Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47866 SU3adj1nf2 . 1.4743 1.6854 0.8748 [X:[], M:[], q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] [X:[], M:[], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^5$, $ \phi_1q_1^2q_2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$ $2\phi_1^3q_1\tilde{q}_1$, $ 2\phi_1^3q_2\tilde{q}_1$, $ 2\phi_1^3q_1\tilde{q}_2$, $ 2\phi_1^3q_2\tilde{q}_2$ 0 t^2.03 + 4*t^2.96 + t^3.04 + 4*t^3.97 + t^4.05 + 8*t^4.99 + t^5.07 + 4*t^5.45 + 10*t^5.92 + 2*t^6.08 + 4*t^6.47 + 16*t^6.93 + 5*t^7.01 + t^7.09 + 8*t^7.48 + 31*t^7.95 - 2*t^8.03 + 2*t^8.11 + 16*t^8.41 - 8*t^8.49 + 20*t^8.88 + 5*t^8.96 - t^4.01/y - t^5.03/y - t^6.04/y - (4*t^6.97)/y - (2*t^7.05)/y + t^7.99/y - t^8.07/y + (6*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.04*y - 4*t^6.97*y - 2*t^7.05*y + t^7.99*y - t^8.07*y + 6*t^8.92*y t^2.03/(g1^2*g2^2*g3^2*g4^2) + g1^6*g3^6*t^2.96 + g2^6*g3^6*t^2.96 + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g3^5*t^3.97)/(g2*g4) + (g2^5*g3^5*t^3.97)/(g1*g4) + (g1^5*g4^5*t^3.97)/(g2*g3) + (g2^5*g4^5*t^3.97)/(g1*g3) + t^4.05/(g1^4*g2^4*g3^4*g4^4) + (2*g1^4*g3^4*t^4.99)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + (2*g1^4*g4^4*t^4.99)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.99)/(g1^2*g3^2) + t^5.07/(g1^5*g2^5*g3^5*g4^5) + (g1^11*g2^5*t^5.45)/(g3*g4) + (g1^5*g2^11*t^5.45)/(g3*g4) + (g3^11*g4^5*t^5.45)/(g1*g2) + (g3^5*g4^11*t^5.45)/(g1*g2) + g1^12*g3^12*t^5.92 + g1^6*g2^6*g3^12*t^5.92 + g2^12*g3^12*t^5.92 + g1^12*g3^6*g4^6*t^5.92 + 2*g1^6*g2^6*g3^6*g4^6*t^5.92 + g2^12*g3^6*g4^6*t^5.92 + g1^12*g4^12*t^5.92 + g1^6*g2^6*g4^12*t^5.92 + g2^12*g4^12*t^5.92 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (2*g1^3*g3^3*t^6.)/(g2^3*g4^3) + (2*g2^3*g3^3*t^6.)/(g1^3*g4^3) + (2*g1^3*g4^3*t^6.)/(g2^3*g3^3) + (2*g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + (2*t^6.08)/(g1^6*g2^6*g3^6*g4^6) + (g1^10*g2^4*t^6.47)/(g3^2*g4^2) + (g1^4*g2^10*t^6.47)/(g3^2*g4^2) + (g3^10*g4^4*t^6.47)/(g1^2*g2^2) + (g3^4*g4^10*t^6.47)/(g1^2*g2^2) + (g1^11*g3^11*t^6.93)/(g2*g4) + (2*g1^5*g2^5*g3^11*t^6.93)/g4 + (g2^11*g3^11*t^6.93)/(g1*g4) + (2*g1^11*g3^5*g4^5*t^6.93)/g2 + 4*g1^5*g2^5*g3^5*g4^5*t^6.93 + (2*g2^11*g3^5*g4^5*t^6.93)/g1 + (g1^11*g4^11*t^6.93)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.93)/g3 + (g2^11*g4^11*t^6.93)/(g1*g3) - (g3^5*t^7.01)/(g1*g2*g4^7) + (3*g1^2*g3^2*t^7.01)/(g2^4*g4^4) + (3*g2^2*g3^2*t^7.01)/(g1^4*g4^4) - (g1^5*t^7.01)/(g2^7*g3*g4) - (3*t^7.01)/(g1*g2*g3*g4) - (g2^5*t^7.01)/(g1^7*g3*g4) + (3*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (3*g2^2*g4^2*t^7.01)/(g1^4*g3^4) - (g4^5*t^7.01)/(g1*g2*g3^7) + t^7.09/(g1^7*g2^7*g3^7*g4^7) - (g1^6*g2^6*t^7.48)/g3^6 - (g1^6*g2^6*t^7.48)/g4^6 + (g1^15*t^7.48)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g2^15*t^7.48)/(g1^3*g3^3*g4^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.48)/(g1^3*g2^3) - (g3^6*g4^6*t^7.48)/g1^6 - (g3^6*g4^6*t^7.48)/g2^6 + (2*g3^3*g4^9*t^7.48)/(g1^3*g2^3) + (g4^15*t^7.48)/(g1^3*g2^3*g3^3) + (3*g1^10*g3^10*t^7.95)/(g2^2*g4^2) + (4*g1^4*g2^4*g3^10*t^7.95)/g4^2 + (3*g2^10*g3^10*t^7.95)/(g1^2*g4^2) - g1^7*g2*g3^7*g4*t^7.95 - g1*g2^7*g3^7*g4*t^7.95 + (4*g1^10*g3^4*g4^4*t^7.95)/g2^2 + 7*g1^4*g2^4*g3^4*g4^4*t^7.95 + (4*g2^10*g3^4*g4^4*t^7.95)/g1^2 - g1^7*g2*g3*g4^7*t^7.95 - g1*g2^7*g3*g4^7*t^7.95 + (3*g1^10*g4^10*t^7.95)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.95)/g3^2 + (3*g2^10*g4^10*t^7.95)/(g1^2*g3^2) - (2*g3^4*t^8.03)/(g1^2*g2^2*g4^8) + (3*g1*g3*t^8.03)/(g2^5*g4^5) + (3*g2*g3*t^8.03)/(g1^5*g4^5) - (2*g1^4*t^8.03)/(g2^8*g3^2*g4^2) - (6*t^8.03)/(g1^2*g2^2*g3^2*g4^2) - (2*g2^4*t^8.03)/(g1^8*g3^2*g4^2) + (3*g1*g4*t^8.03)/(g2^5*g3^5) + (3*g2*g4*t^8.03)/(g1^5*g3^5) - (2*g4^4*t^8.03)/(g1^2*g2^2*g3^8) + (2*t^8.11)/(g1^8*g2^8*g3^8*g4^8) + (g1^17*g2^5*g3^5*t^8.41)/g4 + (2*g1^11*g2^11*g3^5*t^8.41)/g4 + (g1^5*g2^17*g3^5*t^8.41)/g4 + (g1^17*g2^5*g4^5*t^8.41)/g3 + (2*g1^11*g2^11*g4^5*t^8.41)/g3 + (g1^5*g2^17*g4^5*t^8.41)/g3 + (g1^5*g3^17*g4^5*t^8.41)/g2 + (g2^5*g3^17*g4^5*t^8.41)/g1 + (2*g1^5*g3^11*g4^11*t^8.41)/g2 + (2*g2^5*g3^11*g4^11*t^8.41)/g1 + (g1^5*g3^5*g4^17*t^8.41)/g2 + (g2^5*g3^5*g4^17*t^8.41)/g1 - (g1^11*t^8.49)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.49)/(g3*g4^7) - (g2^11*t^8.49)/(g1*g3*g4^7) + (2*g1^8*g2^2*t^8.49)/(g3^4*g4^4) + (2*g1^2*g2^8*t^8.49)/(g3^4*g4^4) - (g1^11*t^8.49)/(g2*g3^7*g4) - (2*g1^5*g2^5*t^8.49)/(g3^7*g4) - (g2^11*t^8.49)/(g1*g3^7*g4) - (g3^11*t^8.49)/(g1*g2^7*g4) - (g3^11*t^8.49)/(g1^7*g2*g4) + (2*g3^8*g4^2*t^8.49)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.49)/(g1*g2^7) - (2*g3^5*g4^5*t^8.49)/(g1^7*g2) + (2*g3^2*g4^8*t^8.49)/(g1^4*g2^4) - (g4^11*t^8.49)/(g1*g2^7*g3) - (g4^11*t^8.49)/(g1^7*g2*g3) + g1^18*g3^18*t^8.88 + g1^12*g2^6*g3^18*t^8.88 + g1^6*g2^12*g3^18*t^8.88 + g2^18*g3^18*t^8.88 + g1^18*g3^12*g4^6*t^8.88 + 2*g1^12*g2^6*g3^12*g4^6*t^8.88 + 2*g1^6*g2^12*g3^12*g4^6*t^8.88 + g2^18*g3^12*g4^6*t^8.88 + g1^18*g3^6*g4^12*t^8.88 + 2*g1^12*g2^6*g3^6*g4^12*t^8.88 + 2*g1^6*g2^12*g3^6*g4^12*t^8.88 + g2^18*g3^6*g4^12*t^8.88 + g1^18*g4^18*t^8.88 + g1^12*g2^6*g4^18*t^8.88 + g1^6*g2^12*g4^18*t^8.88 + g2^18*g4^18*t^8.88 - 7*g1^6*g3^6*t^8.96 - (g1^12*g3^6*t^8.96)/g2^6 - 7*g2^6*g3^6*t^8.96 - (g2^12*g3^6*t^8.96)/g1^6 - (g1^6*g3^12*t^8.96)/g4^6 - (g2^6*g3^12*t^8.96)/g4^6 + (3*g1^9*g3^9*t^8.96)/(g2^3*g4^3) + (5*g1^3*g2^3*g3^9*t^8.96)/g4^3 + (3*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + (5*g1^9*g3^3*g4^3*t^8.96)/g2^3 + 9*g1^3*g2^3*g3^3*g4^3*t^8.96 + (5*g2^9*g3^3*g4^3*t^8.96)/g1^3 - 7*g1^6*g4^6*t^8.96 - (g1^12*g4^6*t^8.96)/g2^6 - 7*g2^6*g4^6*t^8.96 - (g2^12*g4^6*t^8.96)/g1^6 + (3*g1^9*g4^9*t^8.96)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.96)/g3^3 + (3*g2^9*g4^9*t^8.96)/(g1^3*g3^3) - (g1^6*g4^12*t^8.96)/g3^6 - (g2^6*g4^12*t^8.96)/g3^6 - t^4.01/(g1*g2*g3*g4*y) - t^5.03/(g1^2*g2^2*g3^2*g4^2*y) - t^6.04/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.97)/(g2*g4*y) - (g2^5*g3^5*t^6.97)/(g1*g4*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g4^5*t^6.97)/(g1*g3*y) - (2*t^7.05)/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*t^7.99)/y - t^8.07/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g3^12*t^8.92)/y + (g1^12*g3^6*g4^6*t^8.92)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.92)/y + (g2^12*g3^6*g4^6*t^8.92)/y + (g1^6*g2^6*g4^12*t^8.92)/y - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.03*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.04*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.97*y)/(g2*g4) - (g2^5*g3^5*t^6.97*y)/(g1*g4) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g4^5*t^6.97*y)/(g1*g3) - (2*t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*t^7.99*y - (t^8.07*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g3^12*t^8.92*y + g1^12*g3^6*g4^6*t^8.92*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.92*y + g2^12*g3^6*g4^6*t^8.92*y + g1^6*g2^6*g4^12*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47874 $M_1\phi_1q_1\tilde{q}_1$ 1.4951 1.7264 0.866 [X:[], M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] t^2.02 + t^2.03 + 3*t^2.96 + t^2.97 + t^3.04 + 3*t^3.97 + t^4.04 + 2*t^4.05 + 5*t^4.98 + 7*t^4.99 + 2*t^5.06 + 2*t^5.45 + 2*t^5.46 + 7*t^5.92 + 3*t^5.93 + t^5.99 + t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail
47878 $M_1\phi_1^2$ 1.4535 1.6445 0.8838 [X:[], M:[1.3239], q:[0.4929, 0.4929], qb:[0.4929, 0.4929], phi:[0.3381]] 4*t^2.96 + t^3.04 + 5*t^3.97 + 4*t^4.99 + 4*t^5.45 + 10*t^5.91 - 4*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail
47870 $M_1\phi_1^3$ 1.4767 1.6956 0.8709 [X:[], M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] t^2.08 + 5*t^2.88 + 4*t^3.92 + t^4.16 + 9*t^4.96 + 4*t^5.36 + 15*t^5.77 - 4*t^6. - t^4.04/y - t^5.08/y - t^4.04*y - t^5.08*y detail
47868 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.4552 1.6423 0.8861 [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail
47875 $\phi_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.1107 1.2278 0.9046 [X:[1.5211], M:[], q:[0.8803, 0.4014], qb:[0.8803, 0.4014], phi:[0.2394]] t^2.15 + t^2.41 + t^3.13 + 3*t^3.85 + t^4.31 + 2*t^4.56 + t^4.82 + 2*t^5.28 + t^5.54 + 4*t^5.77 - 2*t^6. - t^3.72/y - t^4.44/y - t^5.87/y - t^3.72*y - t^4.44*y - t^5.87*y detail
47876 $\phi_1q_1^2q_2$ + $ \phi_1^2X_1$ 1.4426 1.6227 0.889 [X:[1.353], M:[], q:[0.5758, 0.525], qb:[0.4792, 0.4792], phi:[0.3235]] t^2.91 + 2*t^3.01 + 2*t^3.16 + 2*t^3.98 + t^4.06 + 2*t^4.14 + 2*t^4.95 + 2*t^5.11 + 2*t^5.28 + t^5.82 + 2*t^5.92 - 5*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y detail
47872 $\phi_1^2q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.33 1.4939 0.8903 [X:[1.3964], M:[], q:[0.6982, 0.3964], qb:[0.6982, 0.3964], phi:[0.3018]] t^2.38 + t^2.72 + 3*t^3.28 + 5*t^4.19 + t^4.76 + 2*t^5.09 + 2*t^5.38 + t^5.43 + 3*t^5.66 - 2*t^6. - t^3.91/y - t^4.81/y - t^3.91*y - t^4.81*y detail
47877 $\phi_1^4$ + $ q_1\tilde{q}_1X_1$ + $ q_2\tilde{q}_1X_2$ + $ q_1\tilde{q}_2X_3$ + $ q_2\tilde{q}_2X_4$ 0.9668 1.1543 0.8376 [X:[1.5, 1.5, 1.5, 1.5], M:[], q:[0.25, 0.25], qb:[0.25, 0.25], phi:[0.5]] 5*t^3. + 4*t^3.75 + 9*t^4.5 + 4*t^5.25 + 2*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail {a: 495/512, c: 591/512, X1: 3/2, X2: 3/2, X3: 3/2, X4: 3/2, q1: 1/4, q2: 1/4, qb1: 1/4, qb2: 1/4, phi1: 1/2}
47871 $\phi_1^5$ 1.41 1.66 0.8494 [X:[], M:[], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 5*t^2.4 + 5*t^3.6 + 23*t^4.8 + 21*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 141/100, c: 83/50, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}
47869 $q_1q_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ 1.4531 1.6406 0.8857 [X:[1.3333], M:[], q:[0.5, 0.5], qb:[0.5, 0.5], phi:[0.3333]] 5*t^3. + 5*t^4. + 4*t^5. + 4*t^5.5 + 7*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y detail {a: 93/64, c: 105/64, X1: 4/3, q1: 1/2, q2: 1/2, qb1: 1/2, qb2: 1/2, phi1: 1/3}
47867 $q_1q_2\tilde{q}_1^2$ 1.4741 1.6835 0.8756 [X:[], M:[], q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] t^2.01 + 2*t^2.97 + 2*t^3. + t^3.02 + 2*t^3.97 + 2*t^4.01 + t^4.02 + 4*t^4.98 + 4*t^5.01 + t^5.03 + t^5.46 + 2*t^5.48 + t^5.5 + 3*t^5.93 + 3*t^5.97 + 4*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail
47873 $q_1^2\tilde{q}_1^2$ 1.4741 1.6841 0.8753 [X:[], M:[], q:[0.5, 0.4923], qb:[0.5, 0.4923], phi:[0.3359]] t^2.02 + t^2.95 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + 2*t^3.98 + t^4.01 + t^4.03 + 2*t^4.97 + 4*t^4.99 + 2*t^5.02 + t^5.04 + 2*t^5.46 + 2*t^5.48 + t^5.91 + 2*t^5.93 + 4*t^5.95 + 2*t^5.98 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational