Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
609 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ 0.6698 0.8297 0.8073 [X:[], M:[0.9823, 0.7363, 0.8719, 0.8467, 1.1533], q:[0.6495, 0.3682], qb:[0.4785, 0.7852], phi:[0.4297]] [X:[], M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_4$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_4$, $ \phi_1q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ M_2M_3$, $ M_4^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ \phi_1^4$, $ M_3\phi_1^2$, $ \phi_1q_1^2$, $ M_3^2$, $ M_1\phi_1^2$, $ M_1M_3$, $ M_2\phi_1q_2^2$, $ M_1^2$ . -2 t^2.21 + t^2.54 + t^2.58 + t^2.62 + t^2.95 + t^3.46 + t^3.5 + t^3.83 + t^4.16 + t^4.3 + t^4.34 + t^4.42 + t^4.67 + t^4.75 + t^4.79 + t^4.82 + t^5.08 + t^5.12 + 2*t^5.16 + 2*t^5.19 + t^5.23 + t^5.52 + t^5.56 + t^5.71 + t^5.89 - 2*t^6. + 2*t^6.04 + 2*t^6.08 + t^6.11 - t^6.33 + t^6.37 + t^6.41 + t^6.44 + t^6.55 + t^6.63 + t^6.7 + t^6.74 + t^6.78 - t^6.84 + t^6.88 + t^6.92 + 2*t^6.96 + 2*t^7. + t^7.03 + t^7.11 + t^7.29 + 2*t^7.33 + 2*t^7.36 + 2*t^7.4 + t^7.44 - t^7.58 + t^7.62 + 2*t^7.66 + t^7.7 + 2*t^7.73 + t^7.76 + 2*t^7.77 + t^7.8 + t^7.81 + t^7.84 + t^7.85 + t^7.92 + t^7.99 + t^8.1 + t^8.14 + t^8.18 - 3*t^8.21 + t^8.25 + t^8.28 + 2*t^8.32 + t^8.47 + t^8.51 - 3*t^8.54 - t^8.58 - t^8.62 + 3*t^8.65 + t^8.68 + 2*t^8.69 + t^8.73 + t^8.76 + t^8.83 + 2*t^8.84 - t^8.87 - 2*t^8.95 + t^8.98 - t^4.29/y - t^6.5/y - t^6.87/y - t^6.9/y - t^7.24/y + t^7.34/y + t^7.67/y + t^7.71/y + t^7.75/y + t^7.79/y + t^7.82/y + t^8.08/y + t^8.12/y + (2*t^8.16)/y + t^8.19/y + t^8.49/y + t^8.52/y + t^8.56/y + t^8.67/y - t^4.29*y - t^6.5*y - t^6.87*y - t^6.9*y - t^7.24*y + t^7.34*y + t^7.67*y + t^7.71*y + t^7.75*y + t^7.79*y + t^7.82*y + t^8.08*y + t^8.12*y + 2*t^8.16*y + t^8.19*y + t^8.49*y + t^8.52*y + t^8.56*y + t^8.67*y t^2.21/(g1^2*g2^2) + (g1*t^2.54)/g2 + t^2.58/g2^8 + t^2.62/(g1*g2^15) + (g1^2*t^2.95)/g2^14 + (g2*t^3.46)/g1 + t^3.5/(g1^2*g2^6) + (g1*t^3.83)/g2^5 + (g1^4*t^4.16)/g2^4 + (g2^17*t^4.3)/g1 + (g2^10*t^4.34)/g1^2 + t^4.42/(g1^4*g2^4) + g1*g2^11*t^4.67 + t^4.75/(g1*g2^3) + t^4.79/(g1^2*g2^10) + t^4.82/(g1^3*g2^17) + (g1^2*t^5.08)/g2^2 + (g1*t^5.12)/g2^9 + (2*t^5.16)/g2^16 + t^5.19/(g1*g2^23) + (g2^26*t^5.19)/g1^2 + t^5.23/(g1^2*g2^30) + (g1^2*t^5.52)/g2^22 + (g1*t^5.56)/g2^29 + t^5.71/(g1^4*g2^8) + (g1^4*t^5.89)/g2^28 - 2*t^6. + (2*t^6.04)/(g1*g2^7) + (2*t^6.08)/(g1^2*g2^14) + t^6.11/(g1^3*g2^21) - g1^3*g2*t^6.33 + (g1^2*t^6.37)/g2^6 + (g1*t^6.41)/g2^13 + t^6.44/g2^20 + (g2^8*t^6.55)/g1^4 + t^6.63/(g1^6*g2^6) + (g1^5*t^6.7)/g2^5 + (g1^4*t^6.74)/g2^12 + (g1^3*t^6.78)/g2^19 - g2^16*t^6.84 + (g2^9*t^6.88)/g1 + (g2^2*t^6.92)/g1^2 + (2*t^6.96)/(g1^3*g2^5) + (2*t^7.)/(g1^4*g2^12) + t^7.03/(g1^5*g2^19) + (g1^6*t^7.11)/g2^18 + t^7.29/g2^4 + (2*t^7.33)/(g1*g2^11) + (2*t^7.36)/(g1^2*g2^18) + t^7.4/(g1^3*g2^25) + (g2^24*t^7.4)/g1^4 + t^7.44/(g1^4*g2^32) - g1^4*g2^4*t^7.58 + (g1^3*t^7.62)/g2^3 + (2*g1^2*t^7.66)/g2^10 + (g1*t^7.7)/g2^17 + (2*t^7.73)/g2^24 + (g2^18*t^7.76)/g1^2 + (2*t^7.77)/(g1*g2^31) + (g2^11*t^7.8)/g1^3 + t^7.81/(g1^2*g2^38) + (g2^4*t^7.84)/g1^4 + t^7.85/(g1^3*g2^45) + t^7.92/(g1^6*g2^10) + (g1^5*t^7.99)/g2^9 + (2*g1^2*t^8.1)/g2^30 - g1*g2^19*t^8.1 + (g1*t^8.14)/g2^37 + t^8.18/g2^44 - (3*t^8.21)/(g1^2*g2^2) + t^8.25/(g1^3*g2^9) + t^8.28/(g1^4*g2^16) + t^8.32/(g1^5*g2^23) + (g1^8*t^8.32)/g2^8 + (g1^4*t^8.47)/g2^36 + (g1^3*t^8.51)/g2^43 - (3*g1*t^8.54)/g2 - t^8.58/g2^8 - t^8.62/(g1*g2^15) + (2*t^8.65)/(g1^2*g2^22) + (g2^27*t^8.65)/g1^3 + (g2^20*t^8.68)/g1^4 + (2*t^8.69)/(g1^3*g2^29) + t^8.73/(g1^4*g2^36) + (g2^6*t^8.76)/g1^6 + g1^5*g2^7*t^8.83 + (g1^6*t^8.84)/g2^42 + t^8.84/(g1^8*g2^8) - g1^4*t^8.87 - (2*g1^2*t^8.95)/g2^14 + (g1*t^8.98)/g2^21 - t^4.29/(g2^4*y) - t^6.5/(g1^2*g2^6*y) - t^6.87/(g2^12*y) - t^6.9/(g1*g2^19*y) - (g1^2*t^7.24)/(g2^18*y) + (g2^10*t^7.34)/(g1^2*y) + (g1*g2^11*t^7.67)/y + (g2^4*t^7.71)/y + t^7.75/(g1*g2^3*y) + t^7.79/(g1^2*g2^10*y) + t^7.82/(g1^3*g2^17*y) + (g1^2*t^8.08)/(g2^2*y) + (g1*t^8.12)/(g2^9*y) + (2*t^8.16)/(g2^16*y) + t^8.19/(g1*g2^23*y) + (g1^3*t^8.49)/(g2^15*y) + (g1^2*t^8.52)/(g2^22*y) + (g1*t^8.56)/(g2^29*y) + t^8.67/(g1^3*g2*y) - (t^4.29*y)/g2^4 - (t^6.5*y)/(g1^2*g2^6) - (t^6.87*y)/g2^12 - (t^6.9*y)/(g1*g2^19) - (g1^2*t^7.24*y)/g2^18 + (g2^10*t^7.34*y)/g1^2 + g1*g2^11*t^7.67*y + g2^4*t^7.71*y + (t^7.75*y)/(g1*g2^3) + (t^7.79*y)/(g1^2*g2^10) + (t^7.82*y)/(g1^3*g2^17) + (g1^2*t^8.08*y)/g2^2 + (g1*t^8.12*y)/g2^9 + (2*t^8.16*y)/g2^16 + (t^8.19*y)/(g1*g2^23) + (g1^3*t^8.49*y)/g2^15 + (g1^2*t^8.52*y)/g2^22 + (g1*t^8.56*y)/g2^29 + (t^8.67*y)/(g1^3*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
