Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58419 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4783 1.6847 0.8775 [X:[1.3728], M:[0.8947, 0.6734, 0.8933], q:[0.5119, 0.5133], qb:[0.5933, 0.4997], phi:[0.3136]] [X:[[0, 0, 4]], M:[[1, 2, -12], [-1, -2, 2], [-1, 1, -1]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -4 t^2.02 + 2*t^2.68 + t^2.82 + t^3.03 + t^3.04 + t^3.98 + t^4.04 + t^4.12 + 2*t^4.26 + 2*t^4.7 + t^4.84 + 2*t^4.92 + t^5.05 + t^5.06 + 2*t^5.2 + 2*t^5.36 + t^5.37 + t^5.5 + t^5.51 + t^5.55 + t^5.56 + t^5.65 + t^5.71 + 3*t^5.72 + 2*t^5.86 - 4*t^6. + t^6.06 + 2*t^6.07 + t^6.08 + t^6.14 + t^6.28 + t^6.49 + t^6.5 + 2*t^6.66 + 2*t^6.72 + 3*t^6.8 + t^6.86 + 3*t^6.94 + 2*t^7.01 + t^7.07 + 3*t^7.08 + t^7.15 + t^7.16 + t^7.22 + t^7.29 + 2*t^7.3 + t^7.32 + 2*t^7.38 + t^7.39 + 2*t^7.43 + 2*t^7.44 + t^7.52 + t^7.53 + t^7.57 + 3*t^7.6 + t^7.61 + t^7.67 + t^7.73 + 3*t^7.74 + 3*t^7.88 + 2*t^7.95 + 3*t^7.96 - 2*t^8.02 + 2*t^8.04 + 2*t^8.05 + t^8.08 + 2*t^8.09 + t^8.16 + t^8.18 + 2*t^8.19 + 2*t^8.23 + 4*t^8.24 + t^8.3 + 2*t^8.33 + t^8.37 + t^8.38 + t^8.39 + 2*t^8.4 + t^8.41 + t^8.47 + t^8.51 + 3*t^8.54 + t^8.55 + 3*t^8.59 + t^8.6 - 7*t^8.68 - t^8.69 + 2*t^8.74 + 3*t^8.75 + 3*t^8.76 - t^8.83 + t^8.88 + 2*t^8.89 + 3*t^8.9 - t^8.97 + t^8.82/y^2 - t^8.96/y^2 - t^3.94/y - t^4.88/y - t^5.96/y - t^6.62/y - t^6.63/y - t^6.76/y - t^6.9/y - (2*t^6.98)/y - t^7.56/y - t^7.57/y + t^7.7/y + t^7.84/y - t^7.92/y - t^7.98/y + t^8.05/y + t^8.06/y + t^8.36/y + t^8.5/y + t^8.51/y - t^8.64/y - t^8.65/y + t^8.71/y + (3*t^8.72)/y - t^8.78/y + t^8.86/y - t^8.92/y - t^3.94*y - t^4.88*y - t^5.96*y - t^6.62*y - t^6.63*y - t^6.76*y - t^6.9*y - 2*t^6.98*y - t^7.56*y - t^7.57*y + t^7.7*y + t^7.84*y - t^7.92*y - t^7.98*y + t^8.05*y + t^8.06*y + t^8.36*y + t^8.5*y + t^8.51*y - t^8.64*y - t^8.65*y + t^8.71*y + 3*t^8.72*y - t^8.78*y + t^8.86*y - t^8.92*y + t^8.82*y^2 - t^8.96*y^2 (g3^2*t^2.02)/(g1*g2^2) + (g1*g2^2*t^2.68)/g3^12 + (g2*t^2.68)/(g1*g3) + t^2.82/g3^6 + (g2*g3^11*t^3.03)/g1 + g1*g2^2*t^3.04 + (g2*g3^9*t^3.98)/g1 + (g3^4*t^4.04)/(g1^2*g2^4) + g3^4*t^4.12 + (g1*t^4.26)/(g2*g3) + (g3^10*t^4.26)/(g1*g2^2) + t^4.7/g3^10 + (g3*t^4.7)/(g1^2*g2) + t^4.84/(g1*g2^2*g3^4) + (g1*g2^2*t^4.92)/g3^4 + (g2*g3^7*t^4.92)/g1 + (g3^13*t^5.05)/(g1^2*g2) + g3^2*t^5.06 + (g1*t^5.2)/(g2*g3^3) + (g3^8*t^5.2)/(g1*g2^2) + (g2^3*t^5.36)/g3^13 + (g2^2*t^5.36)/(g1^2*g3^2) + (g1^2*g2^4*t^5.37)/g3^24 + (g2*t^5.5)/(g1*g3^7) + (g1*g2^2*t^5.51)/g3^18 + (g3^20*t^5.55)/(g1*g2^2) + (g1*g3^9*t^5.56)/g2 + t^5.65/g3^12 + (g2^2*g3^10*t^5.71)/g1^2 + (g1^2*g2^4*t^5.72)/g3^12 + (2*g2^3*t^5.72)/g3 + (g1*g2^2*t^5.86)/g3^6 + (g2*g3^5*t^5.86)/g1 - 3*t^6. - (g1^2*g2*t^6.)/g3^11 + (g3^6*t^6.06)/(g1^3*g2^6) + g2^3*g3^11*t^6.07 + (g2^2*g3^22*t^6.07)/g1^2 + g1^2*g2^4*t^6.08 + (g3^6*t^6.14)/(g1*g2^2) + (g3^12*t^6.28)/(g1^2*g2^4) + (g3^18*t^6.49)/(g1*g2^2) + (g1*g3^7*t^6.5)/g2 + (g2^3*t^6.66)/g3^3 + (g2^2*g3^8*t^6.66)/g1^2 + t^6.72/(g1*g2^2*g3^8) + (g3^3*t^6.72)/(g1^3*g2^3) + (g1*g2^2*t^6.8)/g3^8 + (2*g2*g3^3*t^6.8)/g1 + t^6.86/(g1^2*g2^4*g3^2) + (2*t^6.94)/g3^2 + (g3^9*t^6.94)/(g1^2*g2) + g2^3*g3^9*t^7.01 + (g2^2*g3^20*t^7.01)/g1^2 + (g3^15*t^7.07)/(g1^3*g2^3) + (g1*t^7.08)/(g2*g3^7) + (2*g3^4*t^7.08)/(g1*g2^2) + (g2*g3^15*t^7.15)/g1 + g1*g2^2*g3^4*t^7.16 + (g3^10*t^7.22)/(g1^2*g2^4) + (g3^21*t^7.29)/(g1^2*g2) + (g1^2*g2*t^7.3)/g3 + g3^10*t^7.3 + (g2^6*t^7.32)/g3^6 + t^7.38/g1^3 + (g2*t^7.38)/(g1*g3^11) + (g1*g2^2*t^7.39)/g3^22 + (g3^16*t^7.43)/(g1*g2^2) + (g3^27*t^7.43)/(g1^3*g2^3) + (g1^3*t^7.44)/g3^6 + (g1*g3^5*t^7.44)/g2 + t^7.52/(g1^2*g2*g3^5) + t^7.53/g3^16 + (g3^22*t^7.57)/(g1^2*g2^4) + (2*g2^3*t^7.6)/g3^5 + (g2^2*g3^6*t^7.6)/g1^2 + (g1^2*g2^4*t^7.61)/g3^16 + t^7.67/(g1*g2^2*g3^10) + (g3^12*t^7.73)/g1^3 + (g1*g2^2*t^7.74)/g3^10 + (2*g2*g3*t^7.74)/g1 + (2*t^7.88)/g3^4 + (g3^7*t^7.88)/(g1^2*g2) + (2*g2^2*g3^18*t^7.95)/g1^2 + (g1^2*g2^4*t^7.96)/g3^4 + 2*g2^3*g3^7*t^7.96 - (2*g3^2*t^8.02)/(g1*g2^2) + (g2^4*t^8.04)/(g1*g3^14) + (g2^3*t^8.04)/(g1^3*g3^3) + (g1^3*g2^6*t^8.05)/g3^36 + (g1*g2^5*t^8.05)/g3^25 + (g3^8*t^8.08)/(g1^4*g2^8) + (g2*g3^13*t^8.09)/g1 + (g3^24*t^8.09)/g1^3 + (g3^8*t^8.16)/(g1^2*g2^4) + (g2^2*t^8.18)/(g1^2*g3^8) + (g1^2*g2^4*t^8.19)/g3^30 + (g2^3*t^8.19)/g3^19 + (2*g3^19*t^8.23)/(g1^2*g2) + (g1^2*g2*t^8.24)/g3^3 + 3*g3^8*t^8.24 + (g3^14*t^8.3)/(g1^3*g2^6) + (g1*g2^2*t^8.33)/g3^24 + (g2*t^8.33)/(g1*g3^13) + (g3^14*t^8.37)/(g1*g2^2) + (g1*g3^3*t^8.38)/g2 + (g2^3*g3^9*t^8.39)/g1^3 + (g1*g2^5*t^8.4)/g3^13 + (g2^4*t^8.4)/(g1*g3^2) + (g1^3*g2^6*t^8.41)/g3^24 + t^8.47/g3^18 + (g3^20*t^8.51)/(g1^2*g2^4) + (2*g2^3*t^8.54)/g3^7 + (g2^2*g3^4*t^8.54)/g1^2 + (g1^2*g2^4*t^8.55)/g3^18 + 2*g3^20*t^8.59 + (g3^31*t^8.59)/(g1^2*g2) + g1^2*g2*g3^9*t^8.6 - (4*g1*g2^2*t^8.68)/g3^12 - (3*g2*t^8.68)/(g1*g3) - (g1^3*g2^3*t^8.69)/g3^23 + t^8.74/(g1^2*g2^4*g3^6) + (g3^5*t^8.74)/(g1^4*g2^5) + (2*g2^4*g3^10*t^8.75)/g1 + (g2^3*g3^21*t^8.75)/g1^3 + (g1^3*g2^6*t^8.76)/g3^12 + (2*g1*g2^5*t^8.76)/g3 - t^8.82/g3^6 + (g3^5*t^8.82)/(g1^2*g2) - (g1^2*g2*t^8.83)/g3^17 + t^8.88/(g1^3*g2^6) + (2*g2^2*g3^16*t^8.89)/g1^2 + (g1^2*g2^4*t^8.9)/g3^6 + 2*g2^3*g3^5*t^8.9 - t^8.96/(g1*g2^2) + (g3^11*t^8.96)/(g1^3*g2^3) - (g1*t^8.97)/(g2*g3^11) + t^8.82/(g3^6*y^2) - t^8.96/(g1*g2^2*y^2) - t^3.94/(g3^2*y) - t^4.88/(g3^4*y) - t^5.96/(g1*g2^2*y) - (g2*t^6.62)/(g1*g3^3*y) - (g1*g2^2*t^6.63)/(g3^14*y) - t^6.76/(g3^8*y) - t^6.9/(g1*g2^2*g3^2*y) - (g1*g2^2*t^6.98)/(g3^2*y) - (g2*g3^9*t^6.98)/(g1*y) - (g2*t^7.56)/(g1*g3^5*y) - (g1*g2^2*t^7.57)/(g3^16*y) + (g3*t^7.7)/(g1^2*g2*y) + t^7.84/(g1*g2^2*g3^4*y) - (g2*g3^7*t^7.92)/(g1*y) - (g3^2*t^7.98)/(g1^2*g2^4*y) + (g3^13*t^8.05)/(g1^2*g2*y) + (g3^2*t^8.06)/y + (g2^3*t^8.36)/(g3^13*y) + (g2*t^8.5)/(g1*g3^7*y) + (g1*g2^2*t^8.51)/(g3^18*y) - t^8.64/(g1^2*g2*g3*y) - t^8.65/(g3^12*y) + (g2^2*g3^10*t^8.71)/(g1^2*y) + (g1^2*g2^4*t^8.72)/(g3^12*y) + (2*g2^3*t^8.72)/(g3*y) - t^8.78/(g1*g2^2*g3^6*y) + (g1*g2^2*t^8.86)/(g3^6*y) - t^8.92/(g1^2*g2^4*y) - (t^3.94*y)/g3^2 - (t^4.88*y)/g3^4 - (t^5.96*y)/(g1*g2^2) - (g2*t^6.62*y)/(g1*g3^3) - (g1*g2^2*t^6.63*y)/g3^14 - (t^6.76*y)/g3^8 - (t^6.9*y)/(g1*g2^2*g3^2) - (g1*g2^2*t^6.98*y)/g3^2 - (g2*g3^9*t^6.98*y)/g1 - (g2*t^7.56*y)/(g1*g3^5) - (g1*g2^2*t^7.57*y)/g3^16 + (g3*t^7.7*y)/(g1^2*g2) + (t^7.84*y)/(g1*g2^2*g3^4) - (g2*g3^7*t^7.92*y)/g1 - (g3^2*t^7.98*y)/(g1^2*g2^4) + (g3^13*t^8.05*y)/(g1^2*g2) + g3^2*t^8.06*y + (g2^3*t^8.36*y)/g3^13 + (g2*t^8.5*y)/(g1*g3^7) + (g1*g2^2*t^8.51*y)/g3^18 - (t^8.64*y)/(g1^2*g2*g3) - (t^8.65*y)/g3^12 + (g2^2*g3^10*t^8.71*y)/g1^2 + (g1^2*g2^4*t^8.72*y)/g3^12 + (2*g2^3*t^8.72*y)/g3 - (t^8.78*y)/(g1*g2^2*g3^6) + (g1*g2^2*t^8.86*y)/g3^6 - (t^8.92*y)/(g1^2*g2^4) + (t^8.82*y^2)/g3^6 - (t^8.96*y^2)/(g1*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57361 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4803 1.6874 0.8773 [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y detail