Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
596 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ 0.7026 0.8611 0.8159 [M:[0.8739, 1.054, 0.946, 0.9819, 1.0181], q:[0.5991, 0.527], qb:[0.4549, 0.4911], phi:[0.482]] [M:[[20, 12], [-8, -8], [8, 8], [4, -4], [-4, 4]], q:[[-16, -8], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[3, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$ ${}$ -2 t^2.622 + t^2.838 + t^2.892 + t^2.946 + t^3.054 + t^3.162 + t^3.271 + t^4.175 + t^4.284 + t^4.391 + t^4.393 + t^4.5 + 2*t^4.608 + t^4.717 + t^4.824 + t^5.041 + t^5.243 + t^5.46 + t^5.513 + t^5.676 + t^5.73 + t^5.784 + t^5.837 + t^5.892 + t^5.946 - 2*t^6. + t^6.054 + t^6.109 + t^6.163 - t^6.216 + t^6.325 + t^6.542 + t^6.797 + t^6.906 + t^7.013 + t^7.014 + t^7.067 + t^7.121 + t^7.122 + t^7.176 + 2*t^7.23 + t^7.231 + t^7.285 + t^7.337 + 2*t^7.338 + 2*t^7.446 + t^7.447 + t^7.5 - t^7.501 + t^7.553 + 2*t^7.555 + 2*t^7.662 + t^7.664 - t^7.716 + t^7.77 + t^7.771 - t^7.825 + t^7.865 + 2*t^7.879 + t^7.986 + t^7.987 + t^8.081 + t^8.095 + t^8.135 - t^8.149 + t^8.203 + t^8.298 + t^8.311 + t^8.35 + t^8.351 + t^8.405 + t^8.459 - t^8.513 + t^8.514 + t^8.567 + 2*t^8.568 - 2*t^8.622 + 2*t^8.675 + t^8.677 - t^8.729 + 2*t^8.783 + 2*t^8.784 + t^8.786 - 4*t^8.838 + t^8.893 - 3*t^8.946 + 2*t^8.999 - t^4.446/y - t^7.068/y - t^7.338/y + t^7.554/y + t^7.824/y + t^8.46/y + t^8.513/y + t^8.567/y + t^8.676/y + t^8.73/y + (2*t^8.784)/y + t^8.837/y + (2*t^8.892)/y + t^8.946/y - t^4.446*y - t^7.068*y - t^7.338*y + t^7.554*y + t^7.824*y + t^8.46*y + t^8.513*y + t^8.567*y + t^8.676*y + t^8.73*y + 2*t^8.784*y + t^8.837*y + 2*t^8.892*y + t^8.946*y g1^20*g2^12*t^2.622 + g1^8*g2^8*t^2.838 + g1^6*g2^2*t^2.892 + (g1^4*t^2.946)/g2^4 + (g2^4*t^3.054)/g1^4 + t^3.162/(g1^8*g2^8) + t^3.271/g1^16 + g1^19*g2*t^4.175 + g1^11*g2^9*t^4.284 + (g1^7*t^4.391)/g2^3 + g1^3*g2^17*t^4.393 + (g2^5*t^4.5)/g1 + (2*t^4.608)/(g1^5*g2^7) + (g2*t^4.717)/g1^13 + t^4.824/(g1^17*g2^11) + t^5.041/(g1^29*g2^15) + g1^40*g2^24*t^5.243 + g1^28*g2^20*t^5.46 + g1^26*g2^14*t^5.513 + g1^16*g2^16*t^5.676 + g1^14*g2^10*t^5.73 + g1^12*g2^4*t^5.784 + (g1^10*t^5.837)/g2^2 + g1^4*g2^12*t^5.892 + g1^2*g2^6*t^5.946 - 2*t^6. + t^6.054/(g1^2*g2^6) + (g2^8*t^6.109)/g1^8 + (g2^2*t^6.163)/g1^10 - t^6.216/(g1^12*g2^4) + (g2^4*t^6.325)/g1^20 + t^6.542/g1^32 + g1^39*g2^13*t^6.797 + g1^31*g2^21*t^6.906 + g1^27*g2^9*t^7.013 + g1^23*g2^29*t^7.014 + g1^25*g2^3*t^7.067 + (g1^23*t^7.121)/g2^3 + g1^19*g2^17*t^7.122 + g1^17*g2^11*t^7.176 + 2*g1^15*g2^5*t^7.23 + g1^11*g2^25*t^7.231 + g1^9*g2^19*t^7.285 + (g1^11*t^7.337)/g2^7 + 2*g1^7*g2^13*t^7.338 + 2*g1^3*g2*t^7.446 + (g2^21*t^7.447)/g1 + (g1*t^7.5)/g2^5 - (g2^15*t^7.501)/g1^3 + t^7.553/(g1*g2^11) + (2*g2^9*t^7.555)/g1^5 + (2*t^7.662)/(g1^9*g2^3) + (g2^17*t^7.664)/g1^13 - t^7.716/(g1^11*g2^9) + t^7.77/(g1^13*g2^15) + (g2^5*t^7.771)/g1^17 - t^7.825/(g1^19*g2) + g1^60*g2^36*t^7.865 + (2*t^7.879)/(g1^21*g2^7) + t^7.986/(g1^25*g2^19) + (g2*t^7.987)/g1^29 + g1^48*g2^32*t^8.081 + t^8.095/(g1^33*g2^11) + g1^46*g2^26*t^8.135 - t^8.149/(g1^35*g2^17) + t^8.203/(g1^37*g2^23) + g1^36*g2^28*t^8.298 + t^8.311/(g1^45*g2^15) + g1^38*g2^2*t^8.35 + g1^34*g2^22*t^8.351 + g1^32*g2^16*t^8.405 + g1^30*g2^10*t^8.459 - g1^28*g2^4*t^8.513 + g1^24*g2^24*t^8.514 + (g1^26*t^8.567)/g2^2 + 2*g1^22*g2^18*t^8.568 - 2*g1^20*g2^12*t^8.622 + 2*g1^18*g2^6*t^8.675 + g1^14*g2^26*t^8.677 - g1^16*t^8.729 + (2*g1^14*t^8.783)/g2^6 + 2*g1^10*g2^14*t^8.784 + g1^6*g2^34*t^8.786 - 4*g1^8*g2^8*t^8.838 + g1^2*g2^22*t^8.893 - (3*g1^4*t^8.946)/g2^4 + (2*g1^2*t^8.999)/g2^10 - (g1^3*g2*t^4.446)/y - (g1^23*g2^13*t^7.068)/y - (g1^9*g2^3*t^7.338)/y + t^7.554/(g1^3*g2*y) + t^7.824/(g1^17*g2^11*y) + (g1^28*g2^20*t^8.46)/y + (g1^26*g2^14*t^8.513)/y + (g1^24*g2^8*t^8.567)/y + (g1^16*g2^16*t^8.676)/y + (g1^14*g2^10*t^8.73)/y + (2*g1^12*g2^4*t^8.784)/y + (g1^10*t^8.837)/(g2^2*y) + (2*g1^4*g2^12*t^8.892)/y + (g1^2*g2^6*t^8.946)/y - g1^3*g2*t^4.446*y - g1^23*g2^13*t^7.068*y - g1^9*g2^3*t^7.338*y + (t^7.554*y)/(g1^3*g2) + (t^7.824*y)/(g1^17*g2^11) + g1^28*g2^20*t^8.46*y + g1^26*g2^14*t^8.513*y + g1^24*g2^8*t^8.567*y + g1^16*g2^16*t^8.676*y + g1^14*g2^10*t^8.73*y + 2*g1^12*g2^4*t^8.784*y + (g1^10*t^8.837*y)/g2^2 + 2*g1^4*g2^12*t^8.892*y + g1^2*g2^6*t^8.946*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
938 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ 0.6916 0.8474 0.8161 [M:[1.0021, 0.9938, 1.0062, 0.9896, 1.0104], q:[0.501, 0.4969], qb:[0.4927, 0.5135], phi:[0.499]] t^2.969 + t^2.981 + t^2.994 + t^3.006 + t^3.019 + t^3.031 + t^3.044 + t^4.453 + t^4.466 + 2*t^4.478 + t^4.491 + t^4.503 + t^4.516 + t^4.528 + t^4.54 + t^4.578 + t^5.963 + t^5.975 + t^5.988 - t^6. - t^4.497/y - t^4.497*y detail
937 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}^{2}$ 0.6921 0.8476 0.8165 [M:[1.0, 0.9903, 1.0097, 0.9807, 1.0193], q:[0.5048, 0.4952], qb:[0.4855, 0.5242], phi:[0.4976]] t^2.942 + t^2.971 + t^2.985 + t^3. + t^3.029 + t^3.058 + t^3.087 + t^4.406 + t^4.435 + 2*t^4.464 + t^4.493 + 2*t^4.522 + t^4.551 + t^4.58 + t^4.638 + t^5.927 + t^5.956 + t^5.971 + t^5.985 - t^6. - t^4.493/y - t^4.493*y detail
