Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47893 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ + $ M_2\phi_1q_2\tilde{q}_2$ 1.4759 1.6818 0.8776 [X:[1.3444], M:[0.9513, 0.6879], q:[0.5244, 0.4922], qb:[0.5244, 0.4922], phi:[0.3278]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \phi_1^3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ X_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2\phi_1^3$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ M_1^2$, $ M_1\phi_1^3$, $ M_1q_2\tilde{q}_2$, $ \phi_1^6$, $ \phi_1^3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$ $\phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ 0 t^2.06 + t^2.85 + 2*t^2.95 + 2*t^3.05 + 3*t^4.03 + 2*t^4.13 + 2*t^4.92 + t^5.01 + 3*t^5.02 + 3*t^5.11 + 2*t^5.51 + 2*t^5.61 + t^5.71 + t^5.8 + t^5.81 + 2*t^5.9 + t^5.91 + 4*t^6.1 + 2*t^6.19 + 2*t^6.49 + 2*t^6.59 + t^6.89 + 3*t^6.98 + 3*t^6.99 + 10*t^7.08 + 5*t^7.18 + 2*t^7.38 + 2*t^7.57 + 4*t^7.67 + 2*t^7.77 + 4*t^7.87 + t^7.96 + 6*t^7.97 - 3*t^8.06 + 10*t^8.07 + 8*t^8.16 + t^8.25 + 2*t^8.26 + 5*t^8.56 + 6*t^8.66 + t^8.75 + 2*t^8.76 - t^8.85 + 2*t^8.86 - t^8.95 + 2*t^8.96 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6.05/y - t^6.84/y - t^6.93/y - t^6.94/y - (3*t^7.03)/y - t^7.82/y + t^8.01/y - t^8.02/y + t^8.11/y + t^8.8/y + t^8.81/y + (2*t^8.9)/y - t^3.98*y - t^4.97*y - t^6.05*y - t^6.84*y - t^6.93*y - t^6.94*y - 3*t^7.03*y - t^7.82*y + t^8.01*y - t^8.02*y + t^8.11*y + t^8.8*y + t^8.81*y + 2*t^8.9*y + t^8.95*y^2 (g4*t^2.06)/(g1*g3) + (g1*g3*t^2.85)/g4^6 + g1*g3*t^2.95 + t^2.95/g4^3 + g1*g2*t^3.05 + (g4^6*t^3.05)/(g1*g2) + (g1*g2*t^4.03)/g4 + g4^2*t^4.03 + (g4^5*t^4.03)/(g1*g2) + (g4^2*t^4.13)/(g1^2*g3^2) + (g4^5*t^4.13)/(g1*g3) + t^4.92/g4^5 + (g1*g3*t^4.92)/g4^2 + t^5.01/(g1*g3*g4^2) + (g1*g2*t^5.02)/g4^2 + g4*t^5.02 + (g4^4*t^5.02)/(g1*g2) + (g2*g4*t^5.11)/g3 + (g4^4*t^5.11)/(g1*g3) + (g4^7*t^5.11)/(g1^2*g2*g3) + (g2*g3^2*t^5.51)/g4 + (g1*g4^5*t^5.51)/(g2*g3) + (g2^2*g3*t^5.61)/g4 + (g4^11*t^5.61)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^5.71)/g4^12 + (g1*g3*t^5.8)/g4^9 + (g1^2*g3^2*t^5.81)/g4^6 + t^5.9/g4^6 + (g1*g3*t^5.9)/g4^3 + g1^2*g3^2*t^5.91 - 4*t^6. + g1^2*g2*g3*t^6. + (g1*g2*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g2) + (g3*g4^6*t^6.)