Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47897 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4497 | 1.6322 | 0.8882 | [X:[1.3628], M:[0.9023], q:[0.5128, 0.4792], qb:[0.585, 0.5115], phi:[0.3186]] | [X:[[0, 0, 4]], M:[[1, 2, -12]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.707 + t^2.867 + t^2.972 + t^3.073 + t^3.192 + t^3.928 + t^4.029 + t^4.088 + t^4.148 + t^4.249 + t^4.884 + t^4.984 + t^5.104 + t^5.205 + t^5.369 + t^5.414 + t^5.47 + t^5.574 + t^5.679 + t^5.735 + t^5.779 + t^5.839 + t^5.94 + t^5.944 - 3*t^6. + t^6.045 + t^6.06 - t^6.101 + t^6.145 + t^6.164 - t^6.221 + t^6.265 + t^6.325 + t^6.385 + t^6.426 + t^6.635 + t^6.735 + 2*t^6.795 + t^6.896 + t^6.9 + 2*t^7. + t^7.016 - t^7.057 + t^7.06 + t^7.101 + t^7.116 + 2*t^7.12 + t^7.161 - t^7.176 + t^7.18 + 2*t^7.221 + 2*t^7.281 + t^7.322 + t^7.341 + t^7.382 + t^7.471 + t^7.482 + t^7.59 + t^7.691 + 2*t^7.856 + 3*t^7.956 + t^7.971 - t^8.012 + 2*t^8.057 + t^8.072 + 3*t^8.076 + t^8.12 + 4*t^8.177 + t^8.237 + t^8.278 + t^8.281 + t^8.297 + t^8.337 + t^8.341 + t^8.385 + 3*t^8.442 + t^8.543 + t^8.546 + t^8.562 - t^8.587 + t^8.602 + t^8.647 + t^8.651 + t^8.663 - 3*t^8.707 + t^8.751 - t^8.808 + 2*t^8.811 + t^8.852 - 2*t^8.867 + 3*t^8.912 + t^8.916 - t^8.968 - 3*t^8.972 + t^8.867/y^2 - t^3.956/y - t^4.912/y - t^6.663/y - t^6.823/y - t^6.928/y - t^7.029/y - t^7.148/y - t^7.618/y - t^7.779/y - t^7.884/y - t^7.984/y - t^8.104/y + t^8.574/y + t^8.679/y + t^8.779/y + t^8.899/y - t^3.956*y - t^4.912*y - t^6.663*y - t^6.823*y - t^6.928*y - t^7.029*y - t^7.148*y - t^7.618*y - t^7.779*y - t^7.884*y - t^7.984*y - t^8.104*y + t^8.574*y + t^8.679*y + t^8.779*y + t^8.899*y + t^8.867*y^2 | (g1*g2^2*t^2.707)/g3^12 + t^2.867/g3^6 + g1*g2^2*t^2.972 + (g2*g3^11*t^3.073)/g1 + (g1*g3*t^3.192)/g2 + (g1*g2^2*t^3.928)/g3^2 + (g2*g3^9*t^4.029)/g1 + g3^4*t^4.088 + (g1*t^4.148)/(g2*g3) + (g3^10*t^4.249)/(g1*g2^2) + (g1*g2^2*t^4.884)/g3^4 + (g2*g3^7*t^4.984)/g1 + (g1*t^5.104)/(g2*g3^3) + (g3^8*t^5.205)/(g1*g2^2) + (g1*g3^9*t^5.369)/g2 + (g1^2*g2^4*t^5.414)/g3^24 + (g3^20*t^5.47)/(g1*g2^2) + (g1*g2^2*t^5.574)/g3^18 + (g1^2*g2^4*t^5.679)/g3^12 + t^5.735/g3^12 + (g2^3*t^5.779)/g3 + (g1*g2^2*t^5.839)/g3^6 + (g2*g3^5*t^5.94)/g1 + g1^2*g2^4*t^5.944 - 3*t^6. + g2^3*g3^11*t^6.045 + (g1*t^6.06)/(g2*g3^5) - (g3^11*t^6.101)/(g1^2*g2) + (g2^2*g3^22*t^6.145)/g1^2 + g1^2*g2*g3*t^6.164 - (g3*t^6.221)/g2^3 + g3^12*t^6.265 + (g1*g3^7*t^6.325)/g2 + (g1^2*g3^2*t^6.385)/g2^2 + (g3^18*t^6.426)/(g1*g2^2) + (g1^2*g2^4*t^6.635)/g3^14 + (g2^3*t^6.735)/g3^3 + (2*g1*g2^2*t^6.795)/g3^8 + (g2*g3^3*t^6.896)/g1 + (g1^2*g2^4*t^6.9)/g3^2 + 2*g2^3*g3^9*t^7. + (g1*t^7.016)/(g2*g3^7) - (g3^9*t^7.057)/(g1^2*g2) + g1*g2^2*g3^4*t^7.06 + (g2^2*g3^20*t^7.101)/g1^2 + (g3^4*t^7.116)/(g1*g2^2) + (2*g1^2*g2*t^7.12)/g3 + (g2*g3^15*t^7.161)/g1 - t^7.176/(g2^3*g3) + (g1^3*t^7.18)/g3^6 + 2*g3^10*t^7.221 + (2*g1*g3^5*t^7.281)/g2 + (g3^21*t^7.322)/(g1^2*g2) + (g1^2*t^7.341)/g2^2 + (g3^16*t^7.382)/(g1*g2^2) + (g2^6*t^7.471)/g3^6 + (g3^27*t^7.482)/(g1^3*g2^3) + (g1^2*g2^4*t^7.59)/g3^16 + (g2^3*t^7.691)/g3^5 + (2*g1^2*g2^4*t^7.856)/g3^4 + 3*g2^3*g3^7*t^7.956 + (g1*t^7.971)/(g2*g3^9) - (g3^7*t^8.012)/(g1^2*g2) + (2*g2^2*g3^18*t^8.057)/g1^2 + (g3^2*t^8.072)/(g1*g2^2) + (3*g1^2*g2*t^8.076)/g3^3 + (g1^3*g2^6*t^8.12)/g3^36 + 4*g3^8*t^8.177 + (g1*g3^3*t^8.237)/g2 + (g3^19*t^8.278)/(g1^2*g2) + (g1^2*g2^4*t^8.281)/g3^30 + (g1^2*t^8.297)/(g2^2*g3^2) + (g3^14*t^8.337)/(g1*g2^2) + g1^2*g2*g3^9*t^8.341 + (g1^3*g2^6*t^8.385)/g3^24 + (g1*g2^2*t^8.442)/g3^24 + 2*g3^20*t^8.442 + (g3^31*t^8.543)/(g1^2*g2) + (g1^2*g2^4*t^8.546)/g3^18 + (g1^2*g3^10*t^8.562)/g2^2 - (g2^4*t^8.587)/(g1*g3^2) + t^8.602/g3^18 + (g2^3*t^8.647)/g3^7 + (g1^3*g2^6*t^8.651)/g3^12 + (g3^21*t^8.663)/g2^3 - (3*g1*g2^2*t^8.707)/g3^12 + (g1*g2^5*t^8.751)/g3 - (g2*t^8.808)/(g1*g3) + (2*g1^2*g2^4*t^8.811)/g3^6 + (g2^4*g3^10*t^8.852)/g1 - (2*t^8.867)/g3^6 + 3*g2^3*g3^5*t^8.912 + g1^3*g2^6*t^8.916 - (g3^5*t^8.968)/(g1^2*g2) - 3*g1*g2^2*t^8.972 + t^8.867/(g3^6*y^2) - t^3.956/(g3^2*y) - t^4.912/(g3^4*y) - (g1*g2^2*t^6.663)/(g3^14*y) - t^6.823/(g3^8*y) - (g1*g2^2*t^6.928)/(g3^2*y) - (g2*g3^9*t^7.029)/(g1*y) - (g1*t^7.148)/(g2*g3*y) - (g1*g2^2*t^7.618)/(g3^16*y) - t^7.779/(g3^10*y) - (g1*g2^2*t^7.884)/(g3^4*y) - (g2*g3^7*t^7.984)/(g1*y) - (g1*t^8.104)/(g2*g3^3*y) + (g1*g2^2*t^8.574)/(g3^18*y) + (g1^2*g2^4*t^8.679)/(g3^12*y) + (g2^3*t^8.779)/(g3*y) + (g1^2*g2*t^8.899)/(g3^11*y) - (t^3.956*y)/g3^2 - (t^4.912*y)/g3^4 - (g1*g2^2*t^6.663*y)/g3^14 - (t^6.823*y)/g3^8 - (g1*g2^2*t^6.928*y)/g3^2 - (g2*g3^9*t^7.029*y)/g1 - (g1*t^7.148*y)/(g2*g3) - (g1*g2^2*t^7.618*y)/g3^16 - (t^7.779*y)/g3^10 - (g1*g2^2*t^7.884*y)/g3^4 - (g2*g3^7*t^7.984*y)/g1 - (g1*t^8.104*y)/(g2*g3^3) + (g1*g2^2*t^8.574*y)/g3^18 + (g1^2*g2^4*t^8.679*y)/g3^12 + (g2^3*t^8.779*y)/g3 + (g1^2*g2*t^8.899*y)/g3^11 + (t^8.867*y^2)/g3^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57390 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ | 1.4458 | 1.6234 | 0.8906 | [X:[1.3682], M:[0.9476], q:[0.484, 0.5051], qb:[0.5684, 0.5473], phi:[0.3159]] | 2*t^2.843 + t^3.094 + t^3.157 + t^3.22 + t^4.041 + 3*t^4.105 + t^4.168 + t^4.989 + 2*t^5.052 + t^5.116 + t^5.367 + t^5.43 + 3*t^5.686 + t^5.937 - t^6. - t^3.948/y - t^4.895/y - t^3.948*y - t^4.895*y | detail | |
