Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47954 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4552 | 1.6484 | 0.8828 | [X:[1.3241], M:[0.9774, 0.9862], q:[0.5113, 0.4749], qb:[0.5113, 0.4749], phi:[0.3379]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [0, 0, 0, 3]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -4 | t^2.85 + t^2.932 + 3*t^2.959 + t^3.863 + 3*t^3.972 + t^4.082 + t^4.877 + 2*t^4.986 + t^5.095 + 2*t^5.397 + 2*t^5.506 + t^5.699 + t^5.782 + 3*t^5.808 + t^5.865 + t^5.891 + 6*t^5.917 - 4*t^6. - 2*t^6.109 + 2*t^6.411 + 2*t^6.52 + t^6.713 + t^6.796 + 6*t^6.822 + t^6.905 + 10*t^6.931 - 2*t^7.014 + 3*t^7.04 - 2*t^7.123 + 2*t^7.316 + 2*t^7.643 + 2*t^7.727 + t^7.809 + 7*t^7.836 + 11*t^7.945 - t^8.028 + 5*t^8.054 - 2*t^8.137 + t^8.163 + 2*t^8.247 + 8*t^8.356 - 4*t^8.439 + 6*t^8.465 - 6*t^8.548 + t^8.549 + t^8.631 - 2*t^8.657 + 3*t^8.658 + t^8.714 + 2*t^8.74 + 6*t^8.767 + t^8.797 + t^8.823 + 10*t^8.876 - 3*t^8.932 - 9*t^8.959 - t^4.014/y - t^5.028/y - t^6.863/y - t^6.946/y - (3*t^6.972)/y - t^7.877/y - t^7.96/y - (3*t^7.986)/y + t^8.782/y + (3*t^8.808)/y + (2*t^8.891)/y + (3*t^8.917)/y - t^4.014*y - t^5.028*y - t^6.863*y - t^6.946*y - 3*t^6.972*y - t^7.877*y - t^7.96*y - 3*t^7.986*y + t^8.782*y + 3*t^8.808*y + 2*t^8.891*y + 3*t^8.917*y | g1*g3*t^2.85 + (g1*g3*t^2.932)/g4^6 + g1*g2*t^2.959 + g4^3*t^2.959 + (g4^6*t^2.959)/(g1*g2) + (g1*g3*t^3.863)/g4 + (g1*g2*t^3.972)/g4 + g4^2*t^3.972 + (g4^5*t^3.972)/(g1*g2) + (g4^5*t^4.082)/(g1*g3) + (g1*g3*t^4.877)/g4^2 + (g1*g2*t^4.986)/g4^2 + (g4^4*t^4.986)/(g1*g2) + (g4^4*t^5.095)/(g1*g3) + (g2*g3^2*t^5.397)/g4 + (g1*g4^5*t^5.397)/(g2*g3) + (g2^2*g3*t^5.506)/g4 + (g4^11*t^5.506)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.699 + (g1^2*g3^2*t^5.782)/g4^6 + g1^2*g2*g3*t^5.808 + g1*g3*g4^3*t^5.808 + (g3*g4^6*t^5.808)/g2 + (g1^2*g3^2*t^5.865)/g4^12 + (g1*g3*t^5.891)/g4^3 + g1^2*g2^2*t^5.917 + g1*g2*g4^3*t^5.917 + 2*g4^6*t^5.917 + (g4^9*t^5.917)/(g1*g2) + (g4^12*t^5.917)/(g1^2*g2^2) - 4*t^6. - (g2*t^6.109)/g3 - (g4^6*t^6.109)/(g1^2*g2*g3) + (g2*g3^2*t^6.411)/g4^2 + (g1*g4^4*t^6.411)/(g2*g3) + (g2^2*g3*t^6.52)/g4^2 + (g4^10*t^6.52)/(g1*g2^2*g3^2) + (g1^2*g3^2*t^6.713)/g4 + (g1^2*g3^2*t^6.796)/g4^7 + (2*g1^2*g2*g3*t^6.822)/g4 + 2*g1*g3*g4^2*t^6.822 + (2*g3*g4^5*t^6.822)/g2 + (g1*g3*t^6.905)/g4^4 + (g1^2*g2^2*t^6.931)/g4 + 2*g1*g2*g4^2*t^6.931 + 4*g4^5*t^6.931 + (2*g4^8*t^6.931)/(g1*g2) + (g4^11*t^6.931)/(g1^2*g2^2) - (2*t^7.014)/g4 + (g2*g4^5*t^7.04)/g3 + (g4^8*t^7.04)/(g1*g3) + (g4^11*t^7.04)/(g1^2*g2*g3) - (g2*t^7.123)/(g3*g4) - (g4^5*t^7.123)/(g1^2*g2*g3) + (g1^3*t^7.316)/g4^3 + (g3^3*t^7.316)/g4^3 - (g1*g2^2*g3^2*t^7.425)/g4^6 + (g2*g3^2*t^7.425)/g4^3 + (g1*g4^3*t^7.425)/(g2*g3) - (g4^6*t^7.425)/(g2^2*g3) - (g2*g3*t^7.534)/g1 + (g2^2*g3*t^7.534)/g4^3 - (g4^6*t^7.534)/(g2*g3^2) + (g4^9*t^7.534)/(g1*g2^2*g3^2) + (g2^3*t^7.643)/g4^3 + (g4^15*t^7.643)/(g1^3*g2^3*g3^3) + (2*g1^2*g3^2*t^7.727)/g4^2 + (g1^2*g3^2*t^7.809)/g4^8 + (3*g1^2*g2*g3*t^7.836)/g4^2 + g1*g3*g4*t^7.836 + (3*g3*g4^4*t^7.836)/g2 + (2*g1^2*g2^2*t^7.945)/g4^2 + g1*g2*g4*t^7.945 + 5*g4^4*t^7.945 + (g4^7*t^7.945)/(g1*g2) + (2*g4^10*t^7.945)/(g1^2*g2^2) - t^8.028/g4^2 + (2*g2*g4^4*t^8.054)/g3 + (g4^7*t^8.054)/(g1*g3) + (2*g4^10*t^8.054)/(g1^2*g2*g3) - (g2*t^8.137)/(g3*g4^2) - (g4^4*t^8.137)/(g1^2*g2*g3) + (g4^10*t^8.163)/(g1^2*g3^2) + (g1*g2*g3^3*t^8.247)/g4 + (g1^2*g4^5*t^8.247)/g2 + (2*g1*g2^2*g3^2*t^8.356)/g4 + g2*g3^2*g4^2*t^8.356 + (g1^2*g4^5*t^8.356)/g3 + (g3^2*g4^5*t^8.356)/g1 + (g1*g4^8*t^8.356)/(g2*g3) + (2*g4^11*t^8.356)/(g2^2*g3) - (g1*g2^2*g3^2*t^8.439)/g4^7 - (g1^2*t^8.439)/(g3*g4) - (g3^2*t^8.439)/(g1*g4) - (g4^5*t^8.439)/(g2^2*g3) + (g1*g2^3*g3*t^8.465)/g4 + g2^2*g3*g4^2*t^8.465 + (g2*g3*g4^5*t^8.465)/g1 + (g4^11*t^8.465)/(g2*g3^2) + (g4^14*t^8.465)/(g1*g2^2*g3^2) + (g4^17*t^8.465)/(g1^2*g2^3*g3^2) - (g1*g2^3*g3*t^8.548)/g4^7 - (2*g2*g3*t^8.548)/(g1*g4) - (2*g4^5*t^8.548)/(g2*g3^2) - (g4^11*t^8.548)/(g1^2*g2^3*g3^2) + g1^3*g3^3*t^8.549 + (g1^3*g3^3*t^8.631)/g4^6 - (g2^2*t^8.657)/(g1*g4) - (g4^11*t^8.657)/(g1^2*g2^2*g3^3) + g1^3*g2*g3^2*t^8.658 + g1^2*g3^2*g4^3*t^8.658 + (g1*g3^2*g4^6*t^8.658)/g2 + (g1^3*g3^3*t^8.714)/g4^12 + (2*g1^2*g3^2*t^8.74)/g4^3 + g1^3*g2^2*g3*t^8.767 + g1^2*g2*g3*g4^3*t^8.767 + 2*g1*g3*g4^6*t^8.767 + (g3*g4^9*t^8.767)/g2 + (g3*g4^12*t^8.767)/(g1*g2^2) + (g1^3*g3^3*t^8.797)/g4^18 + (g1^2*g3^2*t^8.823)/g4^9 - 4*g1*g3*t^8.85 + (2*g1^2*g2*g3*t^8.85)/g4^3 + (2*g3*g4^3*t^8.85)/g2 + g1^3*g2^3*t^8.876 + g1^2*g2^2*g4^3*t^8.876 + 2*g1*g2*g4^6*t^8.876 + 2*g4^9*t^8.876 + (2*g4^12*t^8.876)/(g1*g2) + (g4^15*t^8.876)/(g1^2*g2^2) + (g4^18*t^8.876)/(g1^3*g2^3) - (3*g1*g3*t^8.932)/g4^6 - 5*g1*g2*t^8.959 + (g1^2*g2^2*t^8.959)/g4^3 - g4^3*t^8.959 - (5*g4^6*t^8.959)/(g1*g2) + (g4^9*t^8.959)/(g1^2*g2^2) - t^4.014/(g4*y) - t^5.028/(g4^2*y) - (g1*g3*t^6.863)/(g4*y) - (g1*g3*t^6.946)/(g4^7*y) - (g1*g2*t^6.972)/(g4*y) - (g4^2*t^6.972)/y - (g4^5*t^6.972)/(g1*g2*y) - (g1*g3*t^7.877)/(g4^2*y) - (g1*g3*t^7.96)/(g4^8*y) - (g1*g2*t^7.986)/(g4^2*y) - (g4*t^7.986)/y - (g4^4*t^7.986)/(g1*g2*y) + (g1^2*g3^2*t^8.782)/(g4^6*y) + (g1^2*g2*g3*t^8.808)/y + (g1*g3*g4^3*t^8.808)/y + (g3*g4^6*t^8.808)/(g2*y) + (g3*t^8.891)/(g2*y) + (g1^2*g2*g3*t^8.891)/(g4^6*y) + (g1*g2*g4^3*t^8.917)/y + (g4^6*t^8.917)/y + (g4^9*t^8.917)/(g1*g2*y) - (t^4.014*y)/g4 - (t^5.028*y)/g4^2 - (g1*g3*t^6.863*y)/g4 - (g1*g3*t^6.946*y)/g4^7 - (g1*g2*t^6.972*y)/g4 - g4^2*t^6.972*y - (g4^5*t^6.972*y)/(g1*g2) - (g1*g3*t^7.877*y)/g4^2 - (g1*g3*t^7.96*y)/g4^8 - (g1*g2*t^7.986*y)/g4^2 - g4*t^7.986*y - (g4^4*t^7.986*y)/(g1*g2) + (g1^2*g3^2*t^8.782*y)/g4^6 + g1^2*g2*g3*t^8.808*y + g1*g3*g4^3*t^8.808*y + (g3*g4^6*t^8.808*y)/g2 + (g3*t^8.891*y)/g2 + (g1^2*g2*g3*t^8.891*y)/g4^6 + g1*g2*g4^3*t^8.917*y + g4^6*t^8.917*y + (g4^9*t^8.917*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57743 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.476 | 1.6894 | 0.8737 | [X:[1.3247], M:[0.9766, 0.987, 0.6738], q:[0.5109, 0.4761], qb:[0.5125, 0.4746], phi:[0.3377]] | t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.86 + 2*t^3.97 + t^4.04 + t^4.08 + t^4.87 + t^4.88 + t^4.95 + 3*t^4.98 + 2*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.7 + t^5.78 + 2*t^5.81 + t^5.82 + t^5.86 + 2*t^5.89 + t^5.91 + 3*t^5.92 + 2*t^5.93 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47868 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4552 | 1.6423 | 0.8861 | [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] | t^2.847 + t^2.933 + t^2.957 + 2*t^3.043 + t^3.918 + 3*t^4.028 + t^4.139 + t^4.904 + 2*t^5.014 + t^5.124 + 2*t^5.495 + 2*t^5.605 + t^5.695 + t^5.78 + t^5.805 + t^5.865 + t^5.89 + t^5.915 + 2*t^5.975 - 2*t^6. - t^3.986/y - t^4.972/y - t^3.986*y - t^4.972*y | detail |