Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47885 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ + $ M_2q_2\tilde{q}_2$ 1.4561 1.6383 0.8888 [X:[1.3617], M:[0.9574, 0.9574], q:[0.5213, 0.5213], qb:[0.5213, 0.5213], phi:[0.3191]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 0]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ X_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1q_2^2$, $ \phi_1q_1^2q_2$, $ M_2^2$, $ M_1^2$, $ M_1\phi_1^3$, $ M_1M_2$, $ \phi_1^6$, $ M_2\phi_1^3$ $\phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$ -2 3*t^2.87 + 2*t^3.13 + 5*t^4.09 + 4*t^5.04 + 4*t^5.65 + 6*t^5.74 - 2*t^6. + 3*t^6.26 + 4*t^6.61 + 8*t^6.96 + 10*t^7.21 + 4*t^7.56 + 6*t^7.91 + 18*t^8.17 - 4*t^8.52 + 10*t^8.62 + 8*t^8.78 - 7*t^8.87 + t^8.87/y^2 - t^3.96/y - t^4.91/y - (3*t^6.83)/y - (2*t^7.09)/y - (3*t^7.79)/y - (2*t^8.04)/y + (3*t^8.74)/y - t^3.96*y - t^4.91*y - 3*t^6.83*y - 2*t^7.09*y - 3*t^7.79*y - 2*t^8.04*y + 3*t^8.74*y + t^8.87*y^2 t^2.87/(g1*g3) + (g1*g3*t^2.87)/g4^6 + t^2.87/g4^3 + g1*g2*t^3.13 + (g4^6*t^3.13)/(g1*g2) + (g1*g2*t^4.09)/g4 + (g1*g3*t^4.09)/g4 + g4^2*t^4.09 + (g4^5*t^4.09)/(g1*g2) + (g4^5*t^4.09)/(g1*g3) + (g1*g2*t^5.04)/g4^2 + (g1*g3*t^5.04)/g4^2 + (g4^4*t^5.04)/(g1*g2) + (g4^4*t^5.04)/(g1*g3) + (g2^2*g3*t^5.65)/g4 + (g2*g3^2*t^5.65)/g4 + (g1*g4^5*t^5.65)/(g2*g3) + (g4^11*t^5.65)/(g1*g2^2*g3^2) + t^5.74/(g1^2*g3^2) + (g1^2*g3^2*t^5.74)/g4^12 + (g1*g3*t^5.74)/g4^9 + (2*t^5.74)/g4^6 + t^5.74/(g1*g3*g4^3) - 4*t^6. + (g1*g2*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g2) + g1^2*g2^2*t^6.26 + g4^6*t^6.26 + (g4^12*t^6.26)/(g1^2*g2^2) + (g2^2*g3*t^6.61)/g4^2 + (g2*g3^2*t^6.61)/g4^2 + (g1*g4^4*t^6.61)/(g2*g3) + (g4^10*t^6.61)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.96)/g4^7 + (g1*g2*t^6.96)/g4^4 + (2*g1*g3*t^6.96)/g4^4 + (g4^2*t^6.96)/(g1*g2) + (2*g4^2*t^6.96)/(g1*g3) + (g4^5*t^6.96)/(g1^2*g3^2) + (g1^2*g2^2*t^7.21)/g4 + (g1^2*g2*g3*t^7.21)/g4 + g1*g2*g4^2*t^7.21 + 2*g4^5*t^7.21 + (g2*g4^5*t^7.21)/g3 + (g3*g4^5*t^7.21)/g2 + (g4^8*t^7.21)/(g1*g2) + (g4^11*t^7.21)/(g1^2*g2^2) + (g4^11*t^7.21)/(g1^2*g2*g3) - (g2*g3*t^7.56)/g1 - (g1*g2^2*g3^2*t^7.56)/g4^6 + (g1^3*t^7.56)/g4^3 + (g2^3*t^7.56)/g4^3 + (g2^2*g3*t^7.56)/g4^3 + (g2*g3^2*t^7.56)/g4^3 + (g3^3*t^7.56)/g4^3 + (g1*g4^3*t^7.56)/(g2*g3) - (g4^6*t^7.56)/(g2*g3^2) - (g4^6*t^7.56)/(g2^2*g3) + (g4^9*t^7.56)/(g1*g2^2*g3^2) + (g4^15*t^7.56)/(g1^3*g2^3*g3^3) + (g1^2*g3^2*t^7.91)/g4^8 + (g1*g2*t^7.91)/g4^5 + (g1*g3*t^7.91)/g4^5 + (g4*t^7.91)/(g1*g2) + (g4*t^7.91)/(g1*g3) + (g4^4*t^7.91)/(g1^2*g3^2) + (2*g1^2*g2^2*t^8.17)/g4^2 + (2*g1^2*g2*g3*t^8.17)/g4^2 + (g1^2*g3^2*t^8.17)/g4^2 + 4*g4^4*t^8.17 + (2*g2*g4^4*t^8.17)/g3 + (2*g3*g4^4*t^8.17)/g2 + (2*g4^10*t^8.17)/(g1^2*g2^2) + (g4^10*t^8.17)/(g1^2*g3^2) + (2*g4^10*t^8.17)/(g1^2*g2*g3) - (g1*g2^3*g3*t^8.52)/g4^7 - (g1*g2^2*g3^2*t^8.52)/g4^7 + (g2^2*g3*t^8.52)/g4^4 + (g2*g3^2*t^8.52)/g4^4 - (g1^2*t^8.52)/(g3*g4) - (g2*g3*t^8.52)/(g1*g4) - (g3^2*t^8.52)/(g1*g4) + (g1*g4^2*t^8.52)/(g2*g3) - (g4^5*t^8.52)/(g2*g3^2) - (g4^5*t^8.52)/(g2^2*g3) + (g4^8*t^8.52)/(g1*g2^2*g3^2) - (g4^11*t^8.52)/(g1^2*g2^3*g3^2) + t^8.62/(g1^3*g3^3) + (g1^3*g3^3*t^8.62)/g4^18 + (g1^2*g3^2*t^8.62)/g4^15 + (2*g1*g3*t^8.62)/g4^12 + (2*t^8.62)/g4^9 + (2*t^8.62)/(g1*g3*g4^6) + t^8.62/(g1^2*g3^2*g4^3) + (g1*g2^3*g3*t^8.78)/g4 + (g1*g2^2*g3^2*t^8.78)/g4 + (g1^2*g4^5*t^8.78)/g3 + (g2*g3*g4^5*t^8.78)/g1 + (g3^2*g4^5*t^8.78)/g1 + (g4^11*t^8.78)/(g2*g3^2) + (g4^11*t^8.78)/(g2^2*g3) + (g4^17*t^8.78)/(g1^2*g2^3*g3^2) + t^8.87/(g1*g2) - (3*t^8.87)/(g1*g3) + (g1*g2*t^8.87)/g4^6 - (3*g1*g3*t^8.87)/g4^6 - (3*t^8.87)/g4^3 + t^8.87/(g4^3*y^2) - t^3.96/(g4*y) - t^4.91/(g4^2*y) - (g1*g3*t^6.83)/(g4^7*y) - t^6.83/(g4^4*y) - t^6.83/(g1*g3*g4*y) - (g1*g2*t^7.09)/(g4*y) - (g4^5*t^7.09)/(g1*g2*y) - (g1*g3*t^7.79)/(g4^8*y) - t^7.79/(g4^5*y) - t^7.79/(g1*g3*g4^2*y) - (g1*g2*t^8.04)/(g4^2*y) - (g4^4*t^8.04)/(g1*g2*y) + (g1*g3*t^8.74)/(g4^9*y) + t^8.74/(g4^6*y) + t^8.74/(g1*g3*g4^3*y) - (t^3.96*y)/g4 - (t^4.91*y)/g4^2 - (g1*g3*t^6.83*y)/g4^7 - (t^6.83*y)/g4^4 - (t^6.83*y)/(g1*g3*g4) - (g1*g2*t^7.09*y)/g4 - (g4^5*t^7.09*y)/(g1*g2) - (g1*g3*t^7.79*y)/g4^8 - (t^7.79*y)/g4^5 - (t^7.79*y)/(g1*g3*g4^2) - (g1*g2*t^8.04*y)/g4^2 - (g4^4*t^8.04*y)/(g1*g2) + (g1*g3*t^8.74*y)/g4^9 + (t^8.74*y)/g4^6 + (t^8.74*y)/(g1*g3*g4^3) + (t^8.87*y^2)/g4^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47868 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.4552 1.6423 0.8861 [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail