Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
599 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ | 0.7095 | 0.8721 | 0.8136 | [M:[1.0487, 0.8538, 0.8746, 1.0279, 0.9721], q:[0.5244, 0.4269], qb:[0.601, 0.5452], phi:[0.4756]] | [M:[[2, 2], [-6, -6], [-7, -1], [3, -3], [-3, 3]], q:[[1, 1], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.561 + t^2.624 + t^2.854 + t^2.916 + t^3.084 + t^3.146 + t^3.209 + t^3.988 + t^4.281 + t^4.343 + t^4.511 + t^4.573 + t^4.636 + t^4.698 + t^4.803 + t^4.866 + t^5.033 + t^5.123 + t^5.185 + t^5.248 + t^5.415 + t^5.478 + t^5.54 + 2*t^5.708 + 2*t^5.77 + t^5.832 - 2*t^6. + t^6.062 + t^6.125 + t^6.417 - t^6.522 + t^6.55 + t^6.612 + 2*t^6.842 + 2*t^6.904 + t^6.967 + t^7.072 + 2*t^7.134 + 3*t^7.197 + 2*t^7.259 + t^7.322 + t^7.364 + t^7.427 + 2*t^7.489 + 2*t^7.552 + t^7.594 + t^7.614 + t^7.657 + t^7.684 + t^7.747 + t^7.782 + t^7.809 + t^7.844 + t^7.871 + t^7.887 + t^7.907 + 2*t^7.977 + t^8.039 + t^8.101 + t^8.117 + t^8.164 + 2*t^8.269 + 3*t^8.331 + 2*t^8.394 + t^8.456 - 2*t^8.561 - t^8.624 + 2*t^8.686 + t^8.749 - 2*t^8.854 - 2*t^8.916 + t^8.979 - t^4.427/y - t^6.988/y - t^7.051/y + t^7.803/y + t^7.866/y + t^8.185/y + t^8.415/y + (2*t^8.478)/y + t^8.54/y + t^8.645/y + (2*t^8.708)/y + (3*t^8.77)/y + t^8.832/y + t^8.938/y - t^4.427*y - t^6.988*y - t^7.051*y + t^7.803*y + t^7.866*y + t^8.185*y + t^8.415*y + 2*t^8.478*y + t^8.54*y + t^8.645*y + 2*t^8.708*y + 3*t^8.77*y + t^8.832*y + t^8.938*y | t^2.561/(g1^6*g2^6) + t^2.624/(g1^7*g2) + t^2.854/(g1^2*g2^2) + (g2^3*t^2.916)/g1^3 + (g1^3*t^3.084)/g2^3 + g1^2*g2^2*t^3.146 + g1*g2^7*t^3.209 + t^3.988/(g1^7*g2^7) + t^4.281/(g1^3*g2^3) + (g2^2*t^4.343)/g1^4 + (g1^2*t^4.511)/g2^4 + g1*g2*t^4.573 + g2^6*t^4.636 + (g2^11*t^4.698)/g1 + g1^6*t^4.803 + g1^5*g2^5*t^4.866 + (g1^11*t^5.033)/g2 + t^5.123/(g1^12*g2^12) + t^5.185/(g1^13*g2^7) + t^5.248/(g1^14*g2^2) + t^5.415/(g1^8*g2^8) + t^5.478/(g1^9*g2^3) + (g2^2*t^5.54)/g1^10 + (2*t^5.708)/(g1^4*g2^4) + (2*g2*t^5.77)/g1^5 + (g2^6*t^5.832)/g1^6 - 2*t^6. + (g2^5*t^6.062)/g1 + (g2^10*t^6.125)/g1^2 + g1^2*g2^14*t^6.417 - g1^9*g2^3*t^6.522 + t^6.55/(g1^13*g2^13) + t^6.612/(g1^14*g2^8) + (2*t^6.842)/(g1^9*g2^9) + (2*t^6.904)/(g1^10*g2^4) + (g2*t^6.967)/g1^11 + t^7.072/(g1^4*g2^10) + (2*t^7.134)/(g1^5*g2^5) + (3*t^7.197)/g1^6 + (2*g2^5*t^7.259)/g1^7 + (g2^10*t^7.322)/g1^8 + t^7.364/g2^6 + t^7.427/(g1*g2) + (2*g2^4*t^7.489)/g1^2 + (2*g2^9*t^7.552)/g1^3 + (g1^5*t^7.594)/g2^7 + (g2^14*t^7.614)/g1^4 + (g1^4*t^7.657)/g2^2 + t^7.684/(g1^18*g2^18) + t^7.747/(g1^19*g2^13) + g1^2*g2^8*t^7.782 + t^7.809/(g1^20*g2^8) + g1*g2^13*t^7.844 + t^7.871/(g1^21*g2^3) + (g1^9*t^7.887)/g2^3 + g2^18*t^7.907 + (2*t^7.977)/(g1^14*g2^14) + t^8.039/(g1^15*g2^9) + t^8.101/(g1^16*g2^4) + (g1^14*t^8.117)/g2^4 + (g2*t^8.164)/g1^17 + (2*t^8.269)/(g1^10*g2^10) + (3*t^8.331)/(g1^11*g2^5) + (2*t^8.394)/g1^12 + (g2^5*t^8.456)/g1^13 - (2*t^8.561)/(g1^6*g2^6) - t^8.624/(g1^7*g2) + (2*g2^4*t^8.686)/g1^8 + (g2^9*t^8.749)/g1^9 - (2*t^8.854)/(g1^2*g2^2) - (2*g2^3*t^8.916)/g1^3 + (g2^8*t^8.979)/g1^4 - t^4.427/(g1*g2*y) - t^6.988/(g1^7*g2^7*y) - t^7.051/(g1^8*g2^2*y) + (g1^6*t^7.803)/y + (g1^5*g2^5*t^7.866)/y + t^8.185/(g1^13*g2^7*y) + t^8.415/(g1^8*g2^8*y) + (2*t^8.478)/(g1^9*g2^3*y) + (g2^2*t^8.54)/(g1^10*y) + t^8.645/(g1^3*g2^9*y) + (2*t^8.708)/(g1^4*g2^4*y) + (3*g2*t^8.77)/(g1^5*y) + (g2^6*t^8.832)/(g1^6*y) + (g1*t^8.938)/(g2^5*y) - (t^4.427*y)/(g1*g2) - (t^6.988*y)/(g1^7*g2^7) - (t^7.051*y)/(g1^8*g2^2) + g1^6*t^7.803*y + g1^5*g2^5*t^7.866*y + (t^8.185*y)/(g1^13*g2^7) + (t^8.415*y)/(g1^8*g2^8) + (2*t^8.478*y)/(g1^9*g2^3) + (g2^2*t^8.54*y)/g1^10 + (t^8.645*y)/(g1^3*g2^9) + (2*t^8.708*y)/(g1^4*g2^4) + (3*g2*t^8.77*y)/g1^5 + (g2^6*t^8.832*y)/g1^6 + (g1*t^8.938*y)/g2^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
956 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{6}$ | 0.7143 | 0.8808 | 0.8109 | [M:[1.0548, 0.8356, 0.8628, 1.0276, 0.9724, 0.9452], q:[0.5274, 0.4178], qb:[0.6098, 0.5546], phi:[0.4726]] | t^2.507 + t^2.588 + 2*t^2.836 + t^2.917 + t^3.083 + t^3.246 + t^3.924 + t^4.253 + t^4.335 + t^4.501 + t^4.582 + t^4.664 + t^4.745 + t^4.829 + t^4.911 + t^5.013 + t^5.077 + t^5.095 + t^5.177 + 2*t^5.342 + 2*t^5.424 + t^5.505 + 3*t^5.671 + 2*t^5.753 + t^5.834 + t^5.918 - 3*t^6. - t^4.418/y - t^4.418*y | detail | |
949 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ | 0.7004 | 0.8555 | 0.8187 | [M:[1.0368, 0.8895, 0.9263, 1.0, 1.0, 1.0737], q:[0.5184, 0.4448], qb:[0.5552, 0.5552], phi:[0.4816]] | t^2.669 + t^2.89 + 2*t^3. + t^3.11 + 2*t^3.221 + t^4.113 + t^4.334 + 2*t^4.445 + t^4.555 + 2*t^4.666 + 3*t^4.776 + t^5.337 + t^5.558 + t^5.779 + 2*t^5.89 - 2*t^6. - t^4.445/y - t^4.445*y | detail | |
950 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6932 | 0.8486 | 0.8169 | [M:[1.0093, 0.9722, 1.0093, 0.9722, 1.0278], q:[0.5046, 0.4861], qb:[0.4861, 0.5417], phi:[0.4954]] | 2*t^2.917 + t^2.972 + 2*t^3.028 + t^3.083 + t^3.139 + 3*t^4.403 + 2*t^4.458 + t^4.514 + 2*t^4.57 + t^4.625 + t^4.737 + t^5.833 + t^5.889 + 3*t^5.944 - 2*t^6. - t^4.486/y - t^4.486*y | detail | |
953 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}^{2}$ | 0.696 | 0.8516 | 0.8172 | [M:[1.0191, 0.9426, 1.0, 0.9617, 1.0383], q:[0.5096, 0.4713], qb:[0.4904, 0.567], phi:[0.4904]] | t^2.828 + t^2.885 + t^2.943 + t^3. + t^3.057 + t^3.115 + t^3.23 + t^4.299 + t^4.356 + 2*t^4.414 + t^4.471 + t^4.529 + t^4.586 + t^4.644 + t^4.701 + t^4.873 + t^5.655 + t^5.77 + t^5.828 + 2*t^5.885 + t^5.943 - t^6. - t^4.471/y - t^4.471*y | detail | |