57395 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4465 | 1.6315 | 0.8866 | [X:[1.3496], M:[0.9174, 1.0244], q:[0.4967, 0.4632], qb:[0.586, 0.5029], phi:[0.3252]] | t^2.752 + t^2.898 + t^2.999 + t^3.073 + t^3.148 + t^3.874 + t^3.974 + t^4.049 + t^4.123 + t^4.224 + t^4.85 + t^4.95 + t^5.099 + t^5.199 + t^5.245 + t^5.345 + t^5.504 + t^5.65 + t^5.751 + t^5.797 + t^5.825 + t^5.897 + t^5.971 + t^5.997 - 3*t^6. - t^3.976/y - t^4.951/y - t^3.976*y - t^4.951*y | detail | |
57396 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4549 | 1.6381 | 0.8881 | [X:[1.3788], M:[0.8818, 0.9134], q:[0.5445, 0.4762], qb:[0.5737, 0.542], phi:[0.3106]] | t^2.645 + t^2.74 + t^2.795 + t^3.055 + t^3.15 + t^3.986 + t^4.081 + t^4.136 + t^4.191 + t^4.286 + t^4.918 + t^5.013 + t^5.123 + t^5.218 + t^5.291 + t^5.386 + t^5.422 + t^5.441 + t^5.481 + t^5.536 + t^5.591 + t^5.627 + t^5.7 + t^5.795 + t^5.85 + t^5.89 + t^5.945 - 3*t^6. - t^3.932/y - t^4.864/y - t^3.932*y - t^4.864*y | detail | |
57397 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4575 | 1.6436 | 0.8867 | [X:[1.3723], M:[0.894, 0.894], q:[0.5122, 0.5122], qb:[0.5938, 0.4986], phi:[0.3139]] | 2*t^2.682 + t^2.825 + 2*t^3.032 + 2*t^3.974 + t^4.117 + 2*t^4.26 + 2*t^4.916 + 2*t^5.201 + 3*t^5.364 + 2*t^5.507 + 2*t^5.552 + t^5.65 + 4*t^5.714 + 2*t^5.857 - 5*t^6. - t^3.942/y - t^4.883/y - t^3.942*y - t^4.883*y | detail | |
57388 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.4335 | 1.6011 | 0.8953 | [X:[1.4107], M:[0.8547], q:[0.5463, 0.5795], qb:[0.5991, 0.5072], phi:[0.2947]] | t^2.564 + t^2.652 + t^3.16 + t^3.26 + t^3.536 + t^4.044 + t^4.144 + t^4.232 + t^4.32 + t^4.42 + t^4.928 + t^5.028 + t^5.128 + t^5.204 + t^5.216 + 2*t^5.304 + t^5.724 + t^5.812 + t^5.824 + t^5.912 - 2*t^6. - t^3.884/y - t^4.768/y - t^3.884*y - t^4.768*y | detail | |
57389 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4379 | 1.6109 | 0.8926 | [X:[1.404], M:[0.808], q:[0.596, 0.5099], qb:[0.596, 0.5099], phi:[0.298]] | t^2.424 + t^2.682 + t^3.06 + 2*t^3.318 + t^3.954 + 3*t^4.212 + t^4.47 + 2*t^4.848 + 3*t^5.106 + 2*t^5.364 + t^5.484 + 3*t^5.742 - t^3.894/y - t^4.788/y - t^3.894*y - t^4.788*y | detail | |
57392 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.446 | 1.6242 | 0.8902 | [X:[1.37], M:[0.9275], q:[0.5108, 0.476], qb:[0.5617, 0.5617], phi:[0.315]] | t^2.783 + t^2.835 + 2*t^3.113 + t^3.217 + 2*t^4.058 + t^4.11 + 2*t^4.162 + 2*t^5.003 + 2*t^5.107 + t^5.333 + t^5.438 + t^5.565 + t^5.618 + t^5.67 + t^5.896 + 2*t^5.948 - 3*t^6. - t^3.945/y - t^4.89/y - t^3.945*y - t^4.89*y | detail | |
