Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
600 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ 0.7101 0.8727 0.8137 [M:[0.8432, 1.0523, 0.8729, 1.0226, 0.9774], q:[0.6307, 0.5261], qb:[0.4964, 0.4513], phi:[0.4739]] [M:[[6, 6], [-2, -2], [3, 5], [1, -1], [-1, 1]], q:[[-5, -5], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[1, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}$ -2 t^2.53 + t^2.619 + t^2.843 + t^2.932 + t^3.068 + t^3.157 + t^3.246 + t^4.129 + t^4.265 + t^4.354 + t^4.4 + t^4.489 + t^4.578 + t^4.668 + t^4.803 + t^4.892 + t^5.059 + t^5.148 + t^5.206 + t^5.237 + t^5.373 + t^5.462 + t^5.551 + 2*t^5.686 + 2*t^5.776 + t^5.865 - 2*t^6. + t^6.089 + t^6.178 + t^6.492 - t^6.538 + t^6.659 + t^6.748 + t^6.794 + t^6.883 + t^6.93 + 2*t^6.973 + t^7.019 + t^7.062 + 2*t^7.108 + 3*t^7.197 + t^7.243 + t^7.286 + 2*t^7.332 + t^7.375 + t^7.422 + t^7.468 + 2*t^7.511 + t^7.589 + t^7.6 + t^7.646 + t^7.678 + t^7.735 + t^7.767 + t^7.824 + t^7.856 + t^7.902 + t^7.913 - t^7.96 + t^7.991 + t^8.049 + t^8.081 + t^8.138 + t^8.17 + 2*t^8.216 + t^8.259 + 2*t^8.305 + 2*t^8.394 - t^8.44 + t^8.452 + 2*t^8.483 - t^8.53 - t^8.619 + t^8.708 + 2*t^8.797 + t^8.8 - 3*t^8.843 + t^8.889 - t^8.932 - t^4.422/y - t^6.951/y - t^7.04/y + t^7.803/y + t^7.892/y + t^8.148/y + t^8.373/y + (2*t^8.462)/y + t^8.551/y + t^8.597/y + (2*t^8.686)/y + (3*t^8.776)/y + t^8.865/y + t^8.911/y - t^4.422*y - t^6.951*y - t^7.04*y + t^7.803*y + t^7.892*y + t^8.148*y + t^8.373*y + 2*t^8.462*y + t^8.551*y + t^8.597*y + 2*t^8.686*y + 3*t^8.776*y + t^8.865*y + t^8.911*y g1^6*g2^6*t^2.53 + g1^3*g2^5*t^2.619 + g1^2*g2^2*t^2.843 + (g2*t^2.932)/g1 + (g1*t^3.068)/g2 + t^3.157/(g1^2*g2^2) + t^3.246/(g1^5*g2^3) + g1*g2^5*t^4.129 + g1^3*g2^3*t^4.265 + g2^2*t^4.354 + g1^5*g2*t^4.4 + g1^2*t^4.489 + t^4.578/(g1*g2) + t^4.668/(g1^4*g2^2) + t^4.803/(g1^2*g2^4) + t^4.892/(g1^5*g2^5) + g1^12*g2^12*t^5.059 + g1^9*g2^11*t^5.148 + t^5.206/(g1^9*g2^9) + g1^6*g2^10*t^5.237 + g1^8*g2^8*t^5.373 + g1^5*g2^7*t^5.462 + g1^2*g2^6*t^5.551 + 2*g1^4*g2^4*t^5.686 + 2*g1*g2^3*t^5.776 + (g2^2*t^5.865)/g1^2 - 2*t^6. + t^6.089/(g1^3*g2) + t^6.178/(g1^6*g2^2) + t^6.492/(g1^10*g2^6) - t^6.538/(g1^5*g2^7) + g1^7*g2^11*t^6.659 + g1^4*g2^10*t^6.748 + g1^9*g2^9*t^6.794 + g1^6*g2^8*t^6.883 + g1^11*g2^7*t^6.93 + 2*g1^3*g2^7*t^6.973 + g1^8*g2^6*t^7.019 + g2^6*t^7.062 + 2*g1^5*g2^5*t^7.108 + 3*g1^2*g2^4*t^7.197 + g1^7*g2^3*t^7.243 + (g2^3*t^7.286)/g1 + 2*g1^4*g2^2*t^7.332 + (g2^2*t^7.375)/g1^4 + g1*g2*t^7.422 + g1^6*t^7.468 + (2*t^7.511)/g1^2 + g1^18*g2^18*t^7.589 + t^7.6/(g1^5*g2) + t^7.646/g2^2 + g1^15*g2^17*t^7.678 + t^7.735/(g1^3*g2^3) + g1^12*g2^16*t^7.767 + t^7.824/(g1^6*g2^4) + g1^9*g2^15*t^7.856 + g1^14*g2^14*t^7.902 + t^7.913/(g1^9*g2^5) - t^7.96/(g1^4*g2^6) + g1^11*g2^13*t^7.991 + t^8.049/(g1^7*g2^7) + g1^8*g2^12*t^8.081 + t^8.138/(g1^10*g2^8) + g1^5*g2^11*t^8.17 + 2*g1^10*g2^10*t^8.216 + g1^2*g2^10*t^8.259 + 2*g1^7*g2^9*t^8.305 + 2*g1^4*g2^8*t^8.394 - g1^9*g2^7*t^8.44 + t^8.452/(g1^14*g2^12) + 2*g1*g2^7*t^8.483 - g1^6*g2^6*t^8.53 - g1^3*g2^5*t^8.619 + g2^4*t^8.708 + (2*g2^3*t^8.797)/g1^3 + g1^10*g2^2*t^8.8 - 3*g1^2*g2^2*t^8.843 + g1^7*g2*t^8.889 - (g2*t^8.932)/g1 - (g1*g2*t^4.422)/y - (g1^7*g2^7*t^6.951)/y - (g1^4*g2^6*t^7.04)/y + t^7.803/(g1^2*g2^4*y) + t^7.892/(g1^5*g2^5*y) + (g1^9*g2^11*t^8.148)/y + (g1^8*g2^8*t^8.373)/y + (2*g1^5*g2^7*t^8.462)/y + (g1^2*g2^6*t^8.551)/y + (g1^7*g2^5*t^8.597)/y + (2*g1^4*g2^4*t^8.686)/y + (3*g1*g2^3*t^8.776)/y + (g2^2*t^8.865)/(g1^2*y) + (g1^3*g2*t^8.911)/y - g1*g2*t^4.422*y - g1^7*g2^7*t^6.951*y - g1^4*g2^6*t^7.04*y + (t^7.803*y)/(g1^2*g2^4) + (t^7.892*y)/(g1^5*g2^5) + g1^9*g2^11*t^8.148*y + g1^8*g2^8*t^8.373*y + 2*g1^5*g2^7*t^8.462*y + g1^2*g2^6*t^8.551*y + g1^7*g2^5*t^8.597*y + 2*g1^4*g2^4*t^8.686*y + 3*g1*g2^3*t^8.776*y + (g2^2*t^8.865*y)/g1^2 + g1^3*g2*t^8.911*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
958 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ 0.6916 0.8474 0.8161 [M:[0.9938, 1.0021, 1.0062, 0.9897, 1.0103], q:[0.5051, 0.501], qb:[0.4887, 0.5092], phi:[0.499]] t^2.969 + t^2.982 + t^2.994 + t^3.006 + t^3.018 + t^3.031 + t^3.043 + t^4.429 + t^4.466 + t^4.478 + t^4.491 + t^4.503 + t^4.515 + 2*t^4.528 + t^4.54 + t^4.552 + t^5.963 + t^5.975 + t^5.988 - t^6. - t^4.497/y - t^4.497*y detail
957 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ 0.6931 0.8486 0.8169 [M:[0.9731, 1.009, 1.009, 0.9731, 1.0269], q:[0.5224, 0.5045], qb:[0.4687, 0.5224], phi:[0.4955]] 2*t^2.919 + t^2.973 + 2*t^3.027 + t^3.081 + t^3.134 + t^4.299 + t^4.406 + 2*t^4.46 + t^4.513 + 2*t^4.567 + 3*t^4.621 + t^5.839 + t^5.893 + 3*t^5.946 - 2*t^6. - t^4.487/y - t^4.487*y detail
959 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ 0.7153 0.8822 0.8108 [M:[0.822, 1.0593, 0.8597, 1.0216, 0.9784, 0.9407], q:[0.6484, 0.5297], qb:[0.4919, 0.4488], phi:[0.4703]] t^2.466 + t^2.579 + 2*t^2.822 + t^2.935 + t^3.065 + t^3.291 + t^4.103 + t^4.233 + t^4.346 + t^4.362 + t^4.476 + t^4.589 + t^4.702 + t^4.832 + t^4.932 + t^4.945 + t^5.045 + t^5.158 + 2*t^5.288 + t^5.301 + 2*t^5.401 + t^5.514 + 3*t^5.644 + 2*t^5.757 + t^5.871 + t^5.887 - 3*t^6. - t^4.411/y - t^4.411*y detail
