Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47893 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4759 1.6818 0.8776 [X:[1.3444], M:[0.9513, 0.6879], q:[0.5244, 0.4922], qb:[0.5244, 0.4922], phi:[0.3278]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -2 t^2.064 + t^2.854 + t^2.95 + t^2.953 + 2*t^3.05 + 3*t^4.033 + t^4.127 + t^4.13 + t^4.917 + t^4.92 + t^5.014 + 3*t^5.017 + 3*t^5.113 + 2*t^5.51 + 2*t^5.606 + t^5.708 + t^5.804 + t^5.807 + t^5.901 + t^5.903 + t^5.906 - 2*t^6. + 2*t^6.003 + t^6.097 + 3*t^6.099 + t^6.191 + t^6.193 + 2*t^6.493 + 2*t^6.59 + t^6.887 + t^6.981 + 2*t^6.983 + 3*t^6.986 + t^7.078 + 2*t^7.08 + 7*t^7.083 + 3*t^7.177 + 2*t^7.179 + 2*t^7.38 + 2*t^7.573 + 4*t^7.67 + t^7.771 + t^7.774 + t^7.868 + 2*t^7.87 + t^7.873 + t^7.964 + 2*t^7.967 + 4*t^7.969 - 3*t^8.064 + 10*t^8.066 + t^8.16 + 7*t^8.163 + t^8.254 + t^8.257 + t^8.259 - 2*t^8.46 + 2*t^8.462 - 2*t^8.557 + 6*t^8.559 + t^8.561 + 4*t^8.656 + t^8.658 + t^8.66 + t^8.755 + t^8.757 + t^8.76 + t^8.851 - 2*t^8.854 + t^8.856 + t^8.859 - t^8.953 + 2*t^8.955 + t^8.95/y^2 - t^3.983/y - t^4.967/y - t^6.047/y - t^6.837/y - t^6.934/y - t^6.936/y - t^7.031/y - (2*t^7.033)/y - t^7.821/y + t^8.014/y - t^8.017/y - t^8.111/y + (2*t^8.113)/y + t^8.804/y + t^8.807/y - t^8.901/y + (3*t^8.903)/y - t^8.997/y - t^3.983*y - t^4.967*y - t^6.047*y - t^6.837*y - t^6.934*y - t^6.936*y - t^7.031*y - 2*t^7.033*y - t^7.821*y + t^8.014*y - t^8.017*y - t^8.111*y + 2*t^8.113*y + t^8.804*y + t^8.807*y - t^8.901*y + 3*t^8.903*y - t^8.997*y + t^8.95*y^2 (g4*t^2.064)/(g1*g3) + (g1*g3*t^2.854)/g4^6 + t^2.95/g4^3 + g1*g3*t^2.953 + g1*g2*t^3.05 + (g4^6*t^3.05)/(g1*g2) + (g1*g2*t^4.033)/g4 + g4^2*t^4.033 + (g4^5*t^4.033)/(g1*g2) + (g4^2*t^4.127)/(g1^2*g3^2) + (g4^5*t^4.13)/(g1*g3) + t^4.917/g4^5 + (g1*g3*t^4.92)/g4^2 + t^5.014/(g1*g3*g4^2) + (g1*g2*t^5.017)/g4^2 + g4*t^5.017 + (g4^4*t^5.017)/(g1*g2) + (g2*g4*t^5.113)/g3 + (g4^4*t^5.113)/(g1*g3) + (g4^7*t^5.113)/(g1^2*g2*g3) + (g2*g3^2*t^5.51)/g4 + (g1*g4^5*t^5.51)/(g2*g3) + (g2^2*g3*t^5.606)/g4 + (g4^11*t^5.606)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^5.708)/g4^12 + (g1*g3*t^5.804)/g4^9 + (g1^2*g3^2*t^5.807)/g4^6 + t^5.901/g4^6 + (g1*g3*t^5.903)/g4^3 + g1^2*g3^2*t^5.906 - 4*t^6. + (g1*g2*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g2) + g1^2*g2*g3*t^6.003 + (g3*g4^6*t^6.003)/g2 + (g4^3*t^6.097)/(g1*g3) + g1^2*g2^2*t^6.099 + g4^6*t^6.099 + (g4^12*t^6.099)/(g1^2*g2^2) + (g4^3*t^6.191)/(g1^3*g3^3) + (g4^6*t^6.193)/(g1^2*g3^2) + (g2*g3^2*t^6.493)/g4^2 + (g1*g4^4*t^6.493)/(g2*g3) + (g2^2*g3*t^6.59)/g4^2 + (g4^10*t^6.59)/(g1*g2^2*g3^2) + (g1*g3*t^6.887)/g4^4 + t^6.981/(g1*g3*g4^4) + (g1*g2*t^6.983)/g4^4 + (g4^2*t^6.983)/(g1*g2) + (g1^2*g2*g3*t^6.986)/g4 + g1*g3*g4^2*t^6.986 + (g3*g4^5*t^6.986)/g2 + t^7.078/(g1^2*g3^2*g4) + (2*g4^2*t^7.08)/(g1*g3) + (g1^2*g2^2*t^7.083)/g4 + g1*g2*g4^2*t^7.083 + 3*g4^5*t^7.083 + (g4^8*t^7.083)/(g1*g2) + (g4^11*t^7.083)/(g1^2*g2^2) + (g2*g4^2*t^7.177)/(g1*g3^2) + (g4^5*t^7.177)/(g1^2*g3^2) + (g4^8*t^7.177)/(g1^3*g2*g3^2) + (g2*g4^5*t^7.179)/g3 + (g4^11*t^7.179)/(g1^2*g2*g3) + (g1^3*t^7.38)/g4^3 + (g3^3*t^7.38)/g4^3 - (g1*g2^2*g3^2*t^7.476)/g4^6 + (g2*g3^2*t^7.476)/g4^3 + (g1*g4^3*t^7.476)/(g2*g3) - (g4^6*t^7.476)/(g2^2*g3) + (g2^2*g3*t^7.573)/g4^3 + (g4^9*t^7.573)/(g1*g2^2*g3^2) + (g2^2*t^7.67)/g1 + (g2^3*t^7.67)/g4^3 + (g4^12*t^7.67)/(g1^2*g2^2*g3^3) + (g4^15*t^7.67)/(g1^3*g2^3*g3^3) + (g1*g3*t^7.771)/g4^11 + (g1^2*g3^2*t^7.774)/g4^8 + t^7.868/g4^8 + (2*g1*g3*t^7.87)/g4^5 + (g1^2*g3^2*t^7.873)/g4^2 + t^7.964/(g1*g3*g4^5) + (g1*g2*t^7.967)/g4^5 + (g4*t^7.967)/(g1*g2) + (2*g1^2*g2*g3*t^7.969)/g4^2 + (2*g3*g4^4*t^7.969)/g2 - (3*g4*t^8.064)/(g1*g3) + (2*g1^2*g2^2*t^8.066)/g4^2 + g1*g2*g4*t^8.066 + 4*g4^4*t^8.066 + (g4^7*t^8.066)/(g1*g2) + (2*g4^10*t^8.066)/(g1^2*g2^2) + (g4^4*t^8.16)/(g1^2*g3^2) + (g1*g2^2*g4*t^8.163)/g3 + (2*g2*g4^4*t^8.163)/g3 + (g4^7*t^8.163)/(g1*g3) + (2*g4^10*t^8.163)/(g1^2*g2*g3) + (g4^13*t^8.163)/(g1^3*g2^2*g3) + (g4^4*t^8.254)/(g1^4*g3^4) + (g4^7*t^8.257)/(g1^3*g3^3) + (g4^10*t^8.259)/(g1^2*g3^2) - (g1*g2^2*g3^2*t^8.46)/g4^7 + (g2*g3^2*t^8.46)/g4^4 - (g1^2*t^8.46)/(g3*g4) - (g3^2*t^8.46)/(g1*g4) + (g1*g4^2*t^8.46)/(g2*g3) - (g4^5*t^8.46)/(g2^2*g3) + (g1*g2*g3^3*t^8.462)/g4 + (g1^2*g4^5*t^8.462)/g2 - (g1*g2^3*g3*t^8.557)/g4^7 + (g2^2*g3*t^8.557)/g4^4 - (g2*g3*t^8.557)/(g1*g4) - (g4^5*t^8.557)/(g2*g3^2) + (g4^8*t^8.557)/(g1*g2^2*g3^2) - (g4^11*t^8.557)/(g1^2*g2^3*g3^2) + (2*g1*g2^2*g3^2*t^8.559)/g4 + (g1^2*g4^5*t^8.559)/g3 + (g3^2*g4^5*t^8.559)/g1 + (2*g4^11*t^8.559)/(g2^2*g3) + (g1^3*g3^3*t^8.561)/g4^18 + (g1*g2^3*g3*t^8.656)/g4 + (g2*g3*g4^5*t^8.656)/g1 + (g4^11*t^8.656)/(g2*g3^2) + (g4^17*t^8.656)/(g1^2*g2^3*g3^2) + (g1^2*g3^2*t^8.658)/g4^15 + (g1^3*g3^3*t^8.66)/g4^12 + (g1*g3*t^8.755)/g4^12 + (g1^2*g3^2*t^8.757)/g4^9 + (g1^3*g3^3*t^8.76)/g4^6 + t^8.851/g4^9 - (2*g1*g3*t^8.854)/g4^6 + (g1^2*g3^2*t^8.856)/g4^3 + g1^3*g3^3*t^8.859 + t^8.95/(g1*g2) + (g1*g2*t^8.95)/g4^6 - (2*t^8.95)/g4^3 - 5*g1*g3*t^8.953 + (2*g1^2*g2*g3*t^8.953)/g4^3 + (2*g3*g4^3*t^8.953)/g2 + g1^3*g2*g3^2*t^8.955 + (g1*g3^2*g4^6*t^8.955)/g2 + t^8.95/(g4^3*y^2) - t^3.983/(g4*y) - t^4.967/(g4^2*y) - t^6.047/(g1*g3*y) - (g1*g3*t^6.837)/(g4^7*y) - t^6.934/(g4^4*y) - (g1*g3*t^6.936)/(g4*y) - t^7.031/(g1*g3*g4*y) - (g1*g2*t^7.033)/(g4*y) - (g4^5*t^7.033)/(g1*g2*y) - (g1*g3*t^7.821)/(g4^8*y) + t^8.014/(g1*g3*g4^2*y) - (g1*g2*t^8.017)/(g4^2*y) + (g4*t^8.017)/y - (g4^4*t^8.017)/(g1*g2*y) - (g4*t^8.111)/(g1^2*g3^2*y) + (g2*g4*t^8.113)/(g3*y) + (g4^7*t^8.113)/(g1^2*g2*g3*y) + (g1*g3*t^8.804)/(g4^9*y) + (g1^2*g3^2*t^8.807)/(g4^6*y) - t^8.901/(g4^6*y) + (g3*t^8.903)/(g2*y) + (g1^2*g2*g3*t^8.903)/(g4^6*y) + (g1*g3*t^8.903)/(g4^3*y) - t^8.997/(g1*g3*g4^3*y) - (t^3.983*y)/g4 - (t^4.967*y)/g4^2 - (t^6.047*y)/(g1*g3) - (g1*g3*t^6.837*y)/g4^7 - (t^6.934*y)/g4^4 - (g1*g3*t^6.936*y)/g4 - (t^7.031*y)/(g1*g3*g4) - (g1*g2*t^7.033*y)/g4 - (g4^5*t^7.033*y)/(g1*g2) - (g1*g3*t^7.821*y)/g4^8 + (t^8.014*y)/(g1*g3*g4^2) - (g1*g2*t^8.017*y)/g4^2 + g4*t^8.017*y - (g4^4*t^8.017*y)/(g1*g2) - (g4*t^8.111*y)/(g1^2*g3^2) + (g2*g4*t^8.113*y)/g3 + (g4^7*t^8.113*y)/(g1^2*g2*g3) + (g1*g3*t^8.804*y)/g4^9 + (g1^2*g3^2*t^8.807*y)/g4^6 - (t^8.901*y)/g4^6 + (g3*t^8.903*y)/g2 + (g1^2*g2*g3*t^8.903*y)/g4^6 + (g1*g3*t^8.903*y)/g4^3 - (t^8.997*y)/(g1*g3*g4^3) + (t^8.95*y^2)/g4^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57373 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4745 1.684 0.8756 [X:[1.328], M:[0.9919, 0.6882], q:[0.504, 0.4879], qb:[0.504, 0.4879], phi:[0.336]] t^2.065 + t^2.927 + 3*t^2.976 + t^3.024 + 3*t^3.984 + t^4.032 + t^4.129 + t^4.943 + 3*t^4.992 + 4*t^5.04 + t^5.089 + 2*t^5.448 + 2*t^5.496 + t^5.855 + 3*t^5.903 + 5*t^5.952 - t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail
57370 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4215 1.6483 0.8624 [X:[1.2487], M:[1.0053, 0.873], q:[0.4974, 0.3757], qb:[0.4974, 0.3757], phi:[0.3757]] t^2.254 + 3*t^2.619 + t^3.016 + t^3.381 + 3*t^3.746 + t^4.111 + 2*t^4.508 + 7*t^4.873 + 9*t^5.238 + t^5.27 + 2*t^5.635 + 4*t^6. - t^4.127/y - t^5.254/y - t^4.127*y - t^5.254*y detail
57371 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.422 1.6203 0.8776 [X:[1.3791], M:[0.7761, 0.7761], q:[0.5214, 0.5214], qb:[0.7025, 0.392], phi:[0.3104]] 2*t^2.328 + 2*t^2.74 + t^2.794 + 2*t^3.672 + t^4.137 + 4*t^4.603 + 3*t^4.657 + 3*t^5.069 + 2*t^5.122 + t^5.391 + 3*t^5.481 + 4*t^5.534 + t^5.588 + 2*t^5.624 - 3*t^6. - t^3.931/y - t^4.863/y - t^3.931*y - t^4.863*y detail
57369 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ 1.3358 1.5358 0.8698 [X:[1.2666, 1.3667], M:[0.8335, 1.0], q:[0.5832, 0.3166], qb:[0.5832, 0.3166], phi:[0.3667]] t^2.501 + 2*t^2.7 + t^3. + t^3.3 + 3*t^3.8 + 2*t^4.1 + t^4.6 + 2*t^4.75 + 2*t^4.9 + t^5.001 + 3*t^5.399 + t^5.501 + 2*t^5.55 + 3*t^5.7 + t^5.801 + 2*t^5.85 - t^6. - t^4.1/y - t^5.2/y - t^4.1*y - t^5.2*y detail
57360 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4756 1.686 0.8752 [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
57361 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4803 1.6874 0.8773 [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y detail
57372 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4704 1.672 0.8794 [X:[1.3641], M:[0.9043, 0.6854], q:[0.5119, 0.4822], qb:[0.5838, 0.5145], phi:[0.3179]] t^2.056 + t^2.713 + t^2.861 + t^2.99 + t^3.079 + t^3.198 + t^4.033 + t^4.092 + t^4.112 + t^4.152 + t^4.241 + t^4.769 + t^4.898 + t^4.917 + t^4.987 + t^5.046 + t^5.105 + t^5.136 + t^5.195 + t^5.254 + t^5.383 + t^5.426 + t^5.472 + t^5.574 + t^5.703 + t^5.723 + t^5.792 + t^5.852 + t^5.941 + t^5.98 - 3*t^6. - t^3.954/y - t^4.908/y - t^3.954*y - t^4.908*y detail
57374 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4756 1.6805 0.8781 [X:[1.3492], M:[0.9524, 0.6746], q:[0.5238, 0.5], qb:[0.5238, 0.5], phi:[0.3254]] t^2.024 + t^2.857 + t^2.929 + t^3. + 2*t^3.071 + 4*t^4.048 + t^4.119 + t^4.881 + 2*t^4.952 + 3*t^5.024 + 3*t^5.095 + 2*t^5.548 + 2*t^5.619 + t^5.715 + t^5.786 + 2*t^5.857 + t^5.929 - t^6. - t^3.976/y - t^4.952/y - t^6./y - t^3.976*y - t^4.952*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47868 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4552 1.6423 0.8861 [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] t^2.847 + t^2.933 + t^2.957 + 2*t^3.043 + t^3.918 + 3*t^4.028 + t^4.139 + t^4.904 + 2*t^5.014 + t^5.124 + 2*t^5.495 + 2*t^5.605 + t^5.695 + t^5.78 + t^5.805 + t^5.865 + t^5.89 + t^5.915 + 2*t^5.975 - 2*t^6. - t^3.986/y - t^4.972/y - t^3.986*y - t^4.972*y detail