Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
371 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ 0.7297 0.8972 0.8133 [X:[], M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] [X:[], M:[[-4, 4, 4], [0, -8, -8], [-4, -8, 0], [0, 4, -4], [0, -4, 4]], q:[[4, 0, 0], [0, -4, -4]], qb:[[0, 8, 0], [0, 0, 8]], phi:[[-1, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ \phi_1^2$, $ M_2$, $ M_5$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ M_1M_3$, $ \phi_1q_1\tilde{q}_2$, $ M_3\phi_1^2$, $ M_2M_3$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ M_1^2$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ \phi_1^4$, $ \phi_1q_1^2$, $ M_2\phi_1^2$, $ M_2^2$, $ M_5\phi_1^2$, $ M_4\phi_1^2$, $ M_5^2$, $ M_3q_1\tilde{q}_2$ . -3 t^2.29 + t^2.64 + t^2.67 + t^2.7 + t^2.95 + t^3.05 + t^3.61 + t^4.04 + t^4.29 + t^4.38 + t^4.54 + t^4.59 + t^4.63 + t^4.7 + t^4.73 + t^4.93 + t^4.95 + t^4.96 + t^5. + t^5.04 + t^5.25 + t^5.28 + t^5.31 + 2*t^5.34 + t^5.36 + t^5.37 + t^5.4 + t^5.62 + t^5.72 + t^5.91 - 3*t^6. + t^6.28 + t^6.33 - t^6.34 - t^6.41 + t^6.57 + t^6.58 - t^6.66 + t^6.68 + t^6.71 + t^6.74 + t^6.83 + t^6.88 + t^6.93 + t^6.96 + 2*t^6.99 + t^7.02 + t^7.05 + t^7.08 + t^7.18 + t^7.21 + 2*t^7.23 + 2*t^7.24 + t^7.26 + t^7.27 + t^7.29 + t^7.3 + t^7.34 + t^7.36 + 2*t^7.4 + t^7.43 + t^7.49 + t^7.54 + t^7.57 + t^7.59 + t^7.6 + 2*t^7.63 + 2*t^7.65 + t^7.67 + t^7.68 + t^7.7 + t^7.77 - t^7.87 + t^7.9 + t^7.91 + t^7.92 + t^7.95 - t^7.96 + 2*t^7.98 + 2*t^8.01 + t^8.04 + 2*t^8.07 + t^8.11 + t^8.15 + t^8.2 - t^8.28 - 3*t^8.29 + t^8.31 + t^8.33 - t^8.37 + t^8.42 - t^8.55 + t^8.56 + 2*t^8.58 + t^8.63 - 4*t^8.64 - 2*t^8.67 - t^8.69 - 5*t^8.7 + t^8.76 + t^8.83 + t^8.86 + t^8.88 + t^8.92 - 4*t^8.95 + 2*t^8.97 - t^8.98 + t^8.99 - t^4.34/y - t^6.63/y - t^6.97/y - t^7.01/y - t^7.04/y + t^7.63/y + t^7.66/y + t^7.7/y + t^7.93/y + t^7.96/y + t^8./y + t^8.04/y + t^8.25/y + t^8.31/y + (2*t^8.34)/y + t^8.37/y + t^8.59/y + t^8.62/y + t^8.66/y + t^8.68/y + t^8.72/y + t^8.75/y + t^8.91/y - t^8.92/y - t^4.34*y - t^6.63*y - t^6.97*y - t^7.01*y - t^7.04*y + t^7.63*y + t^7.66*y + t^7.7*y + t^7.93*y + t^7.96*y + t^8.