Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
371 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.7297 | 0.8972 | 0.8133 | [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] | [M:[[-4, 4, 4], [0, -8, -8], [-4, -8, 0], [0, 4, -4], [0, -4, 4]], q:[[4, 0, 0], [0, -4, -4]], qb:[[0, 8, 0], [0, 0, 8]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. + t^6.283 + t^6.332 - t^6.344 - t^6.408 + t^6.567 + t^6.583 - t^6.659 + t^6.676 + t^6.708 + t^6.74 + t^6.834 + t^6.882 + t^6.927 + t^6.959 + 2*t^6.991 + t^7.02 + t^7.052 + t^7.084 + t^7.178 + t^7.21 + t^7.226 + t^7.227 + 2*t^7.242 + t^7.259 + t^7.271 + t^7.291 + t^7.303 + t^7.335 + t^7.364 + t^7.396 + t^7.399 + t^7.428 + t^7.494 + t^7.542 + t^7.571 + t^7.586 + t^7.603 + 2*t^7.635 + 2*t^7.65 + t^7.667 + t^7.679 + t^7.699 + t^7.772 - t^7.87 + t^7.902 + t^7.915 + t^7.918 + t^7.947 - t^7.963 + 2*t^7.979 + 2*t^8.011 + t^8.043 - t^8.055 + t^8.059 + 2*t^8.075 + t^8.107 + t^8.153 + t^8.201 - t^8.278 - 3*t^8.294 + t^8.31 + t^8.326 - t^8.371 + t^8.419 - t^8.545 + t^8.561 + 2*t^8.577 + t^8.626 - 4*t^8.638 - 2*t^8.67 - t^8.686 - 5*t^8.702 - t^8.731 + t^8.734 + t^8.763 + t^8.829 + t^8.861 + t^8.877 + t^8.922 - 4*t^8.954 + t^8.969 + t^8.97 - t^8.982 + t^8.986 - t^4.335/y - t^6.629/y - t^6.973/y - t^7.005/y - t^7.037/y + t^7.633/y + t^7.665/y + t^7.697/y + t^7.932/y + t^7.964/y + t^7.996/y + t^8.041/y + t^8.248/y + t^8.309/y + (2*t^8.341)/y + t^8.373/y + t^8.592/y + t^8.624/y + t^8.656/y + t^8.685/y + t^8.717/y + t^8.749/y + t^8.907/y - t^8.923/y - t^4.335*y - t^6.629*y - t^6.973*y - t^7.005*y - t^7.037*y + t^7.633*y + t^7.665*y + t^7.697*y + t^7.932*y + t^7.964*y + t^7.996*y + t^8.041*y + t^8.248*y + t^8.309*y + 2*t^8.341*y + t^8.373*y + t^8.592*y + t^8.624*y + t^8.656*y + t^8.685*y + t^8.717*y + t^8.749*y + t^8.907*y - t^8.923*y | t^2.294/(g1^4*g2^8) + (g2^4*g3^4*t^2.638)/g1^4 + t^2.67/(g1^2*g2^2*g3^2) + t^2.702/(g2^8*g3^8) + (g3^4*t^2.954)/g2^4 + (g2^4*t^3.046)/g3^4 + g1^4*g3^8*t^3.613 + t^4.037/(g1*g2^9*g3^9) + (g3^3*t^4.289)/(g1*g2^5) + (g2^3*t^4.382)/(g1*g3^5) + (g3^15*t^4.54)/(g1*g2) + t^4.588/(g1^8*g2^16) + (g2^7*g3^7*t^4.633)/g1 + (g1^3*t^4.697)/(g2^5*g3^5) + (g2^15*t^4.726)/(g1*g3) + (g3^4*t^4.932)/(g1^8*g2^4) + (g1^3*g3^7*t^4.948)/g2 + t^4.964/(g1^6*g2^10*g3^2) + t^4.996/(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^5.041)/g3 + (g3^4*t^5.248)/(g1^4*g2^12) + (g2^8*g3^8*t^5.277)/g1^8 + (g2^2*g3^2*t^5.309)/g1^6 + (2*t^5.341)/(g1^4*g2^4*g3^4) + (g1^7*t^5.356)/(g2*g3) + t^5.373/(g1^2*g2^10*g3^10) + t^5.405/(g2^16*g3^16) + (g3^2*t^5.624)/(g1^2*g2^6) + (g2^2*t^5.717)/(g1^2*g3^6) + (g3^8*t^5.907)/g2^8 - 3*t^6. + (g1^2*g3^6*t^6.283)/g2^2 + t^6.332/(g1^5*g2^17*g3^9) - g2^12*g3^4*t^6.344 - (g1^4*t^6.408)/g3^8 + (g1^4*g3^12*t^6.567)/g2^4 + (g3^3*t^6.583)/(g1^5*g2^13) - g1^4*g2^4*g3^4*t^6.659 + t^6.676/(g1^5*g2^5*g3^5) + t^6.708/(g1^3*g2^11*g3^11) + t^6.74/(g1*g2^17*g3^17) + (g3^15*t^6.834)/(g1^5*g2^9) + t^6.882/(g1^12*g2^24) + (g3^7*t^6.927)/(g1^5*g2) + (g3*t^6.959)/(g1^3*g2^7) + (2*t^6.991)/(g1*g2^13*g3^5) + (g2^7*t^7.02)/(g1^5*g3) + (g2*t^7.052)/(g1^3*g3^7) + t^7.084/(g1*g2^5*g3^13) + (g2^3*g3^19*t^7.178)/g1^5 + (g3^13*t^7.21)/(g1^3*g2^3) + g1^8*g3^16*t^7.226 + (g3^4*t^7.227)/(g1^12*g2^12) + (2*g3^7*t^7.242)/(g1*g2^9) + t^7.259/(g1^10*g2^18*g3^2) + (g2^11*g3^11*t^7.271)/g1^5 + t^7.291/(g1^8*g2^24*g3^8) + (g2^5*g3^5*t^7.303)/g1^3 + t^7.335/(g1*g2*g3) + (g2^19*g3^3*t^7.364)/g1^5 + (g2^13*t^7.396)/(g1^3*g3^3) + (g1^3*t^7.399)/(g2^13*g3^13) + (g2^7*t^7.428)/(g1*g3^9) + (g3^19*t^7.494)/(g1*g2^5) + (g3^4*t^7.542)/(g1^8*g2^20) + (g3^8*t^7.571)/g1^12 + (g2^3*g3^11*t^7.586)/g1 + (g3^2*t^7.603)/(g1^10*g2^6) + (2*t^7.635)/(g1^8*g2^12*g3^4) + (2*g1^3*t^7.65)/(g2^9*g3) + t^7.667/(g1^6*g2^18*g3^10) + (g2^11*g3^3*t^7.679)/g1 + t^7.699/(g1^4*g2^24*g3^16) + (g2^19*t^7.772)/(g1*g3^5) - g1*g2*g3^17*t^7.87 + (g1^3*g3^11*t^7.902)/g2^5 + (g2^12*g3^12*t^7.915)/g1^12 + (g3^2*t^7.918)/(g1^6*g2^14) + (g2^6*g3^6*t^7.947)/g1^10 - g1*g2^9*g3^9*t^7.963 + (2*t^7.979)/g1^8 + (2*t^8.011)/(g1^6*g2^6*g3^6) + t^8.043/(g1^4*g2^12*g3^12) - g1*g2^17*g3*t^8.055 + (g1^7*t^8.059)/(g2^9*g3^9) + (2*t^8.075)/(g1^2*g2^18*g3^18) + t^8.107/(g2^24*g3^24) + (g1^3*g3^23*t^8.153)/g2 + (g3^8*t^8.201)/(g1^4*g2^16) - g1^5*g2*g3^9*t^8.278 - (3*t^8.294)/(g1^4*g2^8) + (g1^7*g3^3*t^8.31)/g2^5 + t^8.326/(g1^2*g2^14*g3^6) - g1^5*g2^9*g3*t^8.371 + t^8.419/(g1^2*g2^6*g3^14) - (g3^12*t^8.545)/(g1^4*g2^4) + (g1^7*g3^15*t^8.561)/g2 + (2*g3^6*t^8.577)/(g1^2*g2^10) + t^8.626/(g1^9*g2^25*g3^9) - (4*g2^4*g3^4*t^8.638)/g1^4 - (2*t^8.67)/(g1^2*g2^2*g3^2) - g1^9*g2*g3*t^8.686 - (5*t^8.702)/(g2^8*g3^8) - (g2^12*t^8.731)/(g1^4*g3^4) + (g1^2*t^8.734)/(g2^14*g3^14) + (g2^6*t^8.763)/(g1^2*g3^10) + (g3^18*t^8.829)/(g1^2*g2^6) + (g3^12*t^8.861)/g2^12 + (g3^3*t^8.877)/(g1^9*g2^21) + (g2^2*g3^10*t^8.922)/g1^2 - (4*g3^4*t^8.954)/g2^4 + (g1^11*g3^7*t^8.969)/g2 + t^8.97/(g1^9*g2^13*g3^5) - (g2^16*g3^8*t^8.982)/g1^4 + (g1^2*t^8.986)/(g2^10*g3^2) - t^4.335/(g1*g2*g3*y) - t^6.629/(g1^5*g2^9*g3*y) - (g2^3*g3^3*t^6.973)/(g1^5*y) - t^7.005/(g1^3*g2^3*g3^3*y) - t^7.037/(g1*g2^9*g3^9*y) + (g2^7*g3^7*t^7.633)/(g1*y) + (g1*g2*g3*t^7.665)/y + (g1^3*t^7.697)/(g2^5*g3^5*y) + (g3^4*t^7.932)/(g1^8*g2^4*y) + t^7.964/(g1^6*g2^10*g3^2*y) + t^7.996/(g1^4*g2^16*g3^8*y) + (g1^3*g2^7*t^8.041)/(g3*y) + (g3^4*t^8.248)/(g1^4*g2^12*y) + (g2^2*g3^2*t^8.309)/(g1^6*y) + (2*t^8.341)/(g1^4*g2^4*g3^4*y) + t^8.373/(g1^2*g2^10*g3^10*y) + (g3^8*t^8.592)/(g1^4*y) + (g3^2*t^8.624)/(g1^2*g2^6*y) + t^8.656/(g2^12*g3^4*y) + (g2^8*t^8.685)/(g1^4*y) + (g2^2*t^8.717)/(g1^2*g3^6*y) + t^8.749/(g2^4*g3^12*y) + (g3^8*t^8.907)/(g2^8*y) - t^8.923/(g1^9*g2^17*g3*y) - (t^4.335*y)/(g1*g2*g3) - (t^6.629*y)/(g1^5*g2^9*g3) - (g2^3*g3^3*t^6.973*y)/g1^5 - (t^7.005*y)/(g1^3*g2^3*g3^3) - (t^7.037*y)/(g1*g2^9*g3^9) + (g2^7*g3^7*t^7.633*y)/g1 + g1*g2*g3*t^7.665*y + (g1^3*t^7.697*y)/(g2^5*g3^5) + (g3^4*t^7.932*y)/(g1^8*g2^4) + (t^7.964*y)/(g1^6*g2^10*g3^2) + (t^7.996*y)/(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^8.041*y)/g3 + (g3^4*t^8.248*y)/(g1^4*g2^12) + (g2^2*g3^2*t^8.309*y)/g1^6 + (2*t^8.341*y)/(g1^4*g2^4*g3^4) + (t^8.373*y)/(g1^2*g2^10*g3^10) + (g3^8*t^8.592*y)/g1^4 + (g3^2*t^8.624*y)/(g1^2*g2^6) + (t^8.656*y)/(g2^12*g3^4) + (g2^8*t^8.685*y)/g1^4 + (g2^2*t^8.717*y)/(g1^2*g3^6) + (t^8.749*y)/(g2^4*g3^12) + (g3^8*t^8.907*y)/g2^8 - (t^8.923*y)/(g1^9*g2^17*g3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
611 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{3}$ | 0.7024 | 0.8607 | 0.8161 | [M:[1.0504, 0.8793, 0.9496, 0.98, 1.02], q:[0.51, 0.4396], qb:[0.5404, 0.5803], phi:[0.4824]] | t^2.638 + t^2.849 + t^2.894 + t^2.94 + t^3.06 + t^3.151 + t^3.271 + t^4.085 + t^4.296 + t^4.387 + 2*t^4.507 + t^4.598 + t^4.69 + t^4.718 + t^4.809 + t^4.929 + t^5.276 + t^5.487 + t^5.532 + t^5.698 + t^5.743 + t^5.789 + t^5.835 + t^5.909 + t^5.954 - 2*t^6. - t^4.447/y - t^4.447*y | detail | |
599 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ | 0.7095 | 0.8721 | 0.8136 | [M:[1.0487, 0.8538, 0.8746, 1.0279, 0.9721], q:[0.5244, 0.4269], qb:[0.601, 0.5452], phi:[0.4756]] | t^2.561 + t^2.624 + t^2.854 + t^2.916 + t^3.084 + t^3.146 + t^3.209 + t^3.988 + t^4.281 + t^4.343 + t^4.511 + t^4.573 + t^4.636 + t^4.698 + t^4.803 + t^4.866 + t^5.033 + t^5.123 + t^5.185 + t^5.248 + t^5.415 + t^5.478 + t^5.54 + 2*t^5.708 + 2*t^5.77 + t^5.832 - 2*t^6. - t^4.427/y - t^4.427*y | detail | |
598 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}^{2}$ | 0.7203 | 0.8855 | 0.8134 | [M:[1.0, 0.8402, 0.8171, 1.0231, 0.9769], q:[0.5799, 0.4201], qb:[0.603, 0.5568], phi:[0.4601]] | t^2.451 + t^2.521 + t^2.76 + t^2.931 + t^3. + t^3.069 + t^3.41 + t^3.901 + t^4.311 + t^4.38 + t^4.449 + t^4.721 + t^4.79 + 2*t^4.859 + t^4.903 + t^4.929 + t^4.972 + t^4.998 + t^5.041 + t^5.212 + t^5.281 + t^5.382 + t^5.451 + 2*t^5.521 + t^5.691 + t^5.76 + t^5.83 + t^5.861 - 2*t^6. - t^4.38/y - t^4.38*y | detail | |
