Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57361 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4803 1.6874 0.8773 [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1], [-1, -1, 0, 0]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -4 t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^6.005 + t^6.034 + t^6.038 + t^6.043 + t^6.062 + t^6.105 + t^6.21 + t^6.504 + t^6.597 + t^6.602 + t^6.719 + t^6.738 + t^6.805 + t^6.81 + 2*t^6.848 + t^6.853 + t^6.915 + t^6.953 + t^6.958 + t^6.992 + t^6.996 + t^7.058 + 2*t^7.063 + t^7.067 + t^7.101 + t^7.106 + t^7.168 + t^7.206 + 2*t^7.211 + t^7.215 + t^7.247 - t^7.45 + t^7.462 + t^7.548 + t^7.55 + t^7.553 + t^7.555 + t^7.557 + t^7.56 + t^7.564 - t^7.572 + t^7.658 + t^7.66 + t^7.662 + t^7.677 + t^7.696 + t^7.701 + t^7.705 + t^7.768 + t^7.782 + t^7.801 + 2*t^7.806 + 2*t^7.81 + t^7.892 + t^7.911 + t^7.916 + 2*t^7.949 + 2*t^7.954 + t^7.958 - 3*t^8.021 + t^8.055 + t^8.059 + t^8.083 + t^8.126 - t^8.13 + 2*t^8.164 + 3*t^8.169 + t^8.173 + t^8.231 + t^8.291 + t^8.296 + t^8.3 + t^8.305 + t^8.379 + t^8.384 + t^8.388 + t^8.401 + t^8.405 + t^8.41 + t^8.42 + t^8.511 + t^8.513 + t^8.515 + t^8.517 - t^8.529 + t^8.544 + t^8.549 + t^8.553 + t^8.558 + t^8.563 + t^8.568 + t^8.62 - t^8.622 - t^8.627 + t^8.635 + t^8.654 + t^8.656 + t^8.659 + 2*t^8.661 + t^8.663 + t^8.665 - t^8.744 - 3*t^8.764 - 3*t^8.768 - t^8.773 + t^8.778 + t^8.783 + t^8.798 + t^8.802 + t^8.807 + t^8.811 + t^8.826 + t^8.831 + t^8.869 - 2*t^8.873 - t^8.878 + 2*t^8.907 + 2*t^8.912 + t^8.916 + t^8.936 + t^8.974 - t^8.979 + t^8.873/y^2 - t^8.979/y^2 - t^3.958/y - t^4.916/y - t^5.979/y - t^6.722/y - t^6.726/y - t^6.831/y - t^6.936/y - t^6.975/y - t^6.979/y - t^7.679/y - t^7.684/y + t^7.785/y + t^7.894/y - t^7.933/y - t^7.999/y + t^8.038/y + t^8.042/y + t^8.532/y + t^8.637/y + t^8.642/y - t^8.742/y - t^8.747/y + t^8.781/y + (2*t^8.785)/y + t^8.79/y - t^8.852/y + t^8.895/y - t^8.957/y - t^3.958*y - t^4.916*y - t^5.979*y - t^6.722*y - t^6.726*y - t^6.831*y - t^6.936*y - t^6.975*y - t^6.979*y - t^7.679*y - t^7.684*y + t^7.785*y + t^7.894*y - t^7.933*y - t^7.999*y + t^8.038*y + t^8.042*y + t^8.532*y + t^8.637*y + t^8.642*y - t^8.742*y - t^8.747*y + t^8.781*y + 2*t^8.785*y + t^8.79*y - t^8.852*y + t^8.895*y - t^8.957*y + t^8.873*y^2 - t^8.979*y^2 (g4*t^2.021)/(g1*g3) + t^2.764/(g1*g2) + (g1*g3*t^2.768)/g4^6 + t^2.873/g4^3 + (g4^6*t^3.017)/(g1*g2) + g1*g3*t^3.021 + (g4^5*t^3.975)/(g1*g2) + (g4^2*t^4.042)/(g1^2*g3^2) + g4^2*t^4.084 + (g4^5*t^4.19)/(g1*g3) + (g1*g2*t^4.194)/g4 + (g4*t^4.785)/(g1^2*g2*g3) + t^4.789/g4^5 + t^4.894/(g1*g3*g4^2) + (g4^4*t^4.933)/(g1*g2) + (g1*g3*t^4.937)/g4^2 + (g4^7*t^5.038)/(g1^2*g2*g3) + g4*t^5.042 + (g4^4*t^5.147)/(g1*g3) + (g1*g2*t^5.152)/g4^2 + t^5.528/(g1^2*g2^2) + (g3*t^5.532)/(g2*g4^6) + (g1^2*g3^2*t^5.537)/g4^12 + (g2*g3^2*t^5.546)/g4 + t^5.637/(g1*g2*g4^3) + (g4^11*t^5.639)/(g1*g2^2*g3^2) + (g1*g3*t^5.642)/g4^9 + (g1*g4^5*t^5.644)/(g2*g3) + t^5.747/g4^6 + (g2^2*g3*t^5.761)/g4 + (g4^6*t^5.781)/(g1^2*g2^2) + (g3*t^5.785)/g2 + (g1^2*g3^2*t^5.79)/g4^6 + (g4^3*t^5.89)/(g1*g2) + (g1*g3*t^5.895)/g4^3 - 4*t^6. - (g1^2*g2*g3*t^6.005)/g4^6 + (g4^12*t^6.034)/(g1^2*g2^2) + (g3*g4^6*t^6.038)/g2 + g1^2*g3^2*t^6.043 + (g4^3*t^6.062)/(g1^3*g3^3) + (g4^3*t^6.105)/(g1*g3) + (g4^6*t^6.21)/(g1^2*g3^2) + (g2*g3^2*t^6.504)/g4^2 + (g4^10*t^6.597)/(g1*g2^2*g3^2) + (g1*g4^4*t^6.602)/(g2*g3) + (g2^2*g3*t^6.719)/g4^2 + (g4^5*t^6.738)/(g1^2*g2^2) + (g4^2*t^6.805)/(g1^3*g2*g3^2) + t^6.81/(g1*g3*g4^4) + (2*g4^2*t^6.848)/(g1*g2) + (g1*g3*t^6.853)/g4^4 + t^6.915/(g1^2*g3^2*g4) + (g4^5*t^6.953)/(g1^2*g2*g3) + t^6.958/g4 + (g4^11*t^6.992)/(g1^2*g2^2) + (g3*g4^5*t^6.996)/g2 + (g4^8*t^7.058)/(g1^3*g2*g3^2) + (2*g4^2*t^7.063)/(g1*g3) + (g1*g2*t^7.067)/g4^4 + (g4^8*t^7.101)/(g1*g2) + g1*g3*g4^2*t^7.106 + (g4^5*t^7.168)/(g1^2*g3^2) + (g4^11*t^7.206)/(g1^2*g2*g3) + 2*g4^5*t^7.211 + (g1^2*g2*g3*t^7.215)/g4 + (g3^3*t^7.247)/g4^3 - (g4^6*t^7.45)/(g2^2*g3) + (g2*g3^2*t^7.462)/g4^3 + (g4*t^7.548)/(g1^3*g2^2*g3) + (g4^15*t^7.55)/(g1^3*g2^3*g3^3) + t^7.553/(g1*g2*g4^5) + (g4^9*t^7.555)/(g1*g2^2*g3^2) + (g1*g3*t^7.557)/g4^11 + (g1*g4^3*t^7.56)/(g2*g3) + (g1^3*t^7.564)/g4^3 - (g1*g2^2*g3^2*t^7.572)/g4^6 + t^7.658/(g1^2*g2*g3*g4^2) + (g4^12*t^7.66)/(g1^2*g2^2*g3^3) + t^7.662/g4^8 + (g2^2*g3*t^7.677)/g4^3 + (g4^4*t^7.696)/(g1^2*g2^2) + (g3*t^7.701)/(g2*g4^2) + (g1^2*g3^2*t^7.705)/g4^8 + t^7.768/(g1*g3*g4^5) + (g2^2*t^7.782)/g1 + (g4^7*t^7.801)/(g1^3*g2^2*g3) + (2*g4*t^7.806)/(g1*g2) + (2*g1*g3*t^7.81)/g4^5 + (g2^3*t^7.892)/g4^3 + (g4^4*t^7.911)/(g1^2*g2*g3) + t^7.916/g4^2 + (2*g4^10*t^7.949)/(g1^2*g2^2) + (2*g3*g4^4*t^7.954)/g2 + (g1^2*g3^2*t^7.958)/g4^2 - (3*g4*t^8.021)/(g1*g3) + (g4^13*t^8.055)/(g1^3*g2^2*g3) + (g4^7*t^8.059)/(g1*g2) + (g4^4*t^8.083)/(g1^4*g3^4) + (g4^4*t^8.126)/(g1^2*g3^2) - (g2*t^8.13)/(g3*g4^2) + (2*g4^10*t^8.164)/(g1^2*g2*g3) + 3*g4^4*t^8.169 + (g1^2*g2*g3*t^8.173)/g4^2 + (g4^7*t^8.231)/(g1^3*g3^3) + t^8.291/(g1^3*g2^3) + (g3*t^8.296)/(g1*g2^2*g4^6) + (g1*g3^2*t^8.3)/(g2*g4^12) + (g1^3*g3^3*t^8.305)/g4^18 + (g4^10*t^8.379)/(g1^2*g3^2) + (g2*g4^4*t^8.384)/g3 + (g1^2*g2^2*t^8.388)/g4^2 + t^8.401/(g1^2*g2^2*g4^3) + (g3*t^8.405)/(g2*g4^9) + (g1^2*g3^2*t^8.41)/g4^15 + (g2*g3^2*t^8.42)/g4^4 + t^8.511/(g1*g2*g4^6) + (g4^8*t^8.513)/(g1*g2^2*g3^2) + (g1*g3*t^8.515)/g4^12 + (g1*g4^2*t^8.517)/(g2*g3) - (g1*g2^2*g3^2*t^8.529)/g4^7 + (g4^6*t^8.544)/(g1^3*g2^3) + (g3*t^8.549)/(g1*g2^2) + (g1*g3^2*t^8.553)/(g2*g4^6) + (g1^3*g3^3*t^8.558)/g4^12 + (g3^2*g4^5*t^8.563)/g1 + (g1*g2*g3^3*t^8.568)/g4 + t^8.62/g4^9 - (g4^5*t^8.622)/(g2*g3^2) - (g1^2*t^8.627)/(g3*g4) + (g2^2*g3*t^8.635)/g4^4 + (g4^3*t^8.654)/(g1^2*g2^2) + (g4^17*t^8.656)/(g1^2*g2^3*g3^2) + (g3*t^8.659)/(g2*g4^3) + (2*g4^11*t^8.661)/(g2^2*g3) + (g1^2*g3^2*t^8.663)/g4^9 + (g1^2*g4^5*t^8.665)/g2 - (g1*g2^3*g3*t^8.744)/g4^7 - (3*t^8.764)/(g1*g2) - (3*g1*g3*t^8.768)/g4^6 - (g1^3*g2*g3^2*t^8.773)/g4^12 + (g2*g3*g4^5*t^8.778)/g1 + (g1*g2^2*g3^2*t^8.783)/g4 + (g4^12*t^8.798)/(g1^3*g2^3) + (g3*g4^6*t^8.802)/(g1*g2^2) + (g1*g3^2*t^8.807)/g2 + (g1^3*g3^3*t^8.811)/g4^6 + (g4^3*t^8.826)/(g1^4*g2*g3^3) + t^8.831/(g1^2*g3^2*g4^3) + (g4^3*t^8.869)/(g1^2*g2*g3) - (2*t^8.873)/g4^3 - (g1^2*g2*g3*t^8.878)/g4^9 + (2*g4^9*t^8.907)/(g1^2*g2^2) + (2*g3*g4^3*t^8.912)/g2 + (g1^2*g3^2*t^8.916)/g4^3 + t^8.936/(g1^3*g3^3) + (g4^6*t^8.974)/(g1^3*g2*g3^2) - t^8.979/(g1*g3) + t^8.873/(g4^3*y^2) - t^8.979/(g1*g3*y^2) - t^3.958/(g4*y) - t^4.916/(g4^2*y) - t^5.979/(g1*g3*y) - t^6.722/(g1*g2*g4*y) - (g1*g3*t^6.726)/(g4^7*y) - t^6.831/(g4^4*y) - t^6.936/(g1*g3*g4*y) - (g4^5*t^6.975)/(g1*g2*y) - (g1*g3*t^6.979)/(g4*y) - t^7.679/(g1*g2*g4^2*y) - (g1*g3*t^7.684)/(g4^8*y) + (g4*t^7.785)/(g1^2*g2*g3*y) + t^7.894/(g1*g3*g4^2*y) - (g4^4*t^7.933)/(g1*g2*y) - (g4*t^7.999)/(g1^2*g3^2*y) + (g4^7*t^8.038)/(g1^2*g2*g3*y) + (g4*t^8.042)/y + (g3*t^8.532)/(g2*g4^6*y) + t^8.637/(g1*g2*g4^3*y) + (g1*g3*t^8.642)/(g4^9*y) - t^8.742/(g1^2*g2*g3*y) - t^8.747/(g4^6*y) + (g4^6*t^8.781)/(g1^2*g2^2*y) + (2*g3*t^8.785)/(g2*y) + (g1^2*g3^2*t^8.79)/(g4^6*y) - t^8.852/(g1*g3*g4^3*y) + (g1*g3*t^8.895)/(g4^3*y) - t^8.957/(g1^2*g3^2*y) - (t^3.958*y)/g4 - (t^4.916*y)/g4^2 - (t^5.979*y)/(g1*g3) - (t^6.722*y)/(g1*g2*g4) - (g1*g3*t^6.726*y)/g4^7 - (t^6.831*y)/g4^4 - (t^6.936*y)/(g1*g3*g4) - (g4^5*t^6.975*y)/(g1*g2) - (g1*g3*t^6.979*y)/g4 - (t^7.679*y)/(g1*g2*g4^2) - (g1*g3*t^7.684*y)/g4^8 + (g4*t^7.785*y)/(g1^2*g2*g3) + (t^7.894*y)/(g1*g3*g4^2) - (g4^4*t^7.933*y)/(g1*g2) - (g4*t^7.999*y)/(g1^2*g3^2) + (g4^7*t^8.038*y)/(g1^2*g2*g3) + g4*t^8.042*y + (g3*t^8.532*y)/(g2*g4^6) + (t^8.637*y)/(g1*g2*g4^3) + (g1*g3*t^8.642*y)/g4^9 - (t^8.742*y)/(g1^2*g2*g3) - (t^8.747*y)/g4^6 + (g4^6*t^8.781*y)/(g1^2*g2^2) + (2*g3*t^8.785*y)/g2 + (g1^2*g3^2*t^8.79*y)/g4^6 - (t^8.852*y)/(g1*g3*g4^3) + (g1*g3*t^8.895*y)/g4^3 - (t^8.957*y)/(g1^2*g3^2) + (t^8.873*y^2)/g4^3 - (t^8.979*y^2)/(g1*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58417 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4757 1.6866 0.875 [X:[1.3316], M:[0.9973, 0.6737, 0.9661], q:[0.483, 0.5142], qb:[0.5197, 0.4778], phi:[0.3342]] t^2.02 + t^2.88 + t^2.9 + t^2.98 + t^2.99 + t^3.01 + t^3.89 + t^3.99 + t^4.01 + t^4.04 + t^4.1 + t^4.89 + t^4.9 + t^4.92 + t^4.98 + t^5. + 2*t^5.01 + t^5.03 + t^5.11 + t^5.43 + t^5.44 + t^5.54 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.86 + t^5.87 + 2*t^5.89 + t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
58415 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ 1.4217 1.6321 0.871 [X:[1.2767], M:[0.9722, 0.836, 1.164], q:[0.5576, 0.3657], qb:[0.4703, 0.4366], phi:[0.3616]] t^2.41 + t^2.51 + t^2.92 + t^2.98 + t^3.25 + t^3.49 + t^3.59 + t^3.83 + t^4.07 + t^4.17 + t^4.58 + t^4.68 + t^4.81 + t^4.92 + t^4.95 + t^5.02 + t^5.12 + t^5.15 + t^5.22 + t^5.25 + t^5.32 + t^5.39 + t^5.49 + t^5.53 + t^5.66 + t^5.76 + t^5.83 + t^5.9 + t^5.97 - 2*t^6. - t^4.08/y - t^5.17/y - t^4.08*y - t^5.17*y detail
58416 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.4161 1.6081 0.8806 [X:[1.3971], M:[0.7369, 0.7703, 1.0383], q:[0.711, 0.4095], qb:[0.5521, 0.5187], phi:[0.3014]] t^2.21 + t^2.31 + t^2.71 + t^2.78 + t^3.11 + t^3.69 + t^3.79 + t^4.19 + t^4.42 + t^4.52 + 2*t^4.59 + t^4.62 + 2*t^4.69 + t^4.92 + t^5. + t^5.02 + t^5.33 + 2*t^5.43 + t^5.49 + 2*t^5.5 + t^5.57 + t^5.6 + t^5.67 + t^5.77 + t^5.83 + t^5.9 - 3*t^6. - t^3.9/y - t^4.81/y - t^3.9*y - t^4.81*y detail