954 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ | 0.7083 | 0.8692 | 0.8149 | [M:[1.0492, 0.8523, 0.9042, 0.9973, 1.0027, 0.9973], q:[0.5246, 0.4261], qb:[0.5712, 0.5766], phi:[0.4754]] | t^2.557 + t^2.713 + t^2.852 + 2*t^2.992 + t^3.148 + t^3.304 + t^3.983 + t^4.278 + t^4.418 + t^4.434 + t^4.574 + t^4.714 + t^4.73 + t^4.853 + t^4.869 + t^4.885 + t^5.114 + t^5.269 + t^5.409 + t^5.425 + t^5.549 + 3*t^5.705 + t^5.844 + t^5.86 + 2*t^5.984 - 3*t^6. - t^4.426/y - t^4.426*y | detail | |
955 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.7303 | 0.9135 | 0.7995 | [M:[1.0484, 0.8548, 0.8753, 1.0279, 0.9721, 0.6693], q:[0.5242, 0.4274], qb:[0.6005, 0.5446], phi:[0.4758]] | t^2.008 + t^2.565 + t^2.626 + t^2.855 + t^2.916 + t^3.084 + t^3.145 + t^3.206 + t^4.016 + t^4.282 + t^4.344 + t^4.511 + 2*t^4.573 + 2*t^4.634 + t^4.695 + t^4.802 + 2*t^4.863 + t^4.924 + t^5.031 + t^5.092 + t^5.129 + t^5.153 + t^5.19 + t^5.215 + t^5.252 + t^5.419 + t^5.481 + t^5.542 + 2*t^5.71 + 2*t^5.771 + t^5.832 - 2*t^6. - t^4.427/y - t^4.427*y | detail | |
952 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7182 | 0.8876 | 0.8092 | [M:[1.0601, 0.8198, 0.8798, 1.0, 1.0, 0.8798], q:[0.53, 0.4099], qb:[0.5901, 0.5901], phi:[0.47]] | t^2.459 + 2*t^2.64 + t^2.82 + 2*t^3. + t^3.18 + t^3.869 + t^4.23 + 2*t^4.41 + t^4.59 + 2*t^4.77 + t^4.919 + 3*t^4.951 + 2*t^5.099 + 4*t^5.279 + 2*t^5.459 + 5*t^5.64 + 2*t^5.82 - 2*t^6. - t^4.41/y - t^4.41*y | detail | |
1953 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ | 0.6791 | 0.8522 | 0.7969 | [M:[1.0793, 0.762, 0.6905, 1.1508, 0.8492], q:[0.5397, 0.381], qb:[0.7698, 0.4682], phi:[0.4603]] | t^2.071 + t^2.286 + t^2.548 + t^2.762 + t^3.024 + t^3.238 + t^3.452 + t^3.667 + t^3.929 + 2*t^4.143 + t^4.19 + t^4.357 + t^4.405 + t^4.572 + 2*t^4.619 + 2*t^4.833 + t^5.048 + 2*t^5.095 + 3*t^5.31 + 2*t^5.524 + t^5.571 + t^5.738 + t^5.786 + t^5.953 - t^4.381/y - t^4.381*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
371 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.7297 | 0.8972 | 0.8133 | [M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] | t^2.294 + t^2.638 + t^2.67 + t^2.702 + t^2.954 + t^3.046 + t^3.613 + t^4.037 + t^4.289 + t^4.382 + t^4.54 + t^4.588 + t^4.633 + t^4.697 + t^4.726 + t^4.932 + t^4.948 + t^4.964 + t^4.996 + t^5.041 + t^5.248 + t^5.277 + t^5.309 + 2*t^5.341 + t^5.356 + t^5.373 + t^5.405 + t^5.624 + t^5.717 + t^5.907 - 3*t^6. - t^4.335/y - t^4.335*y | detail |