*y + t^8.04*y + t^8.25*y + t^8.31*y + 2*t^8.34*y + t^8.37*y + t^8.59*y + t^8.62*y + t^8.66*y + t^8.68*y + t^8.72*y + t^8.75*y + t^8.91*y - t^8.92*y t^2.29/(g1^4*g2^8) + (g2^4*g3^4*t^2.64)/g1^4 + t^2.67/(g1^2*g2^2*g3^2) + t^2.7/(g2^8*g3^8) + (g3^4*t^2.95)/g2^4 + (g2^4*t^3.05)/g3^4 + g1^4*g3^8*t^3.61 + t^4.04/(g1*g2^9*g3^9) + (g3^3*t^4.29)/(g1*g2^5) + (g2^3*t^4.38)/(g1*g3^5) + (g3^15*t^4.54)/(g1*g2) + t^4.59/(g1^8*g2^16) + (g2^7*g3^7*t^4.63)/g1 + (g1^3*t^4.7)/(g2^5*g3^5) + (g2^15*t^4.73)/(g1*g3) + (g3^4*t^4.93)/(g1^8*g2^4) + (g1^3*g3^7*t^4.95)/g2 + t^4.96/(g1^6*g2^10*g3^2) + t^5./(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^5.04)/g3 + (g3^4*t^5.25)/(g1^4*g2^12) + (g2^8*g3^8*t^5.28)/g1^8 + (g2^2*g3^2*t^5.31)/g1^6 + (2*t^5.34)/(g1^4*g2^4*g3^4) + (g1^7*t^5.36)/(g2*g3) + t^5.37/(g1^2*g2^10*g3^10) + t^5.4/(g2^16*g3^16) + (g3^2*t^5.62)/(g1^2*g2^6) + (g2^2*t^5.72)/(g1^2*g3^6) + (g3^8*t^5.91)/g2^8 - 3*t^6. + (g1^2*g3^6*t^6.28)/g2^2 + t^6.33/(g1^5*g2^17*g3^9) - g2^12*g3^4*t^6.34 - (g1^4*t^6.41)/g3^8 + (g1^4*g3^12*t^6.57)/g2^4 + (g3^3*t^6.58)/(g1^5*g2^13) - g1^4*g2^4*g3^4*t^6.66 + t^6.68/(g1^5*g2^5*g3^5) + t^6.71/(g1^3*g2^11*g3^11) + t^6.74/(g1*g2^17*g3^17) + (g3^15*t^6.83)/(g1^5*g2^9) + t^6.88/(g1^12*g2^24) + (g3^7*t^6.93)/(g1^5*g2) + (g3*t^6.96)/(g1^3*g2^7) + (2*t^6.99)/(g1*g2^13*g3^5) + (g2^7*t^7.02)/(g1^5*g3) + (g2*t^7.05)/(g1^3*g3^7) + t^7.08/(g1*g2^5*g3^13) + (g2^3*g3^19*t^7.18)/g1^5 + (g3^13*t^7.21)/(g1^3*g2^3) + (g3^4*t^7.23)/(g1^12*g2^12) + g1^8*g3^16*t^7.23 + (2*g3^7*t^7.24)/(g1*g2^9) + t^7.26/(g1^10*g2^18*g3^2) + (g2^11*g3^11*t^7.27)/g1^5 + t^7.29/(g1^8*g2^24*g3^8) + (g2^5*g3^5*t^7.3)/g1^3 + t^7.34/(g1*g2*g3) + (g2^19*g3^3*t^7.36)/g1^5 + (g1^3*t^7.4)/(g2^13*g3^13) + (g2^13*t^7.4)/(g1^3*g3^3) + (g2^7*t^7.43)/(g1*g3^9) + (g3^19*t^7.49)/(g1*g2^5) + (g3^4*t^7.54)/(g1^8*g2^20) + (g3^8*t^7.57)/g1^12 + (g2^3*g3^11*t^7.59)/g1 + (g3^2*t^7.6)/(g1^10*g2^6) + (2*t^7.63)/(g1^8*g2^12*g3^4) + (2*g1^3*t^7.65)/(g2^9*g3) + t^7.67/(g1^6*g2^18*g3^10) + (g2^11*g3^3*t^7.68)/g1 + t^7.7/(g1^4*g2^24*g3^16) + (g2^19*t^7.77)/(g1*g3^5) - g1*g2*g3^17*t^7.87 + (g1^3*g3^11*t^7.9)/g2^5 + (g2^12*g3^12*t^7.91)/g1^12 + (g3^2*t^7.92)/(g1^6*g2^14) + (g2^6*g3^6*t^7.95)/g1^10 - g1*g2^9*g3^9*t^7.96 + (2*t^7.98)/g1^8 + (2*t^8.01)/(g1^6*g2^6*g3^6) + t^8.04/(g1^4*g2^12*g3^12) + (g1^7*t^8.06)/(g2^9*g3^9) - g1*g2^17*g3*t^8.06 + (2*t^8.07)/(g1^2*g2^18*g3^18) + t^8.11/(g2^24*g3^24) + (g1^3*g3^23*t^8.15)/g2 + (g3^8*t^8.2)/(g1^4*g2^16) - g1^5*g2*g3^9*t^8.28 - (3*t^8.29)/(g1^4*g2^8) + (g1^7*g3^3*t^8.31)/g2^5 + t^8.33/(g1^2*g2^14*g3^6) - g1^5*g2^9*g3*t^8.37 + t^8.42/(g1^2*g2^6*g3^14) - (g3^12*t^8.55)/(g1^4*g2^4) + (g1^7*g3^15*t^8.56)/g2 + (2*g3^6*t^8.58)/(g1^2*g2^10) + t^8.63/(g1^9*g2^25*g3^9) - (4*g2^4*g3^4*t^8.64)/g1^4 - (2*t^8.67)/(g1^2*g2^2*g3^2) - g1^9*g2*g3*t^8.69 - (5*t^8.7)/(g2^8*g3^8) + (g1^2*t^8.73)/(g2^14*g3^14) - (g2^12*t^8.73)/(g1^4*g3^4) + (g2^6*t^8.76)/(g1^2*g3^10) + (g3^18*t^8.83)/(g1^2*g2^6) + (g3^12*t^8.86)/g2^12 + (g3^3*t^8.88)/(g1^9*g2^21) + (g2^2*g3^10*t^8.92)/g1^2 - (4*g3^4*t^8.95)/g2^4 + t^8.97/(g1^9*g2^13*g3^5) + (g1^11*g3^7*t^8.97)/g2 - (g2^16*g3^8*t^8.98)/g1^4 + (g1^2*t^8.99)/(g2^10*g3^2) - t^4.34/(g1*g2*g3*y) - t^6.63/(g1^5*g2^9*g3*y) - (g2^3*g3^3*t^6.97)/(g1^5*y) - t^7.01/(g1^3*g2^3*g3^3*y) - t^7.04/(g1*g2^9*g3^9*y) + (g2^7*g3^7*t^7.63)/(g1*y) + (g1*g2*g3*t^7.66)/y + (g1^3*t^7.7)/(g2^5*g3^5*y) + (g3^4*t^7.93)/(g1^8*g2^4*y) + t^7.96/(g1^6*g2^10*g3^2*y) + t^8./(g1^4*g2^16*g3^8*y) + (g1^3*g2^7*t^8.04)/(g3*y) + (g3^4*t^8.25)/(g1^4*g2^12*y) + (g2^2*g3^2*t^8.31)/(g1^6*y) + (2*t^8.34)/(g1^4*g2^4*g3^4*y) + t^8.37/(g1^2*g2^10*g3^10*y) + (g3^8*t^8.59)/(g1^4*y) + (g3^2*t^8.62)/(g1^2*g2^6*y) + t^8.66/(g2^12*g3^4*y) + (g2^8*t^8.68)/(g1^4*y) + (g2^2*t^8.72)/(g1^2*g3^6*y) + t^8.75/(g2^4*g3^12*y) + (g3^8*t^8.91)/(g2^8*y) - t^8.92/(g1^9*g2^17*g3*y) - (t^4.34*y)/(g1*g2*g3) - (t^6.63*y)/(g1^5*g2^9*g3) - (g2^3*g3^3*t^6.97*y)/g1^5 - (t^7.01*y)/(g1^3*g2^3*g3^3) - (t^7.04*y)/(g1*g2^9*g3^9) + (g2^7*g3^7*t^7.63*y)/g1 + g1*g2*g3*t^7.66*y + (g1^3*t^7.7*y)/(g2^5*g3^5) + (g3^4*t^7.93*y)/(g1^8*g2^4) + (t^7.96*y)/(g1^6*g2^10*g3^2) + (t^8.*y)/(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^8.04*y)/g3 + (g3^4*t^8.25*y)/(g1^4*g2^12) + (g2^2*g3^2*t^8.31*y)/g1^6 + (2*t^8.34*y)/(g1^4*g2^4*g3^4) + (t^8.37*y)/(g1^2*g2^10*g3^10) + (g3^8*t^8.59*y)/g1^4 + (g3^2*t^8.62*y)/(g1^2*g2^6) + (t^8.66*y)/(g2^12*g3^4) + (g2^8*t^8.68*y)/g1^4 + (g2^2*t^8.72*y)/(g1^2*g3^6) + (t^8.75*y)/(g2^4*g3^12) + (g3^8*t^8.91*y)/g2^8 - (t^8.92*y)/(g1^9*g2^17*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