596 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ | 0.7026 | 0.8611 | 0.8159 | [M:[0.8739, 1.054, 0.946, 0.9819, 1.0181], q:[0.5991, 0.527], qb:[0.4549, 0.4911], phi:[0.482]] | t^2.622 + t^2.838 + t^2.892 + t^2.946 + t^3.054 + t^3.162 + t^3.271 + t^4.175 + t^4.284 + t^4.391 + t^4.393 + t^4.5 + 2*t^4.608 + t^4.717 + t^4.824 + t^5.041 + t^5.243 + t^5.46 + t^5.513 + t^5.676 + t^5.73 + t^5.784 + t^5.837 + t^5.892 + t^5.946 - 2*t^6. - t^4.446/y - t^4.446*y | detail | |
600 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.7101 | 0.8727 | 0.8137 | [M:[0.8432, 1.0523, 0.8729, 1.0226, 0.9774], q:[0.6307, 0.5261], qb:[0.4964, 0.4513], phi:[0.4739]] | t^2.53 + t^2.619 + t^2.843 + t^2.932 + t^3.068 + t^3.157 + t^3.246 + t^4.129 + t^4.265 + t^4.354 + t^4.4 + t^4.489 + t^4.578 + t^4.668 + t^4.803 + t^4.892 + t^5.059 + t^5.148 + t^5.206 + t^5.237 + t^5.373 + t^5.462 + t^5.551 + 2*t^5.686 + 2*t^5.776 + t^5.865 - 2*t^6. - t^4.422/y - t^4.422*y | detail | |
601 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}^{2}$ | 0.7222 | 0.8878 | 0.8134 | [M:[0.8228, 1.0, 0.8046, 1.0182, 0.9818], q:[0.6772, 0.5], qb:[0.5182, 0.4818], phi:[0.4557]] | t^2.414 + t^2.468 + t^2.734 + t^2.945 + t^3. + t^3.055 + t^3.477 + t^4.258 + t^4.312 + 2*t^4.367 + t^4.422 + t^4.477 + t^4.828 + t^4.844 + t^4.882 + t^4.899 + t^4.937 + t^4.953 + t^5.148 + t^5.203 + t^5.359 + t^5.414 + t^5.43 + 2*t^5.468 + t^5.68 + t^5.734 + t^5.789 + t^5.891 - 2*t^6. - t^4.367/y - t^4.367*y | detail | |
602 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}M_{6}$ | 0.7126 | 0.866 | 0.8228 | [M:[0.9022, 0.9171, 0.8193, 1.0, 1.0, 1.1807], q:[0.6393, 0.4586], qb:[0.5414, 0.5414], phi:[0.4548]] | t^2.706 + t^2.729 + t^2.751 + 2*t^3. + 2*t^3.542 + t^4.116 + 2*t^4.364 + 3*t^4.613 + t^4.658 + 2*t^4.907 + t^5.2 + t^5.413 + t^5.435 + t^5.458 + t^5.48 + t^5.503 + 2*t^5.729 - 3*t^6. - t^4.364/y - t^4.364*y | detail | |
612 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6935 | 0.8487 | 0.8171 | [M:[0.99, 0.9882, 1.0109, 0.9673, 1.0327], q:[0.5159, 0.4941], qb:[0.4732, 0.5386], phi:[0.4946]] | t^2.902 + t^2.964 + t^2.967 + t^2.97 + t^3.033 + t^3.098 + t^3.163 + t^4.323 + t^4.386 + t^4.448 + t^4.451 + t^4.514 + t^4.519 + t^4.579 + t^4.582 + t^4.647 + t^4.715 + t^5.869 + t^5.929 + 2*t^5.935 + t^5.94 + t^5.997 - 2*t^6. - t^4.484/y - t^4.484*y | detail | |
610 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}^{2}$ | 0.6976 | 0.853 | 0.8178 | [M:[0.9761, 0.9721, 1.0, 0.9482, 1.0518], q:[0.5379, 0.4861], qb:[0.4621, 0.5657], phi:[0.487]] | t^2.845 + t^2.916 + t^2.922 + t^2.928 + t^3. + t^3.155 + t^3.311 + t^4.234 + t^4.306 + t^4.378 + t^4.461 + t^4.533 + t^4.545 + t^4.617 + t^4.688 + t^4.772 + t^4.856 + t^5.767 + t^5.833 + t^5.839 + 2*t^5.845 + t^5.85 + t^5.856 + t^5.922 - 2*t^6. - t^4.461/y - t^4.461*y | detail | |
605 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7478 | 0.9314 | 0.8029 | [M:[0.8612, 0.889, 0.7502, 1.0, 1.0, 0.7502], q:[0.6943, 0.4445], qb:[0.5555, 0.5555], phi:[0.4375]] | 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. - t^4.313/y - t^4.313*y | detail | |
1825 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ | 0.6366 | 0.7855 | 0.8105 | [X:[1.6178], M:[0.7368, 0.7919, 0.3822, 1.1465, 0.8535], q:[0.8673, 0.396], qb:[0.7506, 0.4575], phi:[0.3822]] | t^2.21 + t^2.293 + t^2.376 + t^2.56 + t^3.44 + t^3.522 + t^3.707 + t^3.892 + t^3.974 + t^4.421 + t^4.503 + 2*t^4.586 + t^4.669 + t^4.751 + t^4.771 + 2*t^4.853 + t^4.936 + t^5.121 + t^5.65 + t^5.733 + t^5.815 + t^5.898 - t^6. - t^4.147/y - t^4.147*y | detail | |
1824 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | 0.6574 | 0.8268 | 0.7952 | [M:[0.7351, 0.7916, 0.6718, 0.8549, 1.1451], q:[0.8691, 0.3958], qb:[0.4591, 0.7492], phi:[0.3817]] | t^2.015 + t^2.205 + t^2.29 + t^2.375 + t^2.565 + t^3.435 + t^3.52 + t^3.71 + t^3.9 + t^4.031 + t^4.221 + t^4.305 + t^4.39 + t^4.411 + t^4.495 + 3*t^4.58 + t^4.665 + t^4.75 + t^4.77 + 2*t^4.855 + t^4.94 + t^5.13 + t^5.451 + t^5.535 + t^5.64 + 2*t^5.725 + t^5.81 + t^5.895 + t^5.915 - t^6. - t^4.145/y - t^4.145*y | detail | |
609 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ | 0.6698 | 0.8297 | 0.8073 | [M:[0.9823, 0.7363, 0.8719, 0.8467, 1.1533], q:[0.6495, 0.3682], qb:[0.4785, 0.7852], phi:[0.4297]] | t^2.209 + t^2.54 + t^2.578 + t^2.616 + t^2.947 + t^3.46 + t^3.498 + t^3.829 + t^4.16 + t^4.304 + t^4.342 + t^4.418 + t^4.673 + t^4.749 + t^4.787 + t^4.825 + t^5.08 + t^5.118 + 2*t^5.156 + t^5.186 + t^5.194 + t^5.232 + t^5.525 + t^5.563 + t^5.707 + t^5.894 - 2*t^6. - t^4.289/y - t^4.289*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
230 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.791 | 0.9858 | 0.8024 | [M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] | t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - t^4.147/y - t^4.147*y | detail |