Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
605 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7478 | 0.9314 | 0.8029 | [M:[0.8612, 0.889, 0.7502, 1.0, 1.0, 0.7502], q:[0.6943, 0.4445], qb:[0.5555, 0.5555], phi:[0.4375]] | [M:[[-4, 4, 4], [0, -8, -8], [-4, -8, 0], [0, 4, -4], [0, -4, 4], [-4, 0, -8]], q:[[4, 0, 0], [0, -4, -4]], qb:[[0, 8, 0], [0, 0, 8]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{6}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ | ${}M_{4}^{2}$, ${ }M_{5}^{2}$ | -3 | 2*t^2.251 + t^2.584 + t^2.625 + t^2.667 + 2*t^3. + t^3.98 + 2*t^4.313 + 3*t^4.501 + 3*t^4.646 + t^4.729 + 2*t^4.834 + 2*t^4.876 + 2*t^4.917 + 2*t^5.062 + t^5.167 + t^5.209 + 5*t^5.251 + t^5.292 + t^5.334 + t^5.478 + 2*t^5.625 - 3*t^6. + 2*t^6.23 - 2*t^6.333 - 2*t^6.416 + 4*t^6.563 + t^6.605 + t^6.646 - 2*t^6.749 + 4*t^6.752 + 6*t^6.896 + 2*t^6.938 + 4*t^6.98 + 3*t^7.085 + 3*t^7.126 + 3*t^7.168 + 3*t^7.229 + 3*t^7.271 + 6*t^7.313 + t^7.396 + 2*t^7.418 + 2*t^7.459 + 8*t^7.501 + 2*t^7.543 + 2*t^7.584 + 4*t^7.646 + 2*t^7.729 + t^7.751 + t^7.793 + 2*t^7.834 + 5*t^7.876 + t^7.917 + 2*t^7.959 + t^8.001 - 3*t^8.02 - t^8.062 + t^8.145 - 6*t^8.251 + 2*t^8.292 - 2*t^8.395 - 2*t^8.437 + 3*t^8.481 - 9*t^8.584 - 8*t^8.667 + t^8.708 - t^8.812 + 6*t^8.814 - t^8.853 + 2*t^8.855 + 2*t^8.897 - 2*t^8.917 + 2*t^8.958 - t^4.313/y - (2*t^6.563)/y - t^6.896/y - t^6.938/y - t^6.98/y + t^7.501/y + t^7.646/y + t^7.687/y + t^7.729/y + (2*t^7.834)/y + (2*t^7.876)/y + (2*t^7.917)/y + (2*t^8.062)/y + t^8.209/y + (5*t^8.251)/y + t^8.292/y + (2*t^8.584)/y + (2*t^8.625)/y + (2*t^8.667)/y - (3*t^8.814)/y - t^4.313*y - 2*t^6.563*y - t^6.896*y - t^6.938*y - t^6.98*y + t^7.501*y + t^7.646*y + t^7.687*y + t^7.729*y + 2*t^7.834*y + 2*t^7.876*y + 2*t^7.917*y + 2*t^8.062*y + t^8.209*y + 5*t^8.251*y + t^8.292*y + 2*t^8.584*y + 2*t^8.625*y + 2*t^8.667*y - 3*t^8.814*y | t^2.251/(g1^4*g2^8) + t^2.251/(g1^4*g3^8) + (g2^4*g3^4*t^2.584)/g1^4 + t^2.625/(g1^2*g2^2*g3^2) + t^2.667/(g2^8*g3^8) + (g2^4*t^3.)/g3^4 + (g3^4*t^3.)