611 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1M_3$ 0.7024 0.8607 0.8161 [X:[], M:[1.0504, 0.8793, 0.9496, 0.98, 1.02], q:[0.51, 0.4396], qb:[0.5404, 0.5803], phi:[0.4824]] t^2.64 + t^2.85 + t^2.89 + t^2.94 + t^3.06 + t^3.15 + t^3.27 + t^4.09 + t^4.3 + t^4.39 + 2*t^4.51 + t^4.6 + t^4.69 + t^4.72 + t^4.81 + t^4.93 + t^5.28 + t^5.49 + t^5.53 + t^5.7 + t^5.74 + t^5.79 + t^5.83 + t^5.91 + t^5.95 - 2*t^6. - t^4.45/y - t^4.45*y detail
599 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1\phi_1^2$ 0.7095 0.8721 0.8136 [X:[], M:[1.0487, 0.8538, 0.8746, 1.0279, 0.9721], q:[0.5244, 0.4269], qb:[0.601, 0.5452], phi:[0.4756]] t^2.56 + t^2.62 + t^2.85 + t^2.92 + t^3.08 + t^3.15 + t^3.21 + t^3.99 + t^4.28 + t^4.34 + t^4.51 + t^4.57 + t^4.64 + t^4.7 + t^4.8 + t^4.87 + t^5.03 + t^5.12 + t^5.19 + t^5.25 + t^5.42 + t^5.48 + t^5.54 + 2*t^5.71 + 2*t^5.77 + t^5.83 - 2*t^6. - t^4.43/y - t^4.43*y detail
598 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_1^2$ 0.7203 0.8855 0.8134 [X:[], M:[1.0, 0.8402, 0.8171, 1.0231, 0.9769], q:[0.5799, 0.4201], qb:[0.603, 0.5568], phi:[0.4601]] t^2.45 + t^2.52 + t^2.76 + t^2.93 + t^3. + t^3.07 + t^3.41 + t^3.9 + t^4.31 + t^4.38 + t^4.45 + t^4.72 + t^4.79 + 2*t^4.86 + t^4.9 + t^4.93 + t^4.97 + t^5. + t^5.04 + t^5.21 + t^5.28 + t^5.38 + t^5.45 + 2*t^5.52 + t^5.69 + t^5.76 + t^5.83 + t^5.86 - 2*t^6. - t^4.38/y - t^4.38*y detail
596 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2M_3$ 0.7026 0.8611 0.8159 [X:[], M:[0.8739, 1.054, 0.946, 0.9819, 1.0181], q:[0.5991, 0.527], qb:[0.4549, 0.4911], phi:[0.482]] t^2.62 + t^2.84 + t^2.89 + t^2.95 + t^3.05 + t^3.16 + t^3.27 + t^4.18 + t^4.28 + 2*t^4.39 + t^4.5 + 2*t^4.61 + t^4.72 + t^4.82 + t^5.04 + t^5.24 + t^5.46 + t^5.51 + t^5.68 + t^5.73 + t^5.78 + t^5.84 + t^5.89 + t^5.95 - 2*t^6. - t^4.45/y - t^4.45*y detail
