Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
230 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ | 0.791 | 0.9858 | 0.8024 | [M:[0.7646, 0.7646, 0.7646, 0.7646, 0.7371], q:[0.604, 0.6314], qb:[0.6314, 0.604], phi:[0.3823]] | [M:[[-4, -4, 0, 0], [0, 0, -4, -4], [-4, 0, -4, 0], [0, -4, 0, -4], [0, -4, -4, 0]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$ | ${}$ | -8 | t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - 4*t^6.082 + t^6.634 + 5*t^6.716 + 15*t^6.799 + 35*t^6.881 + 3*t^6.982 + 15*t^7.064 + 16*t^7.147 + 11*t^7.229 + t^7.248 - t^7.412 + t^8.047 + t^8.129 - 10*t^8.211 - 40*t^8.294 - 17*t^8.376 + 3*t^8.395 - 3*t^8.477 - 8*t^8.559 - 7*t^8.642 + t^8.845 + 5*t^8.928 - t^4.147/y - t^6.358/y - (5*t^6.441)/y + (5*t^7.505)/y + (10*t^7.588)/y + (5*t^7.853)/y + t^7.936/y - t^8.57/y - (5*t^8.652)/y - (15*t^8.734)/y + t^8.835/y + (5*t^8.918)/y - t^4.147*y - t^6.358*y - 5*t^6.441*y + 5*t^7.505*y + 10*t^7.588*y + 5*t^7.853*y + t^7.936*y - t^8.57*y - 5*t^8.652*y - 15*t^8.734*y + t^8.835*y + 5*t^8.918*y | t^2.211/(g2^4*g3^4) + t^2.294/(g1^4*g2^4) + t^2.294/(g1^4*g3^4) + t^2.294/(g2^4*g4^4) + t^2.294/(g3^4*g4^4) + t^2.294/(g1^2*g2^2*g3^2*g4^2) + g1^4*g4^4*t^3.624 + t^4.423/(g2^8*g3^8) + t^4.505/(g1^4*g2^4*g3^8) + t^4.505/(g1^4*g2^8*g3^4) + t^4.505/(g2^4*g3^8*g4^4) + t^4.505/(g2^8*g3^4*g4^4) + t^4.505/(g1^2*g2^6*g3^6*g4^2) + t^4.588/(g1^8*g2^8) + t^4.588/(g1^8*g3^8) + t^4.588/(g1^8*g2^4*g3^4) + t^4.588/(g2^8*g4^8) + t^4.588/(g3^8*g4^8) + t^4.588/(g2^4*g3^4*g4^8) + t^4.588/(g1^2*g2^2*g3^6*g4^6) + t^4.588/(g1^2*g2^6*g3^2*g4^6) + t^4.588/(g1^4*g2^8*g4^4) + t^4.588/(g1^4*g3^8*g4^4) + (3*t^4.588)/(g1^4*g2^4*g3^4*g4^4) + t^4.588/(g1^6*g2^2*g3^6*g4^2) + t^4.588/(g1^6*g2^6*g3^2*g4^2) + (g1^7*t^4.771)/(g2*g3*g4) + (g1^3*g4^3*t^4.771)/(g2*g3) + (g4^7*t^4.771)/(g1*g2*g3) + (g1^3*g2^3*t^4.853)/(g3*g4) + (g1^3*g3^3*t^4.853)/(g2*g4) + (g2^3*g4^3*t^4.853)/(g1*g3) + (g3^3*g4^3*t^4.853)/(g1*g2) + (g2^7*t^4.936)/(g1*g3*g4) + (g2^3*g3^3*t^4.936)/(g1*g4) + (g3^7*t^4.936)/(g1*g2*g4) + (g1^4*g4^4*t^5.835)/(g2^4*g3^4) + (g1^2*g4^2*t^5.918)/(g2^2*g3^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g2^4*t^6.082)/g1^4 - (g3^4*t^6.082)/g1^4 - (g2^4*t^6.082)/g4^4 - (g3^4*t^6.082)/g4^4 + t^6.634/(g2^12*g3^12) + t^6.716/(g1^4*g2^8*g3^12) + t^6.716/(g1^4*g2^12*g3^8) + t^6.716/(g2^8*g3^12*g4^4) + t^6.716/(g2^12*g3^8*g4^4) + t^6.716/(g1^2*g2^10*g3^10*g4^2) + t^6.799/(g1^8*g2^4*g3^12) + t^6.799/(g1^8*g2^8*g3^8) + t^6.799/(g1^8*g2^12*g3^4) + t^6.799/(g2^4*g3^12*g4^8) + t^6.799/(g2^8*g3^8*g4^8) + t^6.799/(g2^12*g3^4*g4^8) + t^6.799/(g1^2*g2^6*g3^10*g4^6) + t^6.799/(g1^2*g2^10*g3^6*g4^6) + t^6.799/(g1^4*g2^4*g3^12*g4^4) + (3*t^6.799)/(g1^4*g2^8*g3^8*g4^4) + t^6.799/(g1^4*g2^12*g3^4*g4^4) + t^6.799/(g1^6*g2^6*g3^10*g4^2) + t^6.799/(g1^6*g2^10*g3^6*g4^2) + t^6.881/(g1^12*g2^12) + t^6.881/(g1^12*g3^12) + t^6.881/(g1^12*g2^4*g3^8) + t^6.881/(g1^12*g2^8*g3^4) + t^6.881/(g2^12*g4^12) + t^6.881/(g3^12*g4^12) + t^6.881/(g2^4*g3^8*g4^12) + t^6.881/(g2^8*g3^4*g4^12) + t^6.881/(g1^2*g2^2*g3^10*g4^10) + t^6.881/(g1^2*g2^6*g3^6*g4^10) + t^6.881/(g1^2*g2^10*g3^2*g4^10) + t^6.881/(g1^4*g2^12*g4^8) + t^6.881/(g1^4*g3^12*g4^8) + (3*t^6.881)/(g1^4*g2^4*g3^8*g4^8) + (3*t^6.881)/(g1^4*g2^8*g3^4*g4^8) + t^6.881/(g1^6*g2^2*g3^10*g4^6) + (3*t^6.881)/(g1^6*g2^6*g3^6*g4^6) + t^6.881/(g1^6*g2^10*g3^2*g4^6) + t^6.881/(g1^8*g2^12*g4^4) + t^6.881/(g1^8*g3^12*g4^4) + (3*t^6.881)/(g1^8*g2^4*g3^8*g4^4) + (3*t^6.881)/(g1^8*g2^8*g3^4*g4^4) + t^6.881/(g1^10*g2^2*g3^10*g4^2) + t^6.881/(g1^10*g2^6*g3^6*g4^2) + t^6.881/(g1^10*g2^10*g3^2*g4^2) + (g1^7*t^6.982)/(g2^5*g3^5*g4) + (g1^3*g4^3*t^6.982)/(g2^5*g3^5) + (g4^7*t^6.982)/(g1*g2^5*g3^5) + (g1^7*t^7.064)/(g2*g3^5*g4^5) + (g1^7*t^7.064)/(g2^5*g3*g4^5) + (g1^5*t^7.064)/(g2^3*g3^3*g4^3) + (2*g1^3*t^7.064)/(g2*g3^5*g4) + (2*g1^3*t^7.064)/(g2^5*g3*g4) + (g1*g4*t^7.064)/(g2^3*g3^3) + (2*g4^3*t^7.064)/(g1*g2*g3^5) + (2*g4^3*t^7.064)/(g1*g2^5*g3) + (g4^5*t^7.064)/(g1^3*g2^3*g3^3) + (g4^7*t^7.064)/(g1^5*g2*g3^5) + (g4^7*t^7.064)/(g1^5*g2^5*g3) + (g1^3*g2^3*t^7.147)/(g3^5*g4^5) + (g1^3*t^7.147)/(g2*g3*g4^5) + (g1^3*g3^3*t^7.147)/(g2^5*g4^5) + (g1*g2*t^7.147)/(g3^3*g4^3) + (g1*g3*t^7.147)/(g2^3*g4^3) + (2*g2^3*t^7.147)/(g1*g3^5*g4) + (2*t^7.147)/(g1*g2*g3*g4) + (2*g3^3*t^7.147)/(g1*g2^5*g4) + (g2*g4*t^7.147)/(g1^3*g3^3) + (g3*g4*t^7.147)/(g1^3*g2^3) + (g2^3*g4^3*t^7.147)/(g1^5*g3^5) + (g4^3*t^7.147)/(g1^5*g2*g3) + (g3^3*g4^3*t^7.147)/(g1^5*g2^5) + (g2^7*t^7.229)/(g1*g3^5*g4^5) + (g2^3*t^7.229)/(g1*g3*g4^5) + (g3^3*t^7.229)/(g1*g2*g4^5) + (g3^7*t^7.229)/(g1*g2^5*g4^5) + (g2^5*t^7.229)/(g1^3*g3^3*g4^3) + (g2*g3*t^7.229)/(g1^3*g4^3) + (g3^5*t^7.229)/(g1^3*g2^3*g4^3) + (g2^7*t^7.229)/(g1^5*g3^5*g4) + (g2^3*t^7.229)/(g1^5*g3*g4) + (g3^3*t^7.229)/(g1^5*g2*g4) + (g3^7*t^7.229)/(g1^5*g2^5*g4) + g1^8*g4^8*t^7.248 - g1^4*g2^4*g3^4*g4^4*t^7.412 + (g1^4*g4^4*t^8.047)/(g2^8*g3^8) + (g1^2*g4^2*t^8.129)/(g2^6*g3^6) - t^8.211/g2^8 - t^8.211/g3^8 - (4*t^8.211)/(g2^4*g3^4) - (2*g1^4*t^8.211)/(g2^4*g3^4*g4^4) - (2*g4^4*t^8.211)/(g1^4*g2^4*g3^4) - (6*t^8.294)/(g1^4*g2^4) - (g2^4*t^8.294)/(g1^4*g3^8) - (6*t^8.294)/(g1^4*g3^4) - (g3^4*t^8.294)/(g1^4*g2^8) - (g1^4*t^8.294)/(g2^4*g4^8) - (g1^4*t^8.294)/(g3^4*g4^8) - (g1^2*t^8.294)/(g2^2*g3^2*g4^6) - (6*t^8.294)/(g2^4*g4^4) - (g2^4*t^8.294)/(g3^8*g4^4) - (6*t^8.294)/(g3^4*g4^4) - (g3^4*t^8.294)/(g2^8*g4^4) - (g2^2*t^8.294)/(g1^2*g3^6*g4^2) - (4*t^8.294)/(g1^2*g2^2*g3^2*g4^2) - (g3^2*t^8.294)/(g1^2*g2^6*g4^2) - (g4^2*t^8.294)/(g1^6*g2^2*g3^2) - (g4^4*t^8.294)/(g1^8*g2^4) - (g4^4*t^8.294)/(g1^8*g3^4) - t^8.376/g1^8 - (g2^4*t^8.376)/(g1^8*g3^4) - (g3^4*t^8.376)/(g1^8*g2^4) - t^8.376/g4^8 - (g2^4*t^8.376)/(g3^4*g4^8) - (g3^4*t^8.376)/(g2^4*g4^8) - (g2^2*t^8.376)/(g1^2*g3^2*g4^6) - (g3^2*t^8.376)/(g1^2*g2^2*g4^6) - (3*t^8.376)/(g1^4*g4^4) - (2*g2^4*t^8.376)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.376)/(g1^4*g2^4*g4^4) - (g2^2*t^8.376)/(g1^6*g3^2*g4^2) - (g3^2*t^8.376)/(g1^6*g2^2*g4^2) + (g1^11*g4^3*t^8.395)/(g2*g3) + (g1^7*g4^7*t^8.395)/(g2*g3) + (g1^3*g4^11*t^8.395)/(g2*g3) - g1^9*g2*g3*g4*t^8.477 - g1^5*g2*g3*g4^5*t^8.477 - g1*g2*g3*g4^9*t^8.477 - (g1^7*g2^3*g3^3*t^8.559)/g4 - g1^5*g2^5*g3*g4*t^8.559 - g1^5*g2*g3^5*g4*t^8.559 - 2*g1^3*g2^3*g3^3*g4^3*t^8.559 - g1*g2^5*g3*g4^5*t^8.559 - g1*g2*g3^5*g4^5*t^8.559 - (g2^3*g3^3*g4^7*t^8.559)/g1 - (g1^3*g2^7*g3^3*t^8.642)/g4 - (g1^3*g2^3*g3^7*t^8.642)/g4 - g1*g2^9*g3*g4*t^8.642 - g1*g2^5*g3^5*g4*t^8.642 - g1*g2*g3^9*g4*t^8.642 - (g2^7*g3^3*g4^3*t^8.642)/g1 - (g2^3*g3^7*g4^3*t^8.642)/g1 + t^8.845/(g2^16*g3^16) + t^8.928/(g1^4*g2^12*g3^16) + t^8.928/(g1^4*g2^16*g3^12) + t^8.928/(g2^12*g3^16*g4^4) + t^8.928/(g2^16*g3^12*g4^4) + t^8.928/(g1^2*g2^14*g3^14*g4^2) - t^4.147/(g1*g2*g3*g4*y) - t^6.358/(g1*g2^5*g3^5*g4*y) - t^6.441/(g1*g2*g3^5*g4^5*y) - t^6.441/(g1*g2^5*g3*g4^5*y) - t^6.441/(g1^3*g2^3*g3^3*g4^3*y) - t^6.441/(g1^5*g2*g3^5*g4*y) - t^6.441/(g1^5*g2^5*g3*g4*y) + t^7.505/(g1^4*g2^4*g3^8*y) + t^7.505/(g1^4*g2^8*g3^4*y) + t^7.505/(g2^4*g3^8*g4^4*y) + t^7.505/(g2^8*g3^4*g4^4*y) + t^7.505/(g1^2*g2^6*g3^6*g4^2*y) + t^7.588/(g1^8*g2^4*g3^4*y) + t^7.588/(g2^4*g3^4*g4^8*y) + t^7.588/(g1^2*g2^2*g3^6*g4^6*y) + t^7.588/(g1^2*g2^6*g3^2*g4^6*y) + t^7.588/(g1^4*g2^8*g4^4*y) + t^7.588/(g1^4*g3^8*g4^4*y) + (2*t^7.588)/(g1^4*g2^4*g3^4*g4^4*y) + t^7.588/(g1^6*g2^2*g3^6*g4^2*y) + t^7.588/(g1^6*g2^6*g3^2*g4^2*y) + (g1^3*g2^3*t^7.853)/(g3*g4*y) + (g1^3*g3^3*t^7.853)/(g2*g4*y) + (g1*g2*g3*g4*t^7.853)/y + (g2^3*g4^3*t^7.853)/(g1*g3*y) + (g3^3*g4^3*t^7.853)/(g1*g2*y) + (g2^3*g3^3*t^7.936)/(g1*g4*y) - t^8.57/(g1*g2^9*g3^9*g4*y) - t^8.652/(g1*g2^5*g3^9*g4^5*y) - t^8.652/(g1*g2^9*g3^5*g4^5*y) - t^8.652/(g1^3*g2^7*g3^7*g4^3*y) - t^8.652/(g1^5*g2^5*g3^9*g4*y) - t^8.652/(g1^5*g2^9*g3^5*g4*y) - t^8.734/(g1*g2*g3^9*g4^9*y) - t^8.734/(g1*g2^5*g3^5*g4^9*y) - t^8.734/(g1*g2^9*g3*g4^9*y) - t^8.734/(g1^3*g2^3*g3^7*g4^7*y) - t^8.734/(g1^3*g2^7*g3^3*g4^7*y) - t^8.734/(g1^5*g2*g3^9*g4^5*y) - (3*t^8.734)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.734/(g1^5*g2^9*g3*g4^5*y) - t^8.734/(g1^7*g2^3*g3^7*g4^3*y) - t^8.734/(g1^7*g2^7*g3^3*g4^3*y) - t^8.734/(g1^9*g2*g3^9*g4*y) - t^8.734/(g1^9*g2^5*g3^5*g4*y) - t^8.734/(g1^9*g2^9*g3*g4*y) + (g1^4*g4^4*t^8.835)/(g2^4*g3^4*y) + (g1^4*t^8.918)/(g2^4*y) + (g1^4*t^8.918)/(g3^4*y) + (g1^2*g4^2*t^8.918)/(g2^2*g3^2*y) + (g4^4*t^8.918)/(g2^4*y) + (g4^4*t^8.918)/(g3^4*y) - (t^4.147*y)/(g1*g2*g3*g4) - (t^6.358*y)/(g1*g2^5*g3^5*g4) - (t^6.441*y)/(g1*g2*g3^5*g4^5) - (t^6.441*y)/(g1*g2^5*g3*g4^5) - (t^6.441*y)/(g1^3*g2^3*g3^3*g4^3) - (t^6.441*y)/(g1^5*g2*g3^5*g4) - (t^6.441*y)/(g1^5*g2^5*g3*g4) + (t^7.505*y)/(g1^4*g2^4*g3^8) + (t^7.505*y)/(g1^4*g2^8*g3^4) + (t^7.505*y)/(g2^4*g3^8*g4^4) + (t^7.505*y)/(g2^8*g3^4*g4^4) + (t^7.505*y)/(g1^2*g2^6*g3^6*g4^2) + (t^7.588*y)/(g1^8*g2^4*g3^4) + (t^7.588*y)/(g2^4*g3^4*g4^8) + (t^7.588*y)/(g1^2*g2^2*g3^6*g4^6) + (t^7.588*y)/(g1^2*g2^6*g3^2*g4^6) + (t^7.588*y)/(g1^4*g2^8*g4^4) + (t^7.588*y)/(g1^4*g3^8*g4^4) + (2*t^7.588*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.588*y)/(g1^6*g2^2*g3^6*g4^2) + (t^7.588*y)/(g1^6*g2^6*g3^2*g4^2) + (g1^3*g2^3*t^7.853*y)/(g3*g4) + (g1^3*g3^3*t^7.853*y)/(g2*g4) + g1*g2*g3*g4*t^7.853*y + (g2^3*g4^3*t^7.853*y)/(g1*g3) + (g3^3*g4^3*t^7.853*y)/(g1*g2) + (g2^3*g3^3*t^7.936*y)/(g1*g4) - (t^8.57*y)/(g1*g2^9*g3^9*g4) - (t^8.652*y)/(g1*g2^5*g3^9*g4^5) - (t^8.652*y)/(g1*g2^9*g3^5*g4^5) - (t^8.652*y)/(g1^3*g2^7*g3^7*g4^3) - (t^8.652*y)/(g1^5*g2^5*g3^9*g4) - (t^8.652*y)/(g1^5*g2^9*g3^5*g4) - (t^8.734*y)/(g1*g2*g3^9*g4^9) - (t^8.734*y)/(g1*g2^5*g3^5*g4^9) - (t^8.734*y)/(g1*g2^9*g3*g4^9) - (t^8.734*y)/(g1^3*g2^3*g3^7*g4^7) - (t^8.734*y)/(g1^3*g2^7*g3^3*g4^7) - (t^8.734*y)/(g1^5*g2*g3^9*g4^5) - (3*t^8.734*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.734*y)/(g1^5*g2^9*g3*g4^5) - (t^8.734*y)/(g1^7*g2^3*g3^7*g4^3) - (t^8.734*y)/(g1^7*g2^7*g3^3*g4^3) - (t^8.734*y)/(g1^9*g2*g3^9*g4) - (t^8.734*y)/(g1^9*g2^5*g3^5*g4) - (t^8.734*y)/(g1^9*g2^9*g3*g4) + (g1^4*g4^4*t^8.835*y)/(g2^4*g3^4) + (g1^4*t^8.918*y)/g2^4 + (g1^4*t^8.918*y)/g3^4 + (g1^2*g4^2*t^8.918*y)/(g2^2*g3^2) + (g4^4*t^8.918*y)/g2^4 + (g4^4*t^8.918*y)/g3^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
374 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ | 0.7737 | 0.9544 | 0.8107 | [M:[0.812, 0.7498, 0.7801, 0.7817, 0.7498, 1.188], q:[0.5788, 0.6091], qb:[0.641, 0.6091], phi:[0.3905]] | 2*t^2.249 + t^2.34 + t^2.343 + t^2.345 + 2*t^3.564 + 3*t^4.499 + 2*t^4.59 + 2*t^4.592 + 2*t^4.595 + t^4.644 + t^4.681 + t^4.683 + 2*t^4.686 + t^4.688 + t^4.69 + 2*t^4.735 + 3*t^4.826 + t^4.831 + 2*t^4.922 + t^5.018 + 3*t^5.813 + 2*t^5.907 - 6*t^6. - t^4.171/y - t^4.171*y | detail | |
371 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.7297 | 0.8972 | 0.8133 | [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] | t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y | detail | |
372 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.7103 | 0.8687 | 0.8177 | [M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.6011, 0.4663], qb:[0.4663, 0.6011], phi:[0.4663]] | 5*t^2.798 + t^3.202 + t^3.606 + 3*t^4.197 + 4*t^4.601 + 3*t^5.005 + 11*t^5.596 - 3*t^6. - t^4.399/y - t^4.399*y | detail | |
369 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ | 0.7466 | 0.9183 | 0.813 | [M:[0.8355, 0.8355, 0.8355, 0.8355, 1.0], q:[0.6645, 0.5], qb:[0.5, 0.6645], phi:[0.4177]] | 5*t^2.506 + t^3. + t^3.987 + 3*t^4.253 + 4*t^4.747 + 15*t^5.013 + 3*t^5.24 + t^5.506 - 7*t^6. - t^4.253/y - t^4.253*y | detail | |
375 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.8092 | 1.0197 | 0.7935 | [M:[0.7518, 0.7518, 0.7518, 0.7518, 0.7518, 0.7518], q:[0.6241, 0.6241], qb:[0.6241, 0.6241], phi:[0.3759]] | 7*t^2.255 + 28*t^4.511 + 10*t^4.872 - 16*t^6. - t^4.128/y - t^4.128*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
138 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ | 0.7722 | 0.9495 | 0.8132 | [M:[0.7745, 0.7745, 0.7745, 0.7745], q:[0.6127, 0.6127], qb:[0.6127, 0.6127], phi:[0.3873]] | 5*t^2.324 + 2*t^3.676 + 15*t^4.647 + 10*t^4.838 - 6*t^6. - t^4.162/y - t^4.162*y | detail |