983 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_1M_3$ 0.6651 0.8215 0.8096 [X:[], M:[1.0528, 0.7461, 0.9472, 0.8518, 1.1482], q:[0.5741, 0.3731], qb:[0.4788, 0.7751], phi:[0.4497]] t^2.24 + t^2.56 + t^2.7 + t^2.84 + t^3.16 + t^3.44 + t^3.59 + t^3.9 + t^4.05 + t^4.19 + t^4.22 + t^4.48 + t^4.51 + 2*t^4.79 + t^4.94 + t^5.08 + t^5.11 + t^5.25 + 2*t^5.4 + t^5.54 + t^5.68 + t^5.83 + t^5.86 - t^6. - t^4.35/y - t^4.35*y detail
980 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_2M_3$ 0.6303 0.778 0.8102 [X:[], M:[1.0252, 0.8855, 1.1145, 0.7961, 1.2039], q:[0.5321, 0.4427], qb:[0.3534, 0.7612], phi:[0.4777]] t^2.39 + t^2.66 + t^2.87 + t^3.08 + t^3.34 + t^3.55 + t^3.61 + t^3.82 + t^3.88 + 2*t^4.09 + t^4.36 + t^4.63 + t^4.78 + t^5.04 + t^5.25 + t^5.31 + t^5.52 + t^5.73 + 2*t^5.94 - t^6. - t^4.43/y - t^4.43*y detail
987 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_2\phi_1q_2^2$ 0.6669 0.8242 0.8092 [X:[], M:[0.9689, 0.7812, 0.922, 0.8281, 1.1719], q:[0.6405, 0.3906], qb:[0.4375, 0.7812], phi:[0.4375]] t^2.34 + t^2.48 + t^2.63 + t^2.77 + t^2.91 + t^3.52 + t^3.66 + t^3.8 + t^3.94 + t^4.27 + t^4.41 + t^4.55 + t^4.69 + t^4.83 + 2*t^4.97 + 2*t^5.11 + t^5.16 + 2*t^5.25 + t^5.39 + 2*t^5.53 + t^5.67 + t^5.81 - t^6. - t^4.31/y - t^4.31*y detail
988 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_3M_6$ 0.6613 0.8142 0.8122 [X:[], M:[1.0162, 0.7677, 0.9447, 0.8391, 1.1609, 1.0553], q:[0.6, 0.3838], qb:[0.4553, 0.777], phi:[0.446]] t^2.3 + t^2.52 + t^2.68 + t^3.05 + t^3.17 + t^3.48 + t^3.64 + t^3.86 + t^4.07 + t^4.13 + t^4.29 + t^4.5 + t^4.61 + t^4.82 + t^4.94 + t^4.98 + t^5.03 + t^5.19 + t^5.35 + t^5.47 + t^5.68 + t^5.72 + t^5.84 + t^5.94 - 2*t^6. - t^4.34/y - t^4.34*y detail
981 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ 0.6487 0.7997 0.8112 [X:[], M:[1.0791, 0.8087, 1.0561, 0.8316, 1.1684], q:[0.5166, 0.4043], qb:[0.4273, 0.764], phi:[0.4719]] t^2.43 + t^2.49 + t^2.83 + t^3.17 + t^3.24 + t^3.51 + 2*t^3.84 + t^3.91 + t^3.98 + t^4.18 + t^4.25 + t^4.52 + t^4.85 + t^4.92 + t^4.99 + t^5.26 + t^5.33 + t^5.59 + 2*t^5.66 - t^6. - t^4.42/y - t^4.42*y detail