/g2 + g1^2*g2^2*t^6.1 + (g4^3*t^6.1)/(g1*g3) + g4^6*t^6.1 + (g4^12*t^6.1)/(g1^2*g2^2) + (g4^3*t^6.19)/(g1^3*g3^3) + (g4^6*t^6.19)/(g1^2*g3^2) + (g2*g3^2*t^6.49)/g4^2 + (g1*g4^4*t^6.49)/(g2*g3) + (g2^2*g3*t^6.59)/g4^2 + (g4^10*t^6.59)/(g1*g2^2*g3^2) + (g1*g3*t^6.89)/g4^4 + (g1*g2*t^6.98)/g4^4 + t^6.98/(g1*g3*g4^4) + (g4^2*t^6.98)/(g1*g2) + (g1^2*g2*g3*t^6.99)/g4 + g1*g3*g4^2*t^6.99 + (g3*g4^5*t^6.99)/g2 + (g1^2*g2^2*t^7.08)/g4 + t^7.08/(g1^2*g3^2*g4) + g1*g2*g4^2*t^7.08 + (2*g4^2*t^7.08)/(g1*g3) + 3*g4^5*t^7.08 + (g4^8*t^7.08)/(g1*g2) + (g4^11*t^7.08)/(g1^2*g2^2) + (g2*g4^2*t^7.18)/(g1*g3^2) + (g4^5*t^7.18)/(g1^2*g3^2) + (g2*g4^5*t^7.18)/g3 + (g4^8*t^7.18)/(g1^3*g2*g3^2) + (g4^11*t^7.18)/(g1^2*g2*g3) + (g1^3*t^7.38)/g4^3 + (g3^3*t^7.38)/g4^3 - (g1*g2^2*g3^2*t^7.48)/g4^6 + (g2*g3^2*t^7.48)/g4^3 + (g1*g4^3*t^7.48)/(g2*g3) - (g4^6*t^7.48)/(g2^2*g3) + (g2^2*g3*t^7.57)/g4^3 + (g4^9*t^7.57)/(g1*g2^2*g3^2) + (g2^2*t^7.67)/g1 + (g2^3*t^7.67)/g4^3 + (g4^12*t^7.67)/(g1^2*g2^2*g3^3) + (g4^15*t^7.67)/(g1^3*g2^3*g3^3) + (g1*g3*t^7.77)/g4^11 + (g1^2*g3^2*t^7.77)/g4^8 + t^7.87/g4^8 + (2*g1*g3*t^7.87)/g4^5 + (g1^2*g3^2*t^7.87)/g4^2 + t^7.96/(g1*g3*g4^5) + (g1*g2*t^7.97)/g4^5 + (2*g1^2*g2*g3*t^7.97)/g4^2 + (g4*t^7.97)/(g1*g2) + (2*g3*g4^4*t^7.97)/g2 - (3*g4*t^8.06)/(g1*g3) + (2*g1^2*g2^2*t^8.07)/g4^2 + g1*g2*g4*t^8.07 + 4*g4^4*t^8.07 + (g4^7*t^8.07)/(g1*g2) + (2*g4^10*t^8.07)/(g1^2*g2^2) + (g1*g2^2*g4*t^8.16)/g3 + (g4^4*t^8.16)/(g1^2*g3^2) + (2*g2*g4^4*t^8.16)/g3 + (g4^7*t^8.16)/(g1*g3) + (2*g4^10*t^8.16)/(g1^2*g2*g3) + (g4^13*t^8.16)/(g1^3*g2^2*g3) + (g4^4*t^8.25)/(g1^4*g3^4) + (g4^7*t^8.26)/(g1^3*g3^3) + (g4^10*t^8.26)/(g1^2*g3^2) - (g1*g2^2*g3^2*t^8.46)/g4^7 + (g2*g3^2*t^8.46)/g4^4 - (g1^2*t^8.46)/(g3*g4) - (g3^2*t^8.46)/(g1*g4) + (g1*g2*g3^3*t^8.46)/g4 + (g1*g4^2*t^8.46)/(g2*g3) + (g1^2*g4^5*t^8.46)/g2 - (g4^5*t^8.46)/(g2^2*g3) + (g1^3*g3^3*t^8.56)/g4^18 - (g1*g2^3*g3*t^8.56)/g4^7 + (g2^2*g3*t^8.56)/g4^4 - (g2*g3*t^8.56)/(g1*g4) + (2*g1*g2^2*g3^2*t^8.56)/g4 - (g4^5*t^8.56)/(g2*g3^2) + (g1^2*g4^5*t^8.56)/g3 + (g3^2*g4^5*t^8.56)/g1 + (g4^8*t^8.56)/(g1*g2^2*g3^2) - (g4^11*t^8.56)/(g1^2*g2^3*g3^2) + (2*g4^11*t^8.56)/(g2^2*g3) + (g1^2*g3^2*t^8.66)/g4^15 + (g1^3*g3^3*t^8.66)/g4^12 + (g1*g2^3*g3*t^8.66)/g4 + (g2*g3*g4^5*t^8.66)/g1 + (g4^11*t^8.66)/(g2*g3^2) + (g4^17*t^8.66)/(g1^2*g2^3*g3^2) + (g1*g3*t^8.75)/g4^12 + (g1^2*g3^2*t^8.76)/g4^9 + (g1^3*g3^3*t^8.76)/g4^6 + t^8.85/g4^9 - (2*g1*g3*t^8.85)/g4^6 + g1^3*g3^3*t^8.86 + (g1^2*g3^2*t^8.86)/g4^3 + t^8.95/(g1*g2) - 5*g1*g3*t^8.95 + (g1*g2*t^8.95)/g4^6 - (2*t^8.95)/g4^3 + (2*g1^2*g2*g3*t^8.95)/g4^3 + (2*g3*g4^3*t^8.95)/g2 + g1^3*g2*g3^2*t^8.96 + (g1*g3^2*g4^6*t^8.96)/g2 + t^8.95/(g4^3*y^2) - t^3.98/(g4*y) - t^4.97/(g4^2*y) - t^6.05/(g1*g3*y) - (g1*g3*t^6.84)/(g4^7*y) - t^6.93/(g4^4*y) - (g1*g3*t^6.94)/(g4*y) - (g1*g2*t^7.03)/(g4*y) - t^7.03/(g1*g3*g4*y) - (g4^5*t^7.03)/(g1*g2*y) - (g1*g3*t^7.82)/(g4^8*y) + t^8.01/(g1*g3*g4^2*y) - (g1*g2*t^8.02)/(g4^2*y) + (g4*t^8.02)/y - (g4^4*t^8.02)/(g1*g2*y) - (g4*t^8.11)/(g1^2*g3^2*y) + (g2*g4*t^8.11)/(g3*y) + (g4^7*t^8.11)/(g1^2*g2*g3*y) + (g1*g3*t^8.8)/(g4^9*y) + (g1^2*g3^2*t^8.81)/(g4^6*y) + (g3*t^8.9)/(g2*y) - t^8.9/(g4^6*y) + (g1^2*g2*g3*t^8.9)/(g4^6*y) + (g1*g3*t^8.9)/(g4^3*y) - (t^3.98*y)/g4 - (t^4.97*y)/g4^2 - (t^6.05*y)/(g1*g3) - (g1*g3*t^6.84*y)/g4^7 - (t^6.93*y)/g4^4 - (g1*g3*t^6.94*y)/g4 - (g1*g2*t^7.03*y)/g4 - (t^7.03*y)/(g1*g3*g4) - (g4^5*t^7.03*y)/(g1*g2) - (g1*g3*t^7.82*y)/g4^8 + (t^8.01*y)/(g1*g3*g4^2) - (g1*g2*t^8.02*y)/g4^2 + g4*t^8.02*y - (g4^4*t^8.02*y)/(g1*g2) - (g4*t^8.11*y)/(g1^2*g3^2) + (g2*g4*t^8.11*y)/g3 + (g4^7*t^8.11*y)/(g1^2*g2*g3) + (g1*g3*t^8.8*y)/g4^9 + (g1^2*g3^2*t^8.81*y)/g4^6 + (g3*t^8.9*y)/g2 - (t^8.9*y)/g4^6 + (g1^2*g2*g3*t^8.9*y)/g4^6 + (g1*g3*t^8.9*y)/g4^3 + (t^8.95*y^2)/g4^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47868 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.4552 1.6423 0.8861 [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail