1^6 + (3*g1^9*g4^9*t^8.96)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.96)/g3^3 + (3*g2^9*g4^9*t^8.96)/(g1^3*g3^3) - (g1^6*g4^12*t^8.96)/g3^6 - (g2^6*g4^12*t^8.96)/g3^6 - t^4.013/(g1*g2*g3*g4*y) - t^5.026/(g1^2*g2^2*g3^2*g4^2*y) - t^6.04/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.974)/(g2*g4*y) - (g2^5*g3^5*t^6.974)/(g1*g4*y) - (g1^5*g4^5*t^6.974)/(g2*g3*y) - (g2^5*g4^5*t^6.974)/(g1*g3*y) - (2*t^7.053)/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.987)/y - t^8.066/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.921)/y + (g1^12*g3^6*g4^6*t^8.921)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.921)/y + (g2^12*g3^6*g4^6*t^8.921)/y + (g1^6*g2^6*g4^12*t^8.921)/y - (t^4.013*y)/(g1*g2*g3*g4) - (t^5.026*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.04*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.974*y)/(g2*g4) - (g2^5*g3^5*t^6.974*y)/(g1*g4) - (g1^5*g4^5*t^6.974*y)/(g2*g3) - (g2^5*g4^5*t^6.974*y)/(g1*g3) - (2*t^7.053*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.987*y - (t^8.066*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.921*y + g1^12*g3^6*g4^6*t^8.921*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.921*y + g2^12*g3^6*g4^6*t^8.921*y + g1^6*g2^6*g4^12*t^8.921*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47874 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4951 | 1.7264 | 0.866 | [M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] | t^2.021 + t^2.025 + t^2.958 + 2*t^2.962 + t^2.967 + t^3.038 + t^3.971 + 2*t^3.975 + t^4.041 + t^4.046 + t^4.05 + t^4.979 + 4*t^4.983 + 5*t^4.987 + 2*t^4.992 + t^5.058 + t^5.063 + 2*t^5.454 + 2*t^5.458 + t^5.916 + 2*t^5.92 + 4*t^5.925 + 2*t^5.929 + t^5.934 + t^5.991 + 2*t^5.996 - t^4.013/y - t^5.025/y - t^4.013*y - t^5.025*y | detail | |
47878 | ${}M_{1}\phi_{1}^{2}$ | 1.4535 | 1.6445 | 0.8838 | [M:[1.3239], q:[0.4929, 0.4929], qb:[0.4929, 0.4929], phi:[0.3381]] | 4*t^2.957 + t^3.043 + 5*t^3.972 + 4*t^4.986 + 4*t^5.45 + 10*t^5.915 - 4*t^6. - t^4.014/y - t^5.028/y - t^4.014*y - t^5.028*y | detail | |
47870 | ${}M_{1}\phi_{1}^{3}$ | 1.4767 | 1.6956 | 0.8709 | [M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] | t^2.078 + 5*t^2.883 + 4*t^3.922 + t^4.156 + 9*t^4.961 + 4*t^5.363 + 15*t^5.766 - 4*t^6. - t^4.039/y - t^5.078/y - t^4.039*y - t^5.078*y | detail | |
47868 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | t^2.847 + t^2.933 + t^2.957 + 2*t^3.043 + t^3.918 + 3*t^4.028 + t^4.139 + t^4.904 + 2*t^5.014 + t^5.124 + 2*t^5.495 + 2*t^5.605 + t^5.695 + t^5.78 + t^5.805 + t^5.865 + t^5.89 + t^5.915 + 2*t^5.975 - 2*t^6. - t^3.986/y - t^4.972/y - t^3.986*y - t^4.972*y | detail | |
47875 | ${}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.1107 | 1.2278 | 0.9046 | [X:[1.5211], q:[0.8803, 0.4014], qb:[0.8803, 0.4014], phi:[0.2394]] | t^2.155 + t^2.408 + t^3.127 + 3*t^3.845 + t^4.31 + 2*t^4.563 + t^4.817 + 2*t^5.282 + t^5.535 + 4*t^5.768 - 2*t^6. - t^3.718/y - t^4.437/y - t^5.873/y - t^3.718*y - t^4.437*y - t^5.873*y | detail | |
47876 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4426 | 1.6227 | 0.889 | [X:[1.353], q:[0.5758, 0.525], qb:[0.4792, 0.4792], phi:[0.3235]] | t^2.911 + 2*t^3.013 + 2*t^3.165 + 2*t^3.983 + t^4.059 + 2*t^4.135 + 2*t^4.953 + 2*t^5.106 + 2*t^5.283 + t^5.823 + 2*t^5.924 - 5*t^6. - t^3.97/y - t^4.941/y - t^3.97*y - t^4.941*y | detail | |
47872 | ${}\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.33 | 1.4939 | 0.8903 | [X:[1.3964], q:[0.6982, 0.3964], qb:[0.6982, 0.3964], phi:[0.3018]] | t^2.378 + t^2.716 + 3*t^3.284 + 5*t^4.189 + t^4.757 + 2*t^5.095 + 2*t^5.378 + t^5.433 + 3*t^5.662 - 2*t^6. - t^3.905/y - t^4.811/y - t^3.905*y - t^4.811*y | detail | |
47877 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ | 0.9668 | 1.1543 | 0.8376 | [X:[1.5, 1.5, 1.5, 1.5], q:[0.25, 0.25], qb:[0.25, 0.25], phi:[0.5]] | 5*t^3. + 4*t^3.75 + 9*t^4.5 + 4*t^5.25 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail | {a: 495/512, c: 591/512, X1: 3/2, X2: 3/2, X3: 3/2, X4: 3/2, q1: 1/4, q2: 1/4, qb1: 1/4, qb2: 1/4, phi1: 1/2} |
47871 | ${}\phi_{1}^{5}$ | 1.41 | 1.66 | 0.8494 | [q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | 5*t^2.4 + 5*t^3.6 + 23*t^4.8 + 21*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail | {a: 141/100, c: 83/50, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |
47869 | ${}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4531 | 1.6406 | 0.8857 | [X:[1.3333], q:[0.5, 0.5], qb:[0.5, 0.5], phi:[0.3333]] | 5*t^3. + 5*t^4. + 4*t^5. + 4*t^5.5 + 7*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail | {a: 93/64, c: 105/64, X1: 4/3, q1: 1/2, q2: 1/2, qb1: 1/2, qb2: 1/2, phi1: 1/3} |
47867 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6835 | 0.8756 | [q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] | t^2.011 + 2*t^2.967 + 2*t^3. + t^3.016 + 2*t^3.973 + 2*t^4.005 + t^4.022 + 4*t^4.978 + 4*t^5.011 + t^5.027 + t^5.465 + 2*t^5.481 + t^5.497 + 3*t^5.935 + 3*t^5.967 + 4*t^5.984 - 3*t^6. - t^4.005/y - t^5.011/y - t^4.005*y - t^5.011*y | detail | |
47873 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6841 | 0.8753 | [q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] | t^2.015 + t^2.954 + 2*t^2.977 + t^3. + t^3.023 + t^3.962 + 2*t^3.985 + t^4.008 + t^4.031 + 2*t^4.969 + 4*t^4.992 + 2*t^5.015 + t^5.038 + 2*t^5.462 + 2*t^5.485 + t^5.908 + 2*t^5.931 + 4*t^5.954 + 2*t^5.977 + t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|