Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47939 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ + $ \phi_1\tilde{q}_1\tilde{q}_2^2$ 1.446 1.6242 0.8903 [X:[1.3694], M:[0.9321], q:[0.5113, 0.4763], qb:[0.5565, 0.5641], phi:[0.3153]] [X:[[0, 0, 2]], M:[[1, 1, -6]], q:[[-1, 1, 5], [1, 0, 0]], qb:[[0, -2, 1], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ X_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_1q_2^2$, $ \phi_1q_1^2q_2$, $ M_1^2$, $ M_1\phi_1^3$, $ \phi_1^6$, $ M_1q_2\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$ . -3 t^2.8 + t^2.84 + t^3.1 + t^3.12 + t^3.23 + t^4.04 + t^4.07 + t^4.11 + t^4.15 + t^4.17 + t^4.99 + t^5.01 + t^5.1 + t^5.12 + t^5.34 + t^5.44 + t^5.59 + t^5.63 + t^5.68 + t^5.92 + t^5.94 + t^5.96 - 3*t^6. + t^6.06 - t^6.11 + t^6.2 + t^6.22 + t^6.24 + t^6.28 + t^6.32 + t^6.35 + t^6.39 + t^6.45 + t^6.86 + t^6.88 + 2*t^6.9 + t^6.99 + t^7.01 - t^7.05 + t^7.12 + t^7.14 + 2*t^7.17 + t^7.19 + t^7.21 + 2*t^7.23 + t^7.25 + 2*t^7.27 + t^7.29 + 2*t^7.33 + t^7.38 + t^7.4 + t^7.44 + t^7.81 + 2*t^7.85 + t^7.91 + t^7.96 - t^8. + 2*t^8.09 + 2*t^8.11 + 2*t^8.13 + t^8.18 + 2*t^8.19 + 3*t^8.22 + 2*t^8.24 + t^8.28 + t^8.3 + t^8.32 + t^8.34 + t^8.39 + t^8.43 + t^8.44 + t^8.46 + t^8.47 + t^8.51 + t^8.54 + 2*t^8.56 + t^8.67 + t^8.71 - t^8.75 + t^8.76 - 2*t^8.8 - 2*t^8.84 - t^8.86 - t^8.88 - t^8.94 + t^8.84/y^2 - t^3.95/y - t^4.89/y - t^6.74/y - t^6.78/y - t^7.04/y - t^7.07/y - t^7.17/y - t^7.69/y - t^7.73/y - t^7.99/y - t^8.01/y - t^8.12/y + t^8.63/y + t^8.89/y + t^8.92/y - t^3.95*y - t^4.89*y - t^6.74*y - t^6.78*y - t^7.04*y - t^7.07*y - t^7.17*y - t^7.69*y - t^7.73*y - t^7.99*y - t^8.01*y - t^8.12*y + t^8.63*y + t^8.89*y + t^8.92*y + t^8.84*y^2 (g1*g2*t^2.8)/g3^6 + t^2.84/g3^3 + (g1*g3*t^3.1)/g2^2 + g1*g2*t^3.12 + (g2^2*g3^5*t^3.23)/g1 + (g1*t^4.04)/g2^2 + (g1*g2*t^4.07)/g3 + g3^2*t^4.11 + (g3^5*t^4.15)/(g1*g2) + (g2^2*g3^4*t^4.17)/g1 + (g1*t^4.99)/(g2^2*g3) + (g1*g2*t^5.01)/g3^2 + (g3^4*t^5.1)/(g1*g2) + (g2^2*g3^3*t^5.12)/g1 + g1*g2*g3^4*t^5.34 + (g2^2*g3^9*t^5.44)/g1 + (g1^2*g2^2*t^5.59)/g3^12 + (g1*g2*t^5.63)/g3^9 + t^5.68/g3^6 + (g1^2*g2^2*t^5.92)/g3^6 + (g1*t^5.94)/(g2^2*g3^2) + (g1*g2*t^5.96)/g3^3 - 3*t^6. + (g2^2*g3^2*t^6.06)/g1 - (g2*g3^5*t^6.11)/g1^2 + (g1^2*g3^2*t^6.2)/g2^4 + (g1^2*g3*t^6.22)/g2 + g1^2*g2^2*t^6.24 + g1*g2*g3^3*t^6.28 + g3^6*t^6.32 + g2^3*g3^5*t^6.35 + (g2^2*g3^8*t^6.39)/g1 + (g2^4*g3^10*t^6.45)/g1^2 + (g1^2*g2^2*t^6.86)/g3^7 + (g1*t^6.88)/(g2^2*g3^3) + (2*g1*g2*t^6.9)/g3^4 + (g3^2*t^6.99)/(g1*g2) + (g2^2*g3*t^7.01)/g1 - (g2*g3^4*t^7.05)/g1^2 + (g1^3*t^7.12)/g3^3 + (g1^2*g3*t^7.14)/g2^4 + (2*g1^2*t^7.17)/g2 + (g1^2*g2^2*t^7.19)/g3 + (g1*g3^3*t^7.21)/g2^2 + 2*g1*g2*g3^2*t^7.23 + (g3^6*t^7.25)/g2^3 + 2*g3^5*t^7.27 + g2^3*g3^4*t^7.29 + (2*g2^2*g3^7*t^7.33)/g1 + (g2*g3^10*t^7.38)/g1^2 + (g2^4*g3^9*t^7.4)/g1^2 + (g2^3*g3^12*t^7.44)/g1^3 + (g1^2*g2^2*t^7.81)/g3^8 + t^7.85/g2^6 + (g1*g2*t^7.85)/g3^5 + (g2^3*t^7.91)/g3^3 + (g2^2*t^7.96)/g1 - (g2*g3^3*t^8.)/g1^2 + (2*g1^2*t^8.09)/g2^4 + (2*g1^2*t^8.11)/(g2*g3) + (2*g1^2*g2^2*t^8.13)/g3^2 + g1*g2*g3*t^8.18 + (2*g3^5*t^8.19)/g2^3 + 3*g3^4*t^8.22 + 2*g2^3*g3^3*t^8.24 + (g2^2*g3^6*t^8.28)/g1 + (g3^10*t^8.3)/(g1^2*g2^2) + (g2*g3^9*t^8.32)/g1^2 + (g2^4*g3^8*t^8.34)/g1^2 + (g1^3*g2^3*t^8.39)/g3^18 + (g1^2*g2^2*t^8.43)/g3^15 + (g1^2*g3^5*t^8.44)/g2 + g1^2*g2^2*g3^4*t^8.46 + (g1*g2*t^8.47)/g3^12 + t^8.51/g3^9 + g3^10*t^8.54 + 2*g2^3*g3^9*t^8.56 + (g2^4*g3^14*t^8.67)/g1^2 + (g1^3*g2^3*t^8.71)/g3^12 - (g1*t^8.75)/(g2^5*g3^4) + (g1^2*g2^2*t^8.76)/g3^9 - (2*g1*g2*t^8.8)/g3^6 - (2*t^8.84)/g3^3 - (g3*t^8.86)/(g1*g2^4) - t^8.88/(g1*g2) - (g2*g3^2*t^8.94)/g1^2 + t^8.84/(g3^3*y^2) - t^3.95/(g3*y) - t^4.89/(g3^2*y) - (g1*g2*t^6.74)/(g3^7*y) - t^6.78/(g3^4*y) - (g1*t^7.04)/(g2^2*y) - (g1*g2*t^7.07)/(g3*y) - (g2^2*g3^4*t^7.17)/(g1*y) - (g1*g2*t^7.69)/(g3^8*y) - t^7.73/(g3^5*y) - (g1*t^7.99)/(g2^2*g3*y) - (g1*g2*t^8.01)/(g3^2*y) - (g2^2*g3^3*t^8.12)/(g1*y) + (g1*g2*t^8.63)/(g3^9*y) + (g1^2*t^8.89)/(g2*g3^5*y) + (g1^2*g2^2*t^8.92)/(g3^6*y) - (t^3.95*y)/g3 - (t^4.89*y)/g3^2 - (g1*g2*t^6.74*y)/g3^7 - (t^6.78*y)/g3^4 - (g1*t^7.04*y)/g2^2 - (g1*g2*t^7.07*y)/g3 - (g2^2*g3^4*t^7.17*y)/g1 - (g1*g2*t^7.69*y)/g3^8 - (t^7.73*y)/g3^5 - (g1*t^7.99*y)/(g2^2*g3) - (g1*g2*t^8.01*y)/g3^2 - (g2^2*g3^3*t^8.12*y)/g1 + (g1*g2*t^8.63*y)/g3^9 + (g1^2*t^8.89*y)/(g2*g3^5) + (g1^2*g2^2*t^8.92*y)/g3^6 + (t^8.84*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47868 SU3adj1nf2 $M_1q_1\tilde{q}_1$ + $ \phi_1^2X_1$ 1.4552 1.6423 0.8861 [X:[1.3428], M:[0.9491], q:[0.5255, 0.4888], qb:[0.5255, 0.4888], phi:[0.3286]] t^2.85 + t^2.93 + t^2.96 + 2*t^3.04 + t^3.92 + 3*t^4.03 + t^4.14 + t^4.9 + 2*t^5.01 + t^5.12 + 2*t^5.49 + 2*t^5.6 + t^5.69 + t^5.78 + t^5.8 + t^5.87 + t^5.89 + t^5.91 + 2*t^5.98 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail