Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47954 | SU3adj1nf2 | $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ + $ M_2\phi_1^3$ | 1.4552 | 1.6484 | 0.8828 | [X:[1.3241], M:[0.9774, 0.9862], q:[0.5113, 0.4749], qb:[0.5113, 0.4749], phi:[0.3379]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [0, 0, 0, 3]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_2$, $ M_1$, $ q_2\tilde{q}_1$, $ M_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ X_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ q_2^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1^2$, $ M_1M_2$, $ q_2^2\tilde{q}_1^2$, $ M_2q_2\tilde{q}_1$, $ M_2^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$ | . | -4 | t^2.85 + t^2.93 + 3*t^2.96 + t^3.86 + 3*t^3.97 + t^4.08 + t^4.88 + 2*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 3*t^5.81 + t^5.86 + t^5.89 + 6*t^5.92 - 4*t^6. - 2*t^6.11 + 2*t^6.41 + 2*t^6.52 + t^6.71 + t^6.8 + 6*t^6.82 + t^6.9 + 10*t^6.93 - 2*t^7.01 + 3*t^7.04 - 2*t^7.12 + 2*t^7.32 + 2*t^7.64 + 2*t^7.73 + t^7.81 + 7*t^7.84 + 11*t^7.94 - t^8.03 + 5*t^8.05 - 2*t^8.14 + t^8.16 + 2*t^8.25 + 8*t^8.36 - 4*t^8.44 + 6*t^8.46 - 5*t^8.55 + t^8.63 + t^8.66 + t^8.71 + 2*t^8.74 + 6*t^8.77 + t^8.8 + t^8.82 + 10*t^8.88 - 3*t^8.93 - 9*t^8.96 - t^4.01/y - t^5.03/y - t^6.86/y - t^6.95/y - (3*t^6.97)/y - t^7.88/y - t^7.96/y - (3*t^7.99)/y + t^8.78/y + (3*t^8.81)/y + (2*t^8.89)/y + (3*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.86*y - t^6.95*y - 3*t^6.97*y - t^7.88*y - t^7.96*y - 3*t^7.99*y + t^8.78*y + 3*t^8.81*y + 2*t^8.89*y + 3*t^8.92*y | g1*g3*t^2.85 + (g1*g3*t^2.93)/g4^6 + g1*g2*t^2.96 + g4^3*t^2.96 + (g4^6*t^2.96)/(g1*g2) + (g1*g3*t^3.86)/g4 + (g1*g2*t^3.97)/g4 + g4^2*t^3.97 + (g4^5*t^3.97)/(g1*g2) + (g4^5*t^4.08)/(g1*g3) + (g1*g3*t^4.88)/g4^2 + (g1*g2*t^4.99)/g4^2 + (g4^4*t^4.99)/(g1*g2) + (g4^4*t^5.1)/(g1*g3) + (g2*g3^2*t^5.4)/g4 + (g1*g4^5*t^5.4)/(g2*g3) + (g2^2*g3*t^5.51)/g4 + (g4^11*t^5.51)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.7 + (g1^2*g3^2*t^5.78)/g4^6 + g1^2*g2*g3*t^5.81 + g1*g3*g4^3*t^5.81 + (g3*g4^6*t^5.81)/g2 + (g1^2*g3^2*t^5.86)/g4^12 + (g1*g3*t^5.89)/g4^3 + g1^2*g2^2*t^5.92 + g1*g2*g4^3*t^5.92 + 2*g4^6*t^5.92 + (g4^9*t^5.92)/(g1*g2) + (g4^12*t^5.92)/(g1^2*g2^2) - 4*t^6. - (g2*t^6.11)/g3 - (g4^6*t^6.11)/(g1^2*g2*g3) + (g2*g3^2*t^6.41)/g4^2 + (g1*g4^4*t^6.41)/(g2*g3) + (g2^2*g3*t^6.52)/g4^2 + (g4^10*t^6.52)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.71)/g4 + (g1^2*g3^2*t^6.8)/g4^7 + (2*g1^2*g2*g3*t^6.82)/g4 + 2*g1*g3*g4^2*t^6.82 + (2*g3*g4^5*t^6.82)/g2 + (g1*g3*t^6.9)/g4^4 + (g1^2*g2^2*t^6.93)/g4 + 2*g1*g2*g4^2*t^6.93 + 4*g4^5*t^6.93 + (2*g4^8*t^6.93)/(g1*g2) + (g4^11*t^6.93)/(g1^2*g2^2) - (2*t^7.01)/g4 + (g2*g4^5*t^7.04)/g3 + (g4^8*t^7.04)/(g1*g3) + (g4^11*t^7.04)/(g1^2*g2*g3) - (g2*t^7.12)/(g3*g4) - (g4^5*t^7.12)/(g1^2*g2*g3) + (g1^3*t^7.32)/g4^3 + (g3^3*t^7.32)/g4^3 - (g1*g2^2*g3^2*t^7.42)/g4^6 + (g2*g3^2*t^7.42)/g4^3 + (g1*g4^3*t^7.42)/(g2*g3) - (g4^6*t^7.42)/(g2^2*g3) - (g2*g3*t^7.53)/g1 + (g2^2*g3*t^7.53)/g4^3 - (g4^6*t^7.53)/(g2*g3^2) + (g4^9*t^7.53)/(g1*g2^2*g3^2) + (g2^3*t^7.64)/g4^3 + (g4^15*t^7.64)/(g1^3*g2^3*g3^3) + (2*g1^2*g3^2*t^7.73)/g4^2 + (g1^2*g3^2*t^7.81)/g4^8 + (3*g1^2*g2*g3*t^7.84)/g4^2 + g1*g3*g4*t^7.84 + (3*g3*g4^4*t^7.84)/g2 + (2*g1^2*g2^2*t^7.94)/g4^2 + g1*g2*g4*t^7.94 + 5*g4^4*t^7.94 + (g4^7*t^7.94)/(g1*g2) + (2*g4^10*t^7.94)/(g1^2*g2^2) - t^8.03/g4^2 + (2*g2*g4^4*t^8.05)/g3 + (g4^7*t^8.05)/(g1*g3) + (2*g4^10*t^8.05)/(g1^2*g2*g3) - (g2*t^8.14)/(g3*g4^2) - (g4^4*t^8.14)/(g1^2*g2*g3) + (g4^10*t^8.16)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.25)/g4 + (g1^2*g4^5*t^8.25)/g2 + (2*g1*g2^2*g3^2*t^8.36)/g4 + g2*g3^2*g4^2*t^8.36 + (g1^2*g4^5*t^8.36)/g3 + (g3^2*g4^5*t^8.36)/g1 + (g1*g4^8*t^8.36)/(g2*g3) + (2*g4^11*t^8.36)/(g2^2*g3) - (g1*g2^2*g3^2*t^8.44)/g4^7 - (g1^2*t^8.44)/(g3*g4) - (g3^2*t^8.44)/(g1*g4) - (g4^5*t^8.44)/(g2^2*g3) + (g1*g2^3*g3*t^8.46)/g4 + g2^2*g3*g4^2*t^8.46 + (g2*g3*g4^5*t^8.46)/g1 + (g4^11*t^8.46)/(g2*g3^2) + (g4^14*t^8.46)/(g1*g2^2*g3^2) + (g4^17*t^8.46)/(g1^2*g2^3*g3^2) + g1^3*g3^3*t^8.55 - (g1*g2^3*g3*t^8.55)/g4^7 - (2*g2*g3*t^8.55)/(g1*g4) - (2*g4^5*t^8.55)/(g2*g3^2) - (g4^11*t^8.55)/(g1^2*g2^3*g3^2) + (g1^3*g3^3*t^8.63)/g4^6 + g1^3*g2*g3^2*t^8.66 - (g2^2*t^8.66)/(g1*g4) + g1^2*g3^2*g4^3*t^8.66 + (g1*g3^2*g4^6*t^8.66)/g2 - (g4^11*t^8.66)/(g1^2*g2^2*g3^3) + (g1^3*g3^3*t^8.71)/g4^12 + (2*g1^2*g3^2*t^8.74)/g4^3 + g1^3*g2^2*g3*t^8.77 + g1^2*g2*g3*g4^3*t^8.77 + 2*g1*g3*g4^6*t^8.77 + (g3*g4^9*t^8.77)/g2 + (g3*g4^12*t^8.77)/(g1*g2^2) + (g1^3*g3^3*t^8.8)/g4^18 + (g1^2*g3^2*t^8.82)/g4^9 - 4*g1*g3*t^8.85 + (2*g1^2*g2*g3*t^8.85)/g4^3 + (2*g3*g4^3*t^8.85)/g2 + g1^3*g2^3*t^8.88 + g1^2*g2^2*g4^3*t^8.88 + 2*g1*g2*g4^6*t^8.88 + 2*g4^9*t^8.88 + (2*g4^12*t^8.88)/(g1*g2) + (g4^15*t^8.88)/(g1^2*g2^2) + (g4^18*t^8.88)/(g1^3*g2^3) - (3*g1*g3*t^8.93)/g4^6 - 5*g1*g2*t^8.96 + (g1^2*g2^2*t^8.96)/g4^3 - g4^3*t^8.96 - (5*g4^6*t^8.96)/(g1*g2) + (g4^9*t^8.96)/(g1^2*g2^2) - t^4.01/(g4*y) - t^5.03/(g4^2*y) - (g1*g3*t^6.86)/(g4*y) - (g1*g3*t^6.95)/(g4^7*y) - (g1*g2*t^6.97)/(g4*y) - (g4^2*t^6.97)/y - (g4^5*t^6.97)/(g1*g2*y) - (g1*g3*t^7.88)/(g4^2*y) - (g1*g3*t^7.96)/(g4^8*y) - (g1*g2*t^7.99)/(g4^2*y) - (g4*t^7.99)/y - (g4^4*t^7.99)/(g1*g2*y) + (g1^2*g3^2*t^8.78)/(g4^6*y) + (g1^2*g2*g3*t^8.81)/y + (g1*g3*g4^3*t^8.81)/y + (g3*g4^6*t^8.81)/(g2*y) + (g3*t^8.89)/(g2*y) + (g1^2*g2*g3*t^8.89)/(g4^6*y) + (g1*g2*g4^3*t^8.92)/y + (g4^6*t^8.92)/y + (g4^9*t^8.92)/(g1*g2*y) - (t^4.01*y)/g4 - (t^5.03*y)/g4^2 - (g1*g3*t^6.86*y)/g4 - (g1*g3*t^6.95*y)/g4^7 - (g1*g2*t^6.97*y)/g4 - g4^2*t^6.97*y - (g4^5*t^6.97*y)/(g1*g2) - (g1*g3*t^7.88*y)/g4^2 - (g1*g3*t^7.96*y)/g4^8 - (g1*g2*t^7.99*y)/g4^2 - g4*t^7.99*y - (g4^4*t^7.99*y)/(g1*g2) + (g1^2*g3^2*t^8.78*y)/g4^6 + g1^2*g2*g3*t^8.81*y + g1*g3*g4^3*t^8.81*y + (g3*g4^6*t^8.81*y)/g2 + (g3*t^8.89*y)/g2 + (g1^2*g2*g3*t^8.89*y)/g4^6 + g1*g2*g4^3*t^8.92*y + g4^6*t^8.92*y + (g4^9*t^8.92*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47868 | SU3adj1nf2 | $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y | detail |