600 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2\phi_1^2$ 0.7101 0.8727 0.8137 [X:[], M:[0.8432, 1.0523, 0.8729, 1.0226, 0.9774], q:[0.6307, 0.5261], qb:[0.4964, 0.4513], phi:[0.4739]] t^2.53 + t^2.62 + t^2.84 + t^2.93 + t^3.07 + t^3.16 + t^3.25 + t^4.13 + t^4.26 + t^4.35 + t^4.4 + t^4.49 + t^4.58 + t^4.67 + t^4.8 + t^4.89 + t^5.06 + t^5.15 + t^5.21 + t^5.24 + t^5.37 + t^5.46 + t^5.55 + 2*t^5.69 + 2*t^5.78 + t^5.86 - 2*t^6. - t^4.42/y - t^4.42*y detail
601 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_2^2$ 0.7222 0.8878 0.8134 [X:[], M:[0.8228, 1.0, 0.8046, 1.0182, 0.9818], q:[0.6772, 0.5], qb:[0.5182, 0.4818], phi:[0.4557]] t^2.41 + t^2.47 + t^2.73 + t^2.95 + t^3. + t^3.05 + t^3.48 + t^4.26 + t^4.31 + 2*t^4.37 + t^4.42 + t^4.48 + t^4.83 + t^4.84 + t^4.88 + t^4.9 + t^4.94 + t^4.95 + t^5.15 + t^5.2 + t^5.36 + t^5.41 + t^5.43 + 2*t^5.47 + t^5.68 + t^5.73 + t^5.79 + t^5.89 - 2*t^6. - t^4.37/y - t^4.37*y detail
602 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_3M_6$ 0.7126 0.866 0.8228 [X:[], M:[0.9022, 0.9171, 0.8193, 1.0, 1.0, 1.1807], q:[0.6393, 0.4586], qb:[0.5414, 0.5414], phi:[0.4548]] t^2.71 + t^2.73 + t^2.75 + 2*t^3. + 2*t^3.54 + t^4.12 + 2*t^4.36 + 3*t^4.61 + t^4.66 + 2*t^4.91 + t^5.2 + t^5.41 + t^5.44 + t^5.46 + t^5.48 + t^5.5 + 2*t^5.73 - 3*t^6. - t^4.36/y - t^4.36*y detail
612 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_3\phi_1^2$ 0.6935 0.8487 0.8171 [X:[], M:[0.99, 0.9882, 1.0109, 0.9673, 1.0327], q:[0.5159, 0.4941], qb:[0.4732, 0.5386], phi:[0.4946]] t^2.9 + t^2.96 + 2*t^2.97 + t^3.03 + t^3.1 + t^3.16 + t^4.32 + t^4.39 + 2*t^4.45 + t^4.51 + t^4.52 + 2*t^4.58 + t^4.65 + t^4.72 + t^5.87 + 3*t^5.93 + t^5.94 - t^4.48/y - t^4.48*y detail
610 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_3^2$ 0.6976 0.853 0.8178 [X:[], M:[0.9761, 0.9721, 1.0, 0.9482, 1.0518], q:[0.5379, 0.4861], qb:[0.4621, 0.5657], phi:[0.487]] t^2.84 + 2*t^2.92 + t^2.93 + t^3. + t^3.16 + t^3.31 + t^4.23 + t^4.31 + t^4.38 + t^4.46 + t^4.53 + t^4.54 + t^4.62 + t^4.69 + t^4.77 + t^4.86 + t^5.77 + t^5.83 + 3*t^5.84 + t^5.85 + t^5.86 + t^5.92 - 2*t^6. - t^4.46/y - t^4.46*y detail