942 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{2}M_{6}$ 0.7087 0.8731 0.8117 [M:[0.841, 1.076, 0.924, 0.9929, 1.0071, 0.924], q:[0.6211, 0.538], qb:[0.4549, 0.4692], phi:[0.4792]] t^2.523 + 2*t^2.772 + t^2.875 + t^2.979 + t^3.021 + t^3.271 + t^4.167 + t^4.21 + t^4.253 + t^4.416 + t^4.459 + 2*t^4.666 + t^4.708 + t^4.915 + t^5.046 + t^5.164 + 2*t^5.295 + t^5.398 + 3*t^5.544 + 2*t^5.648 + t^5.751 + 2*t^5.794 + t^5.854 + t^5.897 - 3*t^6. - t^4.438/y - t^4.438*y detail
940 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ 0.6987 0.854 0.8181 [M:[0.9091, 1.0303, 0.9697, 0.9697, 1.0303, 1.0303], q:[0.5758, 0.5152], qb:[0.4545, 0.5152], phi:[0.4848]] t^2.727 + 2*t^2.909 + 3*t^3.091 + t^3.273 + t^4.182 + 2*t^4.364 + 4*t^4.545 + 2*t^4.727 + t^4.909 + t^5.455 + t^5.636 + 2*t^5.818 + t^6. - t^4.455/y - t^4.455*y detail {a: 2029/2904, c: 310/363, M1: 10/11, M2: 34/33, M3: 32/33, M4: 32/33, M5: 34/33, M6: 34/33, q1: 19/33, q2: 17/33, qb1: 5/11, qb2: 17/33, phi1: 16/33}
939 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}^{2}$ 0.697 0.8525 0.8176 [M:[0.9537, 1.0, 1.0, 0.9537, 1.0463], q:[0.5463, 0.5], qb:[0.4537, 0.5463], phi:[0.4884]] 2*t^2.861 + t^2.93 + 2*t^3. + t^3.139 + t^3.278 + t^4.187 + t^4.326 + 3*t^4.465 + 2*t^4.604 + 3*t^4.743 + t^5.722 + 2*t^5.791 + 2*t^5.861 + 2*t^5.93 - t^6. - t^4.465/y - t^4.465*y detail
941 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{5}M_{6}$ 0.7054 0.8656 0.815 [M:[0.8743, 1.0419, 0.9581, 0.9581, 1.0419, 0.9581], q:[0.6048, 0.521], qb:[0.4371, 0.521], phi:[0.479]] t^2.623 + 4*t^2.874 + t^3.126 + t^3.377 + t^4.06 + 2*t^4.311 + 4*t^4.563 + 2*t^4.814 + t^5.066 + t^5.246 + 3*t^5.497 + 7*t^5.749 - t^6. - t^4.437/y - t^4.437*y detail
943 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7134 0.8806 0.8101 [M:[0.846, 1.0534, 0.9466, 0.9529, 1.0471, 0.8524], q:[0.6272, 0.5267], qb:[0.4262, 0.5203], phi:[0.4749]] t^2.538 + t^2.557 + t^2.84 + t^2.849 + t^2.859 + t^3.141 + t^3.16 + t^3.982 + t^4.264 + t^4.283 + t^4.547 + t^4.566 + 2*t^4.585 + t^4.867 + t^4.886 + t^5.076 + t^5.095 + t^5.115 + t^5.188 + t^5.378 + t^5.387 + t^5.397 + t^5.407 + t^5.416 + t^5.679 + t^5.689 + 2*t^5.698 + t^5.708 + t^5.718 + t^5.99 - 2*t^6. - t^4.425/y - t^4.425*y detail
1945 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ 0.563 0.6963 0.8086 [X:[1.5736], M:[0.4264, 1.2792, 0.7208, 0.9848, 1.0152], q:[0.934, 0.6396], qb:[0.3452, 0.3756], phi:[0.4264]] t^2.162 + t^2.558 + t^2.954 + t^3.046 + t^3.35 + t^3.442 + t^3.533 + t^3.838 + t^3.929 + t^4.325 + 2*t^4.721 + 2*t^5.117 + t^5.208 + t^5.513 + t^5.604 + t^5.695 + t^5.909 - t^4.279/y - t^4.279*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
371 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ 0.7297 0.8972 0.8133 [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y detail