982 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_3^2$ 0.6596 0.8132 0.8111 [X:[], M:[1.0406, 0.7923, 1.0, 0.8329, 1.1671], q:[0.5632, 0.3962], qb:[0.4368, 0.7709], phi:[0.4582]] t^2.38 + t^2.5 + t^2.75 + t^3. + t^3.12 + t^3.5 + t^3.75 + t^3.87 + 2*t^4. + t^4.25 + t^4.37 + 2*t^4.75 + t^4.88 + t^5. + t^5.13 + t^5.25 + t^5.38 + 2*t^5.5 + t^5.75 + t^5.87 - t^6. - t^4.37/y - t^4.37*y detail
986 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_2\tilde{q}_1$ 0.6898 0.8671 0.7956 [X:[], M:[0.9905, 0.7331, 0.8747, 0.8489, 1.1511, 0.7202], q:[0.6429, 0.3665], qb:[0.4824, 0.7846], phi:[0.4309]] t^2.16 + t^2.2 + t^2.55 + t^2.59 + t^2.62 + t^2.97 + t^3.45 + t^3.49 + t^4.19 + t^4.28 + 2*t^4.32 + t^4.36 + t^4.4 + t^4.67 + t^4.71 + 2*t^4.75 + 2*t^4.78 + t^4.82 + t^5.09 + 2*t^5.13 + t^5.15 + 2*t^5.17 + t^5.21 + t^5.25 + t^5.56 + t^5.6 + t^5.61 + t^5.65 + t^5.69 + t^5.94 - 2*t^6. - t^4.29/y - t^4.29*y detail
989 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1q_2^2$ 0.6851 0.8556 0.8007 [X:[], M:[0.9791, 0.7612, 0.9034, 0.8369, 1.1631, 0.8037], q:[0.6403, 0.3806], qb:[0.4563, 0.7825], phi:[0.4351]] t^2.28 + t^2.41 + t^2.51 + t^2.61 + t^2.71 + t^2.94 + t^3.49 + t^3.82 + t^4.04 + t^4.27 + t^4.37 + t^4.57 + t^4.6 + t^4.69 + t^4.79 + t^4.82 + t^4.89 + t^4.92 + t^4.99 + 2*t^5.02 + 2*t^5.12 + t^5.15 + 2*t^5.22 + t^5.32 + t^5.35 + t^5.42 + t^5.55 + t^5.65 + t^5.87 + t^5.9 - 2*t^6. - t^4.31/y - t^4.31*y detail
984 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1\tilde{q}_2^2$ + $ M_6\phi_1^2$ 0.6579 0.8086 0.8137 [X:[], M:[1.0037, 0.7433, 0.9002, 0.8467, 1.1533, 1.1265], q:[0.6247, 0.3716], qb:[0.4751, 0.7816], phi:[0.4367]] t^2.23 + t^2.54 + t^2.7 + t^3.01 + t^3.38 + t^3.46 + t^3.54 + t^3.85 + t^4.16 + t^4.22 + t^4.3 + t^4.46 + t^4.61 + t^4.77 + t^4.93 + t^5.06 + t^5.08 + t^5.24 + t^5.4 + t^5.61 + t^5.71 + t^5.77 + t^5.92 - 2*t^6. - t^4.31/y - t^4.31*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
371 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ 0.7297 0.8972 0.8133 [X:[], M:[0.8794, 0.9008, 0.7647, 1.0155, 0.9845], q:[0.6702, 0.4504], qb:[0.5651, 0.5341], phi:[0.445]] t^2.29 + t^2.64 + t^2.67 + t^2.7 + t^2.95 + t^3.05 + t^3.61 + t^4.04 + t^4.29 + t^4.38 + t^4.54 + t^4.59 + t^4.63 + t^4.7 + t^4.73 + t^4.93 + t^4.95 + t^4.96 + t^5. + t^5.04 + t^5.25 + t^5.28 + t^5.31 + 2*t^5.34 + t^5.36 + t^5.37 + t^5.4 + t^5.62 + t^5.72 + t^5.91 - 3*t^6. - t^4.34/y - t^4.34*y detail