Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
602 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}M_{6}$ | 0.7126 | 0.866 | 0.8228 | [M:[0.9022, 0.9171, 0.8193, 1.0, 1.0, 1.1807], q:[0.6393, 0.4586], qb:[0.5414, 0.5414], phi:[0.4548]] | [M:[[-4, 4, 4], [0, -8, -8], [-4, -8, 0], [0, 4, -4], [0, -4, 4], [4, 8, 0]], q:[[4, 0, 0], [0, -4, -4]], qb:[[0, 8, 0], [0, 0, 8]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$ | ${}M_{4}^{2}$, ${ }M_{5}^{2}$ | -3 | t^2.706 + t^2.729 + t^2.751 + 2*t^3. + 2*t^3.542 + t^4.116 + 2*t^4.364 + 3*t^4.613 + t^4.658 + 2*t^4.907 + t^5.2 + t^5.413 + t^5.435 + t^5.458 + t^5.48 + t^5.503 + 2*t^5.729 - 3*t^6. + 2*t^6.271 + 2*t^6.542 + t^6.845 + t^6.867 + 3*t^7.084 + 2*t^7.093 + 2*t^7.116 + 3*t^7.32 + 3*t^7.342 + 2*t^7.364 + t^7.409 + 4*t^7.613 + 2*t^7.658 - 3*t^7.884 + 3*t^7.907 + t^7.951 + t^8.119 + t^8.142 + 4*t^8.155 + 2*t^8.164 - 2*t^8.178 + t^8.187 + 2*t^8.2 + t^8.209 + 2*t^8.232 + t^8.254 + 3*t^8.449 - t^8.471 + 2*t^8.48 - 5*t^8.706 + 2*t^8.742 - 4*t^8.751 + t^8.774 + 4*t^8.978 - t^4.364/y - t^7.071/y - t^7.093/y - t^7.116/y + t^7.613/y + t^7.636/y + t^7.658/y + t^8.435/y + t^8.458/y + t^8.48/y + (2*t^8.706)/y + (2*t^8.729)/y + (2*t^8.751)/y - t^4.364*y - t^7.071*y - t^7.093*y - t^7.116*y + t^7.613*y + t^7.636*y + t^7.658*y + t^8.435*y + t^8.458*y + t^8.48*y + 2*t^8.706*y + 2*t^8.729*y + 2*t^8.751*y | (g2^4*g3^4*t^2.706)/g1^4 + t^2.729/(g1^2*g2^2*g3^2) + t^2.751/(g2^8*g3^8) + (g2^4*t^3.)/g3^4 + (g3^4*t^3.)/g2^4 + g1^4*g2^8*t^3.542 + g1^4*g3^8*t^3.542 + t^4.116/(g1*g2^9*g3^9) + (g2^3*t^4.364)/(g1*g3^5) + (g3^3*t^4.364)/(g1*g2^5) + (g2^15*t^4.613)/(g1*g3) + (g2^7*g3^7*t^4.613)/g1 + (g3^15*t^4.613)/(g1*g2) + (g1^3*t^4.658)/(g2^5*g3^5) + (g1^3*g2^7*t^4.907)/g3 + (g1^3*g3^7*t^4.907)/g2 + (g1^7*t^5.2)/(g2*g3) + (g2^8*g3^8*t^5.413)/g1^8 + (g2^2*g3^2*t^5.435)/g1^6 + t^5.458/(g1^4*g2^4*g3^4) + t^5.48/(g1^2*g2^10*g3^10) + t^5.503/(g2^16*g3^16) + (g2^2*t^5.729)/(g1^2*g3^6) + (g3^2*t^5.729)/(g1^2*g2^6) - 3*t^6. + (g1^2*g2^6*t^6.271)/g3^2 + (g1^2*g3^6*t^6.271)/g2^2 + (g1^4*g2^12*t^6.542)/g3^4 + (g1^4*g3^12*t^6.542)/g2^4 + t^6.845/(g1^3*g2^11*g3^11) + t^6.867/(g1*g2^17*g3^17) + g1^8*g2^16*t^7.084 + g1^8*g2^8*g3^8*t^7.084 + g1^8*g3^16*t^7.084 + (g2*t^7.093)/(g1^3*g3^7) + (g3*t^7.093)/(g1^3*g2^7) + t^7.116/(g1*g2^5*g3^13) + t^7.116/(g1*g2^13*g3^5) + (g2^19*g3^3*t^7.32)/g1^5 + (g2^11*g3^11*t^7.32)/g1^5 + (g2^3*g3^19*t^7.32)/g1^5 + (g2^13*t^7.342)/(g1^3*g3^3) + (g2^5*g3^5*t^7.342)/g1^3 + (g3^13*t^7.342)/(g1^3*g2^3) + (g2^7*t^7.364)/(g1*g3^9) + (g3^7*t^7.364)/(g1*g2^9) + (g1^3*t^7.409)/(g2^13*g3^13) + (g2^19*t^7.613)/(g1*g3^5) + (g2^11*g3^3*t^7.613)/g1 + (g2^3*g3^11*t^7.613)/g1 + (g3^19*t^7.613)/(g1*g2^5) + (g1^3*t^7.658)/(g2*g3^9) + (g1^3*t^7.658)/(g2^9*g3) - g1*g2^17*g3*t^7.884 - g1*g2^9*g3^9*t^7.884 - g1*g2*g3^17*t^7.884 + (g1^3*g2^11*t^7.907)/g3^5 + g1^3*g2^3*g3^3*t^7.907 + (g1^3*g3^11*t^7.907)/g2^5 + (g1^7*t^7.951)/(g2^9*g3^9) + (g2^12*g3^12*t^8.119)/g1^12 + (g2^6*g3^6*t^8.142)/g1^10 + (g1^3*g2^23*t^8.155)/g3 + g1^3*g2^15*g3^7*t^8.155 + g1^3*g2^7*g3^15*t^8.155 + (g1^3*g3^23*t^8.155)/g2 + (2*t^8.164)/g1^8 - g1^5*g2^9*g3*t^8.178 - g1^5*g2*g3^9*t^8.178 + t^8.187/(g1^6*g2^6*g3^6) + (g1^7*g2^3*t^8.2)/g3^5 + (g1^7*g3^3*t^8.2)/g2^5 + t^8.209/(g1^4*g2^12*g3^12) + (2*t^8.232)/(g1^2*g2^18*g3^18) + t^8.254/(g2^24*g3^24) + (g1^7*g2^15*t^8.449)/g3 + g1^7*g2^7*g3^7*t^8.449 + (g1^7*g3^15*t^8.449)/g2 - g1^9*g2*g3*t^8.471 + t^8.48/(g1^2*g2^6*g3^14) + t^8.48/(g1^2*g2^14*g3^6) - (g2^12*t^8.706)/(g1^4*g3^4) - (3*g2^4*g3^4*t^8.706)/g1^4 - (g3^12*t^8.706)/(g1^4*g2^4) + (g2^6*t^8.729)/(g1^2*g3^10) - (2*t^8.729)/(g1^2*g2^2*g3^2) + (g3^6*t^8.729)/(g1^2*g2^10) + (g1^11*g2^7*t^8.742)/g3 + (g1^11*g3^7*t^8.742)/g2 - (4*t^8.751)/(g2^8*g3^8) + (g1^2*t^8.774)/(g2^14*g3^14) + (g2^18*t^8.978)/(g1^2*g3^6) + (g2^10*g3^2*t^8.978)/g1^2 + (g2^2*g3^10*t^8.978)/g1^2 + (g3^18*t^8.978)/(g1^2*g2^6) - t^4.364/(g1*g2*g3*y) - (g2^3*g3^3*t^7.071)/(g1^5*y) - t^7.093/(g1^3*g2^3*g3^3*y) - t^7.116/(g1*g2^9*g3^9*y) + (g2^7*g3^7*t^7.613)/(g1*y) + (g1*g2*g3*t^7.636)/y + (g1^3*t^7.658)/(g2^5*g3^5*y) + (g2^2*g3^2*t^8.435)/(g1^6*y) + t^8.458/(g1^4*g2^4*g3^4*y) + t^8.48/(g1^2*g2^10*g3^10*y) + (g2^8*t^8.706)/(g1^4*y) + (g3^8*t^8.706)/(g1^4*y) + (g2^2*t^8.729)/(g1^2*g3^6*y) + (g3^2*t^8.729)/(g1^2*g2^6*y) + t^8.751/(g2^4*g3^12*y) + t^8.751/(g2^12*g3^4*y) - (t^4.364*y)/(g1*g2*g3) - (g2^3*g3^3*t^7.071*y)/g1^5 - (t^7.093*y)/(g1^3*g2^3*g3^3) - (t^7.116*y)/(g1*g2^9*g3^9) + (g2^7*g3^7*t^7.613*y)/g1 + g1*g2*g3*t^7.636*y + (g1^3*t^7.658*y)/(g2^5*g3^5) + (g2^2*g3^2*t^8.435*y)/g1^6 + (t^8.458*y)/(g1^4*g2^4*g3^4) + (t^8.48*y)/(g1^2*g2^10*g3^10) + (g2^8*t^8.706*y)/g1^4 + (g3^8*t^8.706*y)/g1^4 + (g2^2*t^8.729*y)/(g1^2*g3^6) + (g3^2*t^8.729*y)/(g1^2*g2^6) + (t^8.751*y)/(g2^4*g3^12) + (t^8.751*y)/(g2^12*g3^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
371 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.7297 | 0.8972 | 0.8133 | [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] | t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y | detail |