57387 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ | 1.3303 | 1.4905 | 0.8925 | [X:[1.4379], M:[0.8099], q:[0.6997, 0.3853], qb:[0.4904, 0.7381], phi:[0.2811]] | t^2.43 + t^2.53 + t^2.627 + t^3.37 + t^3.47 + t^4.214 + 3*t^4.314 + t^4.414 + t^4.859 + t^4.959 + t^5.057 + t^5.059 + 2*t^5.157 + 2*t^5.254 + t^5.8 + t^5.9 + 2*t^5.998 - t^6. - t^3.843/y - t^4.686/y - t^3.843*y - t^4.686*y | detail | |
57394 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 1.4491 | 1.6312 | 0.8884 | [X:[1.3648], M:[0.8988], q:[0.5224, 0.4683], qb:[0.5788, 0.5247], phi:[0.3176]] | t^2.696 + t^2.859 + t^2.979 + 2*t^3.141 + t^3.932 + 3*t^4.094 + t^4.257 + t^4.885 + 2*t^5.047 + t^5.209 + t^5.33 + t^5.393 + t^5.492 + t^5.555 + t^5.675 + t^5.717 + 2*t^5.838 + t^5.958 - t^6. - t^3.953/y - t^4.906/y - t^3.953*y - t^4.906*y | detail | |
57391 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{6}$ | 1.4451 | 1.6366 | 0.883 | [X:[1.3333], M:[0.936], q:[0.4768, 0.4437], qb:[0.5872, 0.4923], phi:[0.3333]] | 2*t^2.808 + t^2.907 + t^3. + t^3.093 + t^3.808 + t^3.907 + t^4. + t^4.093 + t^4.192 + t^4.808 + t^4.907 + 2*t^5.093 + 2*t^5.192 + 3*t^5.616 + 2*t^5.715 + 2*t^5.808 + t^5.814 + t^5.901 + t^5.907 - t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail | |
57376 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}X_{2}$ | 0.9037 | 0.9394 | 0.962 | [X:[1.6509, 1.4763], M:[1.0474], q:[0.4763, 1.1272], qb:[0.4763, 0.8728], phi:[0.1746]] | t^3.142 + t^3.382 + t^3.905 + t^4.429 + t^4.953 + 2*t^5.858 - 2*t^6. - t^3.524/y - t^4.047/y - t^3.524*y - t^4.047*y | detail | |
57393 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4496 | 1.6311 | 0.8887 | [X:[1.3652], M:[0.9043], q:[0.5124, 0.484], qb:[0.5833, 0.516], phi:[0.3174]] | t^2.713 + t^2.856 + t^3. + t^3.085 + t^3.202 + t^3.952 + t^4.038 + t^4.096 + t^4.154 + t^4.239 + t^4.904 + t^4.99 + t^5.106 + t^5.191 + t^5.393 + t^5.426 + t^5.479 + t^5.569 + 2*t^5.713 + t^5.798 + t^5.856 + t^5.942 - 2*t^6. - t^3.952/y - t^4.904/y - t^3.952*y - t^4.904*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47868 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | t^2.847 + t^2.933 + t^2.957 + 2*t^3.043 + t^3.918 + 3*t^4.028 + t^4.139 + t^4.904 + 2*t^5.014 + t^5.124 + 2*t^5.495 + 2*t^5.605 + t^5.695 + t^5.78 + t^5.805 + t^5.865 + t^5.89 + t^5.915 + 2*t^5.975 - 2*t^6. - t^3.986/y - t^4.972/y - t^3.986*y - t^4.972*y | detail |