961 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ 0.7008 0.8558 0.8188 [M:[0.8827, 1.0391, 0.9218, 1.0, 1.0, 1.0782], q:[0.5977, 0.5195], qb:[0.4805, 0.4805], phi:[0.4805]] t^2.648 + t^2.883 + 2*t^3. + t^3.117 + 2*t^3.235 + 3*t^4.324 + 2*t^4.441 + t^4.559 + 2*t^4.676 + t^4.793 + t^5.028 + t^5.296 + t^5.531 + t^5.765 + 2*t^5.883 - 2*t^6. - t^4.441/y - t^4.441*y detail
960 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}^{2}$ 0.6958 0.8515 0.8172 [M:[0.9451, 1.0183, 1.0, 0.9634, 1.0366], q:[0.5458, 0.5092], qb:[0.4542, 0.5275], phi:[0.4908]] t^2.835 + t^2.89 + t^2.945 + t^3. + t^3.055 + t^3.11 + t^3.22 + t^4.198 + t^4.363 + t^4.418 + t^4.473 + t^4.527 + t^4.582 + 2*t^4.637 + t^4.692 + t^4.747 + t^5.67 + t^5.78 + t^5.835 + 2*t^5.89 + t^5.945 - t^6. - t^4.473/y - t^4.473*y detail
963 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ 0.7092 0.8704 0.8148 [M:[0.8407, 1.0531, 0.8964, 0.9975, 1.0025, 0.9975], q:[0.6327, 0.5265], qb:[0.4709, 0.476], phi:[0.4735]] t^2.522 + t^2.689 + t^2.841 + 2*t^2.992 + t^3.159 + t^3.326 + t^4.246 + t^4.261 + t^4.276 + t^4.413 + t^4.428 + t^4.58 + t^4.731 + t^4.747 + t^4.898 + t^5.044 + t^5.211 + t^5.217 + t^5.363 + t^5.378 + t^5.514 + 3*t^5.681 + t^5.833 + t^5.848 + 2*t^5.985 - 3*t^6. - t^4.42/y - t^4.42*y detail
962 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7198 0.8904 0.8084 [M:[0.8037, 1.0654, 0.8691, 1.0, 1.0, 0.8691], q:[0.6636, 0.5327], qb:[0.4673, 0.4673], phi:[0.4673]] t^2.411 + 2*t^2.607 + t^2.804 + 2*t^3. + t^3.196 + 3*t^4.206 + 2*t^4.402 + t^4.598 + 2*t^4.794 + t^4.822 + t^4.991 + 2*t^5.018 + 4*t^5.215 + t^5.383 + 2*t^5.411 + 5*t^5.607 + 2*t^5.804 - 2*t^6. - t^4.402/y - t^4.402*y detail
1944 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{3}X_{2}$ 0.5535 0.666 0.8311 [X:[1.6, 1.4], M:[0.4, 1.2, 0.6, 1.0, 1.0], q:[1.0, 0.6], qb:[0.4, 0.4], phi:[0.4]] t^2.4 + 2*t^3. + 4*t^3.6 + 2*t^4.2 + 2*t^4.8 + 2*t^6. - t^4.2/y - t^4.2*y detail {a: 1107/2000, c: 333/500, X1: 8/5, X2: 7/5, M1: 2/5, M2: 6/5, M3: 3/5, M4: 1, M5: 1, q1: 1, q2: 3/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}
1943 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ 0.6055 0.7763 0.78 [M:[1.0233, 0.9922, 0.7714, 1.2442, 0.7558], q:[0.4806, 0.4961], qb:[0.7481, 0.2597], phi:[0.5039]] t^2.221 + t^2.267 + t^2.314 + t^2.977 + t^3.023 + 2*t^3.07 + 2*t^3.733 + t^3.779 + t^4.395 + 2*t^4.442 + 2*t^4.488 + 2*t^4.535 + t^4.582 + t^4.628 + t^5.198 + 2*t^5.244 + 3*t^5.291 + 2*t^5.337 + 2*t^5.384 + t^5.953 - t^4.512/y - t^4.512*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
371 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ 0.7297 0.8972 0.8133 [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y detail