Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47913 | SU3adj1nf2 | $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ + $ M_2q_2\tilde{q}_1$ | 1.4595 | 1.6464 | 0.8865 | [X:[1.3609], M:[0.922, 0.922], q:[0.52, 0.52], qb:[0.558, 0.4848], phi:[0.3195]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, -1, 0, 0]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ X_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ M_2^2$, $ M_1^2$, $ M_1M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ M_1\phi_1^3$, $ M_2\phi_1^3$, $ \phi_1q_1q_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1^6$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$ | . | -6 | 2*t^2.77 + t^2.88 + 2*t^3.01 + 2*t^3.97 + t^4.08 + 2*t^4.19 + 2*t^4.93 + 2*t^5.15 + 3*t^5.53 + t^5.54 + 4*t^5.64 + t^5.75 + t^5.76 + 3*t^5.78 + 2*t^5.89 - 6*t^6. + 3*t^6.03 - t^6.22 + t^6.5 + 2*t^6.6 + t^6.72 + 3*t^6.74 + 4*t^6.85 + 4*t^6.99 + 2*t^7.07 + 2*t^7.1 - t^7.18 + 4*t^7.21 + t^7.24 - t^7.45 + t^7.46 + 4*t^7.56 - 2*t^7.57 - t^7.67 + t^7.68 + 3*t^7.7 + 2*t^7.81 + t^7.9 + 7*t^7.95 + 2*t^8.03 - t^8.14 + 8*t^8.17 + 4*t^8.3 + 3*t^8.39 + 3*t^8.41 + t^8.42 + 2*t^8.51 + 2*t^8.52 - 2*t^8.53 + 4*t^8.55 + 2*t^8.56 - 4*t^8.62 + t^8.63 + t^8.64 + 4*t^8.65 + 3*t^8.66 - 2*t^8.75 - 8*t^8.77 + 2*t^8.78 + 4*t^8.8 - 5*t^8.88 + 7*t^8.9 + t^8.88/y^2 - t^3.96/y - t^4.92/y - (2*t^6.72)/y - t^6.83/y - (2*t^6.97)/y - (2*t^7.68)/y - t^7.79/y - (2*t^7.93)/y + t^8.53/y + (2*t^8.64)/y + (4*t^8.78)/y - t^3.96*y - t^4.92*y - 2*t^6.72*y - t^6.83*y - 2*t^6.97*y - 2*t^7.68*y - t^7.79*y - 2*t^7.93*y + t^8.53*y + 2*t^8.64*y + 4*t^8.78*y + t^8.88*y^2 | t^2.77/(g1*g2) + (g1*g3*t^2.77)/g4^6 + t^2.88/g4^3 + g1*g3*t^3.01 + (g4^6*t^3.01)/(g1*g2) + (g1*g3*t^3.97)/g4 + (g4^5*t^3.97)/(g1*g2) + g4^2*t^4.08 + (g1*g2*t^4.19)/g4 + (g4^5*t^4.19)/(g1*g3) + (g1*g3*t^4.93)/g4^2 + (g4^4*t^4.93)/(g1*g2) + (g1*g2*t^5.15)/g4^2 + (g4^4*t^5.15)/(g1*g3) + t^5.53/(g1^2*g2^2) + (g1^2*g3^2*t^5.53)/g4^12 + (g3*t^5.53)/(g2*g4^6) + (g2*g3^2*t^5.54)/g4 + (g1*g3*t^5.64)/g4^9 + t^5.64/(g1*g2*g4^3) + (g1*g4^5*t^5.64)/(g2*g3) + (g4^11*t^5.64)/(g1*g2^2*g3^2) + t^5.75/g4^6 + (g2^2*g3*t^5.76)/g4 + (g3*t^5.78)/g2 + (g1^2*g3^2*t^5.78)/g4^6 + (g4^6*t^5.78)/(g1^2*g2^2) + (g1*g3*t^5.89)/g4^3 + (g4^3*t^5.89)/(g1*g2) - 4*t^6. - (g1^2*g2*g3*t^6.)/g4^6 - (g4^6*t^6.)/(g1^2*g2*g3) + g1^2*g3^2*t^6.03 + (g3*g4^6*t^6.03)/g2 + (g4^12*t^6.03)/(g1^2*g2^2) - (g2*t^6.22)/g3 + (g2*g3^2*t^6.5)/g4^2 + (g1*g4^4*t^6.6)/(g2*g3) + (g4^10*t^6.6)/(g1*g2^2*g3^2) + (g2^2*g3*t^6.72)/g4^2 + (g1^2*g3^2*t^6.74)/g4^7 + (g3*t^6.74)/(g2*g4) + (g4^5*t^6.74)/(g1^2*g2^2) + (2*g1*g3*t^6.85)/g4^4 + (2*g4^2*t^6.85)/(g1*g2) + (g1^2*g3^2*t^6.99)/g4 + (2*g3*g4^5*t^6.99)/g2 + (g4^11*t^6.99)/(g1^2*g2^2) + (g1*g2*t^7.07)/g4^4 + (g4^2*t^7.07)/(g1*g3) + g1*g3*g4^2*t^7.1 + (g4^8*t^7.1)/(g1*g2) - (g2*t^7.18)/(g3*g4) + (g1^2*g2*g3*t^7.21)/g4 + 2*g4^5*t^7.21 + (g4^11*t^7.21)/(g1^2*g2*g3) + (g3^3*t^7.24)/g4^3 - (g4^6*t^7.45)/(g2^2*g3) + (g2*g3^2*t^7.46)/g4^3 + (g1^3*t^7.56)/g4^3 + (g1*g4^3*t^7.56)/(g2*g3) + (g4^9*t^7.56)/(g1*g2^2*g3^2) + (g4^15*t^7.56)/(g1^3*g2^3*g3^3) - (g2*g3*t^7.57)/g1 - (g1*g2^2*g3^2*t^7.57)/g4^6 - (g4^6*t^7.67)/(g2*g3^2) + (g2^2*g3*t^7.68)/g4^3 + (g1^2*g3^2*t^7.7)/g4^8 + (g3*t^7.7)/(g2*g4^2) + (g4^4*t^7.7)/(g1^2*g2^2) + (g1*g3*t^7.81)/g4^5 + (g4*t^7.81)/(g1*g2) + (g2^3*t^7.9)/g4^3 + (2*g1^2*g3^2*t^7.95)/g4^2 + (3*g3*g4^4*t^7.95)/g2 + (2*g4^10*t^7.95)/(g1^2*g2^2) + (g1*g2*t^8.03)/g4^5 + (g4*t^8.03)/(g1*g3) - (g2*t^8.14)/(g3*g4^2) + (2*g1^2*g2*g3*t^8.17)/g4^2 + 4*g4^4*t^8.17 + (2*g4^10*t^8.17)/(g1^2*g2*g3) + t^8.3/(g1^3*g2^3) + (g1^3*g3^3*t^8.3)/g4^18 + (g1*g3^2*t^8.3)/(g2*g4^12) + (g3*t^8.3)/(g1*g2^2*g4^6) + (g1^2*g2^2*t^8.39)/g4^2 + (g2*g4^4*t^8.39)/g3 + (g4^10*t^8.39)/(g1^2*g3^2) + (g1^2*g3^2*t^8.41)/g4^15 + (g3*t^8.41)/(g2*g4^9) + t^8.41/(g1^2*g2^2*g4^3) + (g2*g3^2*t^8.42)/g4^4 + (g1*g4^2*t^8.51)/(g2*g3) + (g4^8*t^8.51)/(g1*g2^2*g3^2) + (g1*g3*t^8.52)/g4^12 + t^8.52/(g1*g2*g4^6) - (g1*g2^2*g3^2*t^8.53)/g4^7 - (g2*g3*t^8.53)/(g1*g4) + (g3*t^8.55)/(g1*g2^2) + (g1^3*g3^3*t^8.55)/g4^12 + (g1*g3^2*t^8.55)/(g2*g4^6) + (g4^6*t^8.55)/(g1^3*g2^3) + (g1*g2*g3^3*t^8.56)/g4 + (g3^2*g4^5*t^8.56)/g1 - (g1^2*t^8.62)/(g3*g4) - (2*g4^5*t^8.62)/(g2*g3^2) - (g4^11*t^8.62)/(g1^2*g2^2*g3^3) + t^8.63/g4^9 + (g2^2*g3*t^8.64)/g4^4 + (g1^2*g4^5*t^8.65)/g2 + (2*g4^11*t^8.65)/(g2^2*g3) + (g4^17*t^8.65)/(g1^2*g2^3*g3^2) + (g1^2*g3^2*t^8.66)/g4^9 + (g3*t^8.66)/(g2*g4^3) + (g4^3*t^8.66)/(g1^2*g2^2) - (g1*g2^3*g3*t^8.75)/g4^7 - (g2^2*t^8.75)/(g1*g4) - (3*t^8.77)/(g1*g2) - (g1^3*g2*g3^2*t^8.77)/g4^12 - (3*g1*g3*t^8.77)/g4^6 - (g4^6*t^8.77)/(g1^3*g2^2*g3) + (g1*g2^2*g3^2*t^8.78)/g4 + (g2*g3*g4^5*t^8.78)/g1 + (g1*g3^2*t^8.8)/g2 + (g1^3*g3^3*t^8.8)/g4^6 + (g3*g4^6*t^8.8)/(g1*g2^2) + (g4^12*t^8.8)/(g1^3*g2^3) - (g1^2*g2*g3*t^8.88)/g4^9 - (3*t^8.88)/g4^3 - (g4^3*t^8.88)/(g1^2*g2*g3) + (2*g1^2*g3^2*t^8.9)/g4^3 + (3*g3*g4^3*t^8.9)/g2 + (2*g4^9*t^8.9)/(g1^2*g2^2) + t^8.88/(g4^3*y^2) - t^3.96/(g4*y) - t^4.92/(g4^2*y) - (g1*g3*t^6.72)/(g4^7*y) - t^6.72/(g1*g2*g4*y) - t^6.83/(g4^4*y) - (g1*g3*t^6.97)/(g4*y) - (g4^5*t^6.97)/(g1*g2*y) - (g1*g3*t^7.68)/(g4^8*y) - t^7.68/(g1*g2*g4^2*y) - t^7.79/(g4^5*y) - (g1*g3*t^7.93)/(g4^2*y) - (g4^4*t^7.93)/(g1*g2*y) + (g3*t^8.53)/(g2*g4^6*y) + (g1*g3*t^8.64)/(g4^9*y) + t^8.64/(g1*g2*g4^3*y) + (2*g3*t^8.78)/(g2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g4^6*t^8.78)/(g1^2*g2^2*y) - (t^3.96*y)/g4 - (t^4.92*y)/g4^2 - (g1*g3*t^6.72*y)/g4^7 - (t^6.72*y)/(g1*g2*g4) - (t^6.83*y)/g4^4 - (g1*g3*t^6.97*y)/g4 - (g4^5*t^6.97*y)/(g1*g2) - (g1*g3*t^7.68*y)/g4^8 - (t^7.68*y)/(g1*g2*g4^2) - (t^7.79*y)/g4^5 - (g1*g3*t^7.93*y)/g4^2 - (g4^4*t^7.93*y)/(g1*g2) + (g3*t^8.53*y)/(g2*g4^6) + (g1*g3*t^8.64*y)/g4^9 + (t^8.64*y)/(g1*g2*g4^3) + (2*g3*t^8.78*y)/g2 + (g1^2*g3^2*t^8.78*y)/g4^6 + (g4^6*t^8.78*y)/(g1^2*g2^2) + (t^8.88*y^2)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47868 | SU3adj1nf2 | $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y | detail |