605 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_2$ 0.7478 0.9314 0.8029 [X:[], M:[0.8612, 0.889, 0.7502, 1.0, 1.0, 0.7502], q:[0.6943, 0.4445], qb:[0.5555, 0.5555], phi:[0.4375]] 2*t^2.25 + t^2.58 + t^2.63 + t^2.67 + 2*t^3. + t^3.98 + 2*t^4.31 + 3*t^4.5 + 3*t^4.65 + t^4.73 + 2*t^4.83 + 2*t^4.88 + 2*t^4.92 + 2*t^5.06 + t^5.17 + t^5.21 + 5*t^5.25 + t^5.29 + t^5.33 + t^5.48 + 2*t^5.63 - 3*t^6. - t^4.31/y - t^4.31*y detail
1825 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_1$ + $ M_3X_1$ 0.6366 0.7855 0.8105 [X:[1.6178], M:[0.7368, 0.7919, 0.3822, 1.1465, 0.8535], q:[0.8673, 0.396], qb:[0.7506, 0.4575], phi:[0.3822]] t^2.21 + t^2.29 + t^2.38 + t^2.56 + t^3.44 + t^3.52 + t^3.71 + t^3.89 + t^3.97 + t^4.42 + t^4.5 + 2*t^4.59 + t^4.67 + t^4.75 + t^4.77 + 2*t^4.85 + t^4.94 + t^5.12 + t^5.65 + t^5.73 + t^5.82 + t^5.9 - t^6. - t^4.15/y - t^4.15*y detail
1824 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ 0.6574 0.8268 0.7952 [X:[], M:[0.7351, 0.7916, 0.6718, 0.8549, 1.1451], q:[0.8691, 0.3958], qb:[0.4591, 0.7492], phi:[0.3817]] t^2.02 + t^2.21 + t^2.29 + t^2.37 + t^2.56 + t^3.44 + t^3.52 + t^3.71 + t^3.9 + t^4.03 + t^4.22 + t^4.31 + t^4.39 + t^4.41 + t^4.5 + 3*t^4.58 + t^4.67 + t^4.75 + t^4.77 + 2*t^4.85 + t^4.94 + t^5.13 + t^5.45 + t^5.54 + t^5.64 + 2*t^5.73 + t^5.81 + t^5.89 + t^5.92 - t^6. - t^4.15/y - t^4.15*y detail
609 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ 0.6698 0.8297 0.8073 [X:[], M:[0.9823, 0.7363, 0.8719, 0.8467, 1.1533], q:[0.6495, 0.3682], qb:[0.4785, 0.7852], phi:[0.4297]] t^2.21 + t^2.54 + t^2.58 + t^2.62 + t^2.95 + t^3.46 + t^3.5 + t^3.83 + t^4.16 + t^4.3 + t^4.34 + t^4.42 + t^4.67 + t^4.75 + t^4.79 + t^4.82 + t^5.08 + t^5.12 + 2*t^5.16 + 2*t^5.19 + t^5.23 + t^5.52 + t^5.56 + t^5.71 + t^5.89 - 2*t^6. - t^4.29/y - t^4.29*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
230 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ 0.791 0.9858 0.8024 [X:[], M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] t^2.21 + 5*t^2.29 + t^3.62 + t^4.42 + 5*t^4.51 + 15*t^4.59 + 3*t^4.77 + 4*t^4.85 + 3*t^4.94 + t^5.84 + t^5.92 - 8*t^6. - t^4.15/y - t^4.15*y detail