/g2^4 + t^3.98/(g1*g2^9*g3^9) + (g2^3*t^4.313)/(g1*g3^5) + (g3^3*t^4.313)/(g1*g2^5) + t^4.501/(g1^8*g2^16) + t^4.501/(g1^8*g3^16) + t^4.501/(g1^8*g2^8*g3^8) + (g2^15*t^4.646)/(g1*g3) + (g2^7*g3^7*t^4.646)/g1 + (g3^15*t^4.646)/(g1*g2) + (g1^3*t^4.729)/(g2^5*g3^5) + (g2^4*t^4.834)/(g1^8*g3^4) + (g3^4*t^4.834)/(g1^8*g2^4) + t^4.876/(g1^6*g2^2*g3^10) + t^4.876/(g1^6*g2^10*g3^2) + t^4.917/(g1^4*g2^8*g3^16) + t^4.917/(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^5.062)/g3 + (g1^3*g3^7*t^5.062)/g2 + (g2^8*g3^8*t^5.167)/g1^8 + (g2^2*g3^2*t^5.209)/g1^6 + (g2^4*t^5.251)/(g1^4*g3^12) + (3*t^5.251)/(g1^4*g2^4*g3^4) + (g3^4*t^5.251)/(g1^4*g2^12) + t^5.292/(g1^2*g2^10*g3^10) + t^5.334/(g2^16*g3^16) + (g1^7*t^5.478)/(g2*g3) + (g2^2*t^5.625)/(g1^2*g3^6) + (g3^2*t^5.625)/(g1^2*g2^6) - 3*t^6. + t^6.23/(g1^5*g2^9*g3^17) + t^6.23/(g1^5*g2^17*g3^9) - g2^12*g3^4*t^6.333 - g2^4*g3^12*t^6.333 - (g1^4*t^6.416)/g2^8 - (g1^4*t^6.416)/g3^8 + (g2^3*t^6.563)/(g1^5*g3^13) + (2*t^6.563)/(g1^5*g2^5*g3^5) + (g3^3*t^6.563)/(g1^5*g2^13) + t^6.605/(g1^3*g2^11*g3^11) + t^6.646/(g1*g2^17*g3^17) - 2*g1^4*g2^4*g3^4*t^6.749 + t^6.752/(g1^12*g2^24) + t^6.752/(g1^12*g3^24) + t^6.752/(g1^12*g2^8*g3^16) + t^6.752/(g1^12*g2^16*g3^8) + (g2^15*t^6.896)/(g1^5*g3^9) + (2*g2^7*t^6.896)/(g1^5*g3) + (2*g3^7*t^6.896)/(g1^5*g2) + (g3^15*t^6.896)/(g1^5*g2^9) + (g2*t^6.938)/(g1^3*g3^7) + (g3*t^6.938)/(g1^3*g2^7) + (2*t^6.98)/(g1*g2^5*g3^13) + (2*t^6.98)/(g1*g2^13*g3^5) + (g2^4*t^7.085)/(g1^12*g3^12) + t^7.085/(g1^12*g2^4*g3^4) + (g3^4*t^7.085)/(g1^12*g2^12) + t^7.126/(g1^10*g2^2*g3^18) + t^7.126/(g1^10*g2^10*g3^10) + t^7.126/(g1^10*g2^18*g3^2) + t^7.168/(g1^8*g2^8*g3^24) + t^7.168/(g1^8*g2^16*g3^16) + t^7.168/(g1^8*g2^24*g3^8) + (g2^19*g3^3*t^7.229)/g1^5 + (g2^11*g3^11*t^7.229)/g1^5 + (g2^3*g3^19*t^7.229)/g1^5 + (g2^13*t^7.271)/(g1^3*g3^3) + (g2^5*g3^5*t^7.271)/g1^3 + (g3^13*t^7.271)/(g1^3*g2^3) + (2*g2^7*t^7.313)/(g1*g3^9) + (2*t^7.313)/(g1*g2*g3) + (2*g3^7*t^7.313)/(g1*g2^9) + (g1^3*t^7.396)/(g2^13*g3^13) + (g2^8*t^7.418)/g1^12 + (g3^8*t^7.418)/g1^12 + (g2^2*t^7.459)/(g1^10*g3^6) + (g3^2*t^7.459)/(g1^10*g2^6) + (g2^4*t^7.501)/(g1^8*g3^20) + (3*t^7.501)/(g1^8*g2^4*g3^12) + (3*t^7.501)/(g1^8*g2^12*g3^4) + (g3^4*t^7.501)/(g1^8*g2^20) + t^7.543/(g1^6*g2^10*g3^18) + t^7.543/(g1^6*g2^18*g3^10) + t^7.584/(g1^4*g2^16*g3^24) + t^7.584/(g1^4*g2^24*g3^16) + (g2^19*t^7.646)/(g1*g3^5) + (g2^11*g3^3*t^7.646)/g1 + (g2^3*g3^11*t^7.646)/g1 + (g3^19*t^7.646)/(g1*g2^5) + (g1^3*t^7.729)/(g2*g3^9) + (g1^3*t^7.729)/(g2^9*g3) + (g2^12*g3^12*t^7.751)/g1^12 + (g2^6*g3^6*t^7.793)/g1^10 + (2*t^7.834)/g1^8 + (g2^2*t^7.876)/(g1^6*g3^14) + (3*t^7.876)/(g1^6*g2^6*g3^6) + (g3^2*t^7.876)/(g1^6*g2^14) + t^7.917/(g1^4*g2^12*g3^12) + (2*t^7.959)/(g1^2*g2^18*g3^18) + t^8.001/(g2^24*g3^24) - g1*g2^17*g3*t^8.02 - g1*g2^9*g3^9*t^8.02 - g1*g2*g3^17*t^8.02 - g1^3*g2^3*g3^3*t^8.062 + (g1^7*t^8.145)/(g2^9*g3^9) - (3*t^8.251)/(g1^4*g2^8) - (3*t^8.251)/(g1^4*g3^8) + t^8.292/(g1^2*g2^6*g3^14) + t^8.292/(g1^2*g2^14*g3^6) - g1^3*g2^15*g3^7*t^8.395 - g1^3*g2^7*g3^15*t^8.395 - g1^5*g2^9*g3*t^8.437 - g1^5*g2*g3^9*t^8.437 + t^8.481/(g1^9*g2^9*g3^25) + t^8.481/(g1^9*g2^17*g3^17) + t^8.481/(g1^9*g2^25*g3^9) - (2*g2^12*t^8.584)/(g1^4*g3^4) - (5*g2^4*g3^4*t^8.584)/g1^4 - (2*g3^12*t^8.584)/(g1^4*g2^4) + (g2^6*t^8.625)/(g1^2*g3^10) - (2*t^8.625)/(g1^2*g2^2*g3^2) + (g3^6*t^8.625)/(g1^2*g2^10) - t^8.667/g2^16 - t^8.667/g3^16 - (6*t^8.667)/(g2^8*g3^8) + (g1^2*t^8.708)/(g2^14*g3^14) - g1^7*g2^7*g3^7*t^8.812 + (g2^3*t^8.814)/(g1^9*g3^21) + (2*t^8.814)/(g1^9*g2^5*g3^13) + (2*t^8.814)/(g1^9*g2^13*g3^5) + (g3^3*t^8.814)/(g1^9*g2^21) - g1^9*g2*g3*t^8.853 + t^8.855/(g1^7*g2^11*g3^19) + t^8.855/(g1^7*g2^19*g3^11) + t^8.897/(g1^5*g2^17*g3^25) + t^8.897/(g1^5*g2^25*g3^17) - (g2^16*g3^8*t^8.917)/g1^4 - (g2^8*g3^16*t^8.917)/g1^4 + (g2^18*t^8.958)/(g1^2*g3^6) + (g3^18*t^8.958)/(g1^2*g2^6) - t^4.313/(g1*g2*g3*y) - t^6.563/(g1^5*g2*g3^9*y) - t^6.563/(g1^5*g2^9*g3*y) - (g2^3*g3^3*t^6.896)/(g1^5*y) - t^6.938/(g1^3*g2^3*g3^3*y) - t^6.98/(g1*g2^9*g3^9*y) + t^7.501/(g1^8*g2^8*g3^8*y) + (g2^7*g3^7*t^7.646)/(g1*y) + (g1*g2*g3*t^7.687)/y + (g1^3*t^7.729)/(g2^5*g3^5*y) + (g2^4*t^7.834)/(g1^8*g3^4*y) + (g3^4*t^7.834)/(g1^8*g2^4*y) + t^7.876/(g1^6*g2^2*g3^10*y) + t^7.876/(g1^6*g2^10*g3^2*y) + t^7.917/(g1^4*g2^8*g3^16*y) + t^7.917/(g1^4*g2^16*g3^8*y) + (g1^3*g2^7*t^8.062)/(g3*y) + (g1^3*g3^7*t^8.062)/(g2*y) + (g2^2*g3^2*t^8.209)/(g1^6*y) + (g2^4*t^8.251)/(g1^4*g3^12*y) + (3*t^8.251)/(g1^4*g2^4*g3^4*y) + (g3^4*t^8.251)/(g1^4*g2^12*y) + t^8.292/(g1^2*g2^10*g3^10*y) + (g2^8*t^8.584)/(g1^4*y) + (g3^8*t^8.584)/(g1^4*y) + (g2^2*t^8.625)/(g1^2*g3^6*y) + (g3^2*t^8.625)/(g1^2*g2^6*y) + t^8.667/(g2^4*g3^12*y) + t^8.667/(g2^12*g3^4*y) - t^8.814/(g1^9*g2*g3^17*y) - t^8.814/(g1^9*g2^9*g3^9*y) - t^8.814/(g1^9*g2^17*g3*y) - (t^4.313*y)/(g1*g2*g3) - (t^6.563*y)/(g1^5*g2*g3^9) - (t^6.563*y)/(g1^5*g2^9*g3) - (g2^3*g3^3*t^6.896*y)/g1^5 - (t^6.938*y)/(g1^3*g2^3*g3^3) - (t^6.98*y)/(g1*g2^9*g3^9) + (t^7.501*y)/(g1^8*g2^8*g3^8) + (g2^7*g3^7*t^7.646*y)/g1 + g1*g2*g3*t^7.687*y + (g1^3*t^7.729*y)/(g2^5*g3^5) + (g2^4*t^7.834*y)/(g1^8*g3^4) + (g3^4*t^7.834*y)/(g1^8*g2^4) + (t^7.876*y)/(g1^6*g2^2*g3^10) + (t^7.876*y)/(g1^6*g2^10*g3^2) + (t^7.917*y)/(g1^4*g2^8*g3^16) + (t^7.917*y)/(g1^4*g2^16*g3^8) + (g1^3*g2^7*t^8.062*y)/g3 + (g1^3*g3^7*t^8.062*y)/g2 + (g2^2*g3^2*t^8.209*y)/g1^6 + (g2^4*t^8.251*y)/(g1^4*g3^12) + (3*t^8.251*y)/(g1^4*g2^4*g3^4) + (g3^4*t^8.251*y)/(g1^4*g2^12) + (t^8.292*y)/(g1^2*g2^10*g3^10) + (g2^8*t^8.584*y)/g1^4 + (g3^8*t^8.584*y)/g1^4 + (g2^2*t^8.625*y)/(g1^2*g3^6) + (g3^2*t^8.625*y)/(g1^2*g2^6) + (t^8.667*y)/(g2^4*g3^12) + (t^8.667*y)/(g2^12*g3^4) - (t^8.814*y)/(g1^9*g2*g3^17) - (t^8.814*y)/(g1^9*g2^9*g3^9) - (t^8.814*y)/(g1^9*g2^17*g3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
975 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.7013 | 0.8626 | 0.813 | [M:[0.9811, 0.9729, 1.023, 0.9311, 1.0689, 0.8851], q:[0.5324, 0.4864], qb:[0.4446, 0.5825], phi:[0.4885]] | t^2.655 + t^2.793 + t^2.919 + t^2.931 + t^2.943 + t^3.069 + t^3.207 + t^4.133 + t^4.259 + t^4.384 + t^4.397 + t^4.522 + t^4.547 + t^4.66 + t^4.672 + t^4.81 + t^4.96 + t^5.311 + t^5.448 + t^5.574 + t^5.586 + t^5.599 + 2*t^5.724 + t^5.837 + 3*t^5.862 + t^5.887 + t^5.988 - 2*t^6. - t^4.466/y - t^4.466*y | detail | |
976 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ | 0.7686 | 0.9726 | 0.7902 | [M:[0.8603, 0.8907, 0.7511, 1.0, 1.0, 0.7511, 0.6715], q:[0.6943, 0.4454], qb:[0.5546, 0.5546], phi:[0.4378]] | t^2.015 + 2*t^2.253 + t^2.581 + t^2.627 + t^2.672 + 2*t^3. + t^4.029 + 2*t^4.268 + 2*t^4.313 + 3*t^4.506 + t^4.595 + 4*t^4.641 + t^4.687 + t^4.732 + 2*t^4.834 + 2*t^4.88 + 2*t^4.925 + 2*t^5.015 + 2*t^5.06 + t^5.162 + t^5.208 + 5*t^5.253 + t^5.299 + t^5.344 + t^5.479 + 2*t^5.627 - 3*t^6. - t^4.313/y - t^4.313*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
371 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.7297 | 0.8972 | 0.8133 | [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] | t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y | detail |