58420 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4786 1.6834 0.8784 [X:[1.3618], M:[0.9222, 0.6732, 0.9572], q:[0.5389, 0.5038], qb:[0.5389, 0.5038], phi:[0.3191]] t^2.02 + t^2.77 + 2*t^2.87 + t^3.02 + t^3.13 + t^4.04 + 3*t^4.09 + t^4.19 + t^4.79 + 2*t^4.89 + t^4.94 + 3*t^5.04 + 2*t^5.15 + t^5.53 + 2*t^5.6 + 2*t^5.64 + 2*t^5.7 + 3*t^5.74 + t^5.79 + t^5.89 - 2*t^6. - t^3.96/y - t^4.91/y - t^5.98/y - t^3.96*y - t^4.91*y - t^5.98*y detail
58421 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5011 1.7285 0.8685 [X:[1.3619], M:[0.922, 0.6732, 0.922, 0.6732], q:[0.5208, 0.5208], qb:[0.5572, 0.487], phi:[0.319]] 2*t^2.02 + 2*t^2.77 + t^2.87 + 2*t^3.02 + 3*t^4.04 + t^4.09 + 2*t^4.19 + 4*t^4.79 + 2*t^4.89 + 2*t^4.94 + 4*t^5.04 + 2*t^5.15 + 3*t^5.53 + t^5.55 + 4*t^5.64 + t^5.74 + t^5.76 + 3*t^5.79 + 2*t^5.89 - 6*t^6. - t^3.96/y - t^4.91/y - (2*t^5.98)/y - t^3.96*y - t^4.91*y - 2*t^5.98*y detail
58418 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4757 1.6795 0.8787 [X:[1.3791], M:[0.8822, 0.6701, 0.913], q:[0.5734, 0.5426], qb:[0.5443, 0.4767], phi:[0.3105]] t^2.01 + t^2.65 + t^2.74 + t^2.79 + t^3.06 + t^3.15 + t^4.02 + t^4.08 + t^4.14 + t^4.19 + t^4.28 + t^4.66 + t^4.75 + t^4.8 + t^4.92 + t^5.01 + t^5.07 + t^5.12 + t^5.16 + t^5.22 + t^5.29 + t^5.39 + t^5.42 + t^5.44 + t^5.48 + t^5.53 + t^5.59 + t^5.63 + t^5.7 + t^5.8 + t^5.85 + t^5.89 + t^5.94 - 3*t^6. - t^3.93/y - t^4.86/y - t^5.94/y - t^3.93*y - t^4.86*y - t^5.94*y detail
58419 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4783 1.6847 0.8775 [X:[1.3728], M:[0.8947, 0.6734, 0.8933], q:[0.5119, 0.5133], qb:[0.5933, 0.4997], phi:[0.3136]] t^2.02 + 2*t^2.68 + t^2.82 + t^3.03 + t^3.04 + t^3.98 + t^4.04 + t^4.12 + 2*t^4.26 + 2*t^4.7 + t^4.84 + 2*t^4.92 + t^5.05 + t^5.06 + 2*t^5.2 + 2*t^5.36 + t^5.37 + t^5.5 + t^5.51 + t^5.55 + t^5.56 + t^5.65 + t^5.71 + 3*t^5.72 + 2*t^5.86 - 4*t^6. - t^3.94/y - t^4.88/y - t^5.96/y - t^3.94*y - t^4.88*y - t^5.96*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47893 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4759 1.6818 0.8776 [X:[1.3444], M:[0.9513, 0.6879], q:[0.5244, 0.4922], qb:[0.5244, 0.4922], phi:[0.3278]] t^2.064 + t^2.854 + t^2.95 + t^2.953 + 2*t^3.05 + 3*t^4.033 + t^4.127 + t^4.13 + t^4.917 + t^4.92 + t^5.014 + 3*t^5.017 + 3*t^5.113 + 2*t^5.51 + 2*t^5.606 + t^5.708 + t^5.804 + t^5.807 + t^5.901 + t^5.903 + t^5.906 - 2*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y detail