Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58418 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4757 | 1.6795 | 0.8787 | [X:[1.3791], M:[0.8822, 0.6701, 0.913], q:[0.5734, 0.5426], qb:[0.5443, 0.4767], phi:[0.3105]] | [X:[[0, 0, 2]], M:[[-2, -1, 5], [2, 1, -10], [1, 2, -11]], q:[[1, 1, -5], [-2, -2, 11]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | t^2.01 + t^2.65 + t^2.74 + t^2.79 + t^3.06 + t^3.15 + t^4.02 + t^4.08 + t^4.14 + t^4.19 + t^4.28 + t^4.66 + t^4.75 + t^4.8 + t^4.92 + t^5.01 + t^5.07 + t^5.12 + t^5.16 + t^5.22 + t^5.29 + t^5.39 + t^5.42 + t^5.44 + t^5.48 + t^5.53 + t^5.59 + t^5.63 + t^5.7 + t^5.8 + t^5.85 + t^5.89 + t^5.94 - 3*t^6. + t^6.03 + t^6.12 + t^6.15 + t^6.21 + 2*t^6.3 + t^6.36 + t^6.56 + t^6.67 + t^6.76 + t^6.78 + 2*t^6.82 + t^6.84 + 2*t^6.88 + 2*t^6.93 + t^6.99 + t^7.02 + 3*t^7.08 + t^7.14 + t^7.17 + t^7.2 + 2*t^7.23 + t^7.25 + 2*t^7.29 + t^7.3 + t^7.34 + t^7.4 + t^7.44 + t^7.45 + 2*t^7.49 + t^7.54 + t^7.57 + t^7.6 + t^7.64 + t^7.66 + t^7.68 + t^7.69 + t^7.72 + t^7.75 + t^7.77 + 2*t^7.81 + 2*t^7.86 + t^7.9 + t^7.94 + 2*t^7.96 + t^7.98 - 2*t^8.01 + t^8.03 + t^8.04 + t^8.07 + t^8.09 + t^8.12 + 3*t^8.16 + 2*t^8.18 + 3*t^8.22 + t^8.24 + 3*t^8.27 + 2*t^8.31 + t^8.33 + t^8.35 + 2*t^8.37 + 2*t^8.38 + t^8.42 + t^8.44 + t^8.48 + t^8.5 + t^8.54 - t^8.55 + t^8.57 + t^8.58 + t^8.59 + t^8.63 - 3*t^8.65 + 2*t^8.68 + t^8.69 - 3*t^8.74 + t^8.77 + t^8.78 - t^8.79 + t^8.83 - t^8.85 + t^8.86 + t^8.89 + t^8.91 - t^8.94 + t^8.95 + t^8.79/y^2 - t^8.94/y^2 - t^3.93/y - t^4.86/y - t^5.94/y - t^6.58/y - t^6.67/y - t^6.73/y - t^6.87/y - t^6.99/y - t^7.08/y - t^7.51/y - t^7.6/y + t^7.75/y + t^7.8/y - t^7.95/y - t^8.01/y + t^8.07/y + t^8.16/y + t^8.39/y + t^8.44/y + t^8.53/y - t^8.59/y - t^8.68/y + t^8.7/y - t^8.74/y + (2*t^8.8)/y + t^8.85/y - t^8.88/y + t^8.89/y - t^3.93*y - t^4.86*y - t^5.94*y - t^6.58*y - t^6.67*y - t^6.73*y - t^6.87*y - t^6.99*y - t^7.08*y - t^7.51*y - t^7.6*y + t^7.75*y + t^7.8*y - t^7.95*y - t^8.01*y + t^8.07*y + t^8.16*y + t^8.39*y + t^8.44*y + t^8.53*y - t^8.59*y - t^8.68*y + t^8.7*y - t^8.74*y + 2*t^8.8*y + t^8.85*y - t^8.88*y + t^8.89*y + t^8.79*y^2 - t^8.94*y^2 | (g1^2*g2*t^2.01)/g3^10 + (g3^5*t^2.65)/(g1^2*g2) + (g1*g2^2*t^2.74)/g3^11 + t^2.79/g3^3 + (g3^11*t^3.06)/(g1^2*g2) + (g1*g2^2*t^3.15)/g3^5 + (g1^4*g2^2*t^4.02)/g3^20 + (g1*g2^2*t^4.08)/g3^6 + g3^2*t^4.14 + (g3^10*t^4.19)/(g1*g2^2) + (g1^2*g2*t^4.28)/g3^6 + t^4.66/g3^5 + (g1^3*g2^3*t^4.75)/g3^21 + (g1^2*g2*t^4.8)/g3^13 + (g3^9*t^4.92)/(g1^2*g2) + (g1*g2^2*t^5.01)/g3^7 + g3*t^5.07 + (g3^9*t^5.12)/(g1*g2^2) + (g1^3*g2^3*t^5.16)/g3^15 + (g1^2*g2*t^5.22)/g3^7 + (g3^10*t^5.29)/(g1^4*g2^2) + (g2*t^5.39)/(g1*g3^6) + (g1*g2^2*t^5.42)/g3 + (g3^2*t^5.44)/(g1^2*g2) + (g1^2*g2^4*t^5.48)/g3^22 + (g1*g2^2*t^5.53)/g3^14 + t^5.59/g3^6 + (g1^2*g2*t^5.63)/g3 + (g3^16*t^5.7)/(g1^4*g2^2) + (g2*t^5.8)/g1 + (g3^8*t^5.85)/(g1^2*g2) + (g1^2*g2^4*t^5.89)/g3^16 + (g1*g2^2*t^5.94)/g3^8 - 3*t^6. + (g1^6*g2^3*t^6.03)/g3^30 + (g3^22*t^6.12)/(g1^4*g2^2) + (g1^2*g2*t^6.15)/g3^8 + (g2*g3^6*t^6.21)/g1 + (g1^4*g2^2*t^6.3)/g3^16 + (g1^2*g2^4*t^6.3)/g3^10 + (g1*g2^2*t^6.36)/g3^2 + (g1^2*g2*t^6.56)/g3^2 + (g1^2*g2*t^6.67)/g3^15 + (g1^5*g2^4*t^6.76)/g3^31 + (g3^7*t^6.78)/(g1^2*g2) + (g1^4*g2^2*t^6.82)/g3^23 + (g1^2*g2^4*t^6.82)/g3^17 + (g3^15*t^6.84)/(g1^3*g2^3) + (2*g1*g2^2*t^6.88)/g3^9 + (2*t^6.93)/g3 + (g3^7*t^6.99)/(g1*g2^2) + (g1^3*g2^3*t^7.02)/g3^17 + (2*g1^2*g2*t^7.08)/g3^9 + (g2^3*t^7.08)/g3^3 + (g2*g3^5*t^7.14)/g1 + (g1^5*g2^4*t^7.17)/g3^25 + (g3^13*t^7.2)/(g1^2*g2) + (g1^4*g2^2*t^7.23)/g3^17 + (g1^2*g2^4*t^7.23)/g3^11 + (g3^21*t^7.25)/(g1^3*g2^3) + (2*g1*g2^2*t^7.29)/g3^3 + t^7.3/(g1^2*g2) + g3^5*t^7.34 + (g1*g2^2*t^7.4)/g3^16 + (g1^3*g2^3*t^7.44)/g3^11 + t^7.45/g3^8 + (g1^4*g2^5*t^7.49)/g3^32 + (g1^2*g2*t^7.49)/g3^3 + (g1^3*g2^3*t^7.54)/g3^24 + (g3^14*t^7.57)/(g1^4*g2^2) + (g1^2*g2*t^7.6)/g3^16 + (g1^4*g2^2*t^7.64)/g3^11 + (g2*t^7.66)/(g1*g3^2) + (g3^30*t^7.68)/(g1^6*g2^6) + (g1^3*t^7.69)/g3^3 + (g3^6*t^7.72)/(g1^2*g2) + (g1^2*g2^4*t^7.75)/g3^18 + (g3^14*t^7.77)/(g1^3*g2^3) + (2*g1*g2^2*t^7.81)/g3^10 + (2*t^7.86)/g3^2 + (g1^4*g2^5*t^7.9)/g3^26 + (g3^15*t^7.94)/(g1^6*g2^3) + (2*g1^3*g2^3*t^7.96)/g3^18 + (g3^20*t^7.98)/(g1^4*g2^2) - (2*g1^2*g2*t^8.01)/g3^10 + t^8.03/(g1^3*g3) + (g1^8*g2^4*t^8.04)/g3^40 - (g1*t^8.07)/(g2*g3^2) + (2*g2*g3^4*t^8.07)/g1 + (g3^7*t^8.09)/(g1^4*g2^2) + (g2^3*t^8.12)/g3^17 + (g1^4*g2^2*t^8.16)/g3^18 + (2*g1^2*g2^4*t^8.16)/g3^12 + (g2*t^8.18)/(g1*g3^9) + (g3^20*t^8.18)/(g1^3*g2^3) + (g1^3*g2^6*t^8.22)/g3^33 + (2*g1*g2^2*t^8.22)/g3^4 + t^8.24/(g1^2*g2*g3) + (g1^2*g2^4*t^8.27)/g3^25 + 2*g3^4*t^8.27 + (g1^6*g2^3*t^8.31)/g3^26 + (g1^4*g2^5*t^8.31)/g3^20 + (g1*g2^2*t^8.33)/g3^17 + (g3^21*t^8.35)/(g1^6*g2^3) + (2*g1^3*g2^3*t^8.37)/g3^12 + t^8.38/g3^9 + (g3^20*t^8.38)/(g1^2*g2^4) + (g1^2*g2*t^8.42)/g3^4 + (g3^5*t^8.44)/g1^3 + (g2*g3^10*t^8.48)/g1 + (g3^13*t^8.5)/(g1^4*g2^2) + (g2^3*t^8.54)/g3^11 - (g3^21*t^8.55)/(g1^5*g2^4) + (g1^4*g2^2*t^8.57)/g3^12 + (g1^2*g2^4*t^8.58)/g3^6 + (g2*t^8.59)/(g1*g3^3) + (g1^3*g2^6*t^8.63)/g3^27 - (3*g3^5*t^8.65)/(g1^2*g2) + (g1^4*g2^2*t^8.68)/g3^25 + (g1^2*g2^4*t^8.68)/g3^19 + g3^10*t^8.69 - (3*g1*g2^2*t^8.74)/g3^11 - (g3^21*t^8.76)/(g1^4*g2^5) + (g3^27*t^8.76)/(g1^6*g2^3) + (g1^7*g2^5*t^8.77)/g3^41 + (g1^3*g2^3*t^8.78)/g3^6 - t^8.79/g3^3 + (g1^6*g2^3*t^8.83)/g3^33 - (g3^5*t^8.85)/(g1*g2^2) + (g3^11*t^8.86)/g1^3 + (g1^3*g2^3*t^8.89)/g3^19 + (g3^19*t^8.91)/(g1^4*g2^2) - (g1^2*g2*t^8.94)/g3^11 + (g2^3*t^8.95)/g3^5 + t^8.79/(g3^3*y^2) - (g1^2*g2*t^8.94)/(g3^11*y^2) - t^3.93/(g3*y) - t^4.86/(g3^2*y) - (g1^2*g2*t^5.94)/(g3^11*y) - (g3^4*t^6.58)/(g1^2*g2*y) - (g1*g2^2*t^6.67)/(g3^12*y) - t^6.73/(g3^4*y) - (g1^2*g2*t^6.87)/(g3^12*y) - (g3^10*t^6.99)/(g1^2*g2*y) - (g1*g2^2*t^7.08)/(g3^6*y) - (g3^3*t^7.51)/(g1^2*g2*y) - (g1*g2^2*t^7.6)/(g3^13*y) + (g1^3*g2^3*t^7.75)/(g3^21*y) + (g1^2*g2*t^7.8)/(g3^13*y) - (g1^4*g2^2*t^7.95)/(g3^21*y) - (g1*g2^2*t^8.01)/(g3^7*y) + (g3*t^8.07)/y + (g1^3*g2^3*t^8.16)/(g3^15*y) + (g2*t^8.39)/(g1*g3^6*y) + (g3^2*t^8.44)/(g1^2*g2*y) + (g1*g2^2*t^8.53)/(g3^14*y) - t^8.59/(g3^6*y) - (g1^3*g2^3*t^8.68)/(g3^22*y) + (g3^16*t^8.7)/(g1^4*g2^2*y) - (g1^2*g2*t^8.74)/(g3^14*y) + (2*g2*t^8.8)/(g1*y) + (g3^8*t^8.85)/(g1^2*g2*y) - (g1^4*g2^2*t^8.88)/(g3^22*y) + (g1^2*g2^4*t^8.89)/(g3^16*y) - (t^3.93*y)/g3 - (t^4.86*y)/g3^2 - (g1^2*g2*t^5.94*y)/g3^11 - (g3^4*t^6.58*y)/(g1^2*g2) - (g1*g2^2*t^6.67*y)/g3^12 - (t^6.73*y)/g3^4 - (g1^2*g2*t^6.87*y)/g3^12 - (g3^10*t^6.99*y)/(g1^2*g2) - (g1*g2^2*t^7.08*y)/g3^6 - (g3^3*t^7.51*y)/(g1^2*g2) - (g1*g2^2*t^7.6*y)/g3^13 + (g1^3*g2^3*t^7.75*y)/g3^21 + (g1^2*g2*t^7.8*y)/g3^13 - (g1^4*g2^2*t^7.95*y)/g3^21 - (g1*g2^2*t^8.01*y)/g3^7 + g3*t^8.07*y + (g1^3*g2^3*t^8.16*y)/g3^15 + (g2*t^8.39*y)/(g1*g3^6) + (g3^2*t^8.44*y)/(g1^2*g2) + (g1*g2^2*t^8.53*y)/g3^14 - (t^8.59*y)/g3^6 - (g1^3*g2^3*t^8.68*y)/g3^22 + (g3^16*t^8.7*y)/(g1^4*g2^2) - (g1^2*g2*t^8.74*y)/g3^14 + (2*g2*t^8.8*y)/g1 + (g3^8*t^8.85*y)/(g1^2*g2) - (g1^4*g2^2*t^8.88*y)/g3^22 + (g1^2*g2^4*t^8.89*y)/g3^16 + (t^8.79*y^2)/g3^3 - (g1^2*g2*t^8.94*y^2)/g3^11 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61252 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ | 1.322 | 1.5128 | 0.8739 | [X:[1.3, 1.35], M:[0.7499, 1.0, 1.0472], q:[0.6491, 0.3519], qb:[0.601, 0.2982], phi:[0.35]] | t^2.25 + t^2.84 + t^3. + t^3.14 + t^3.15 + t^3.89 + t^3.9 + t^3.91 + 2*t^4.05 + t^4.5 + t^4.64 + t^4.8 + t^4.94 + t^4.96 + t^5.25 + t^5.39 + t^5.4 + t^5.55 + t^5.68 + t^5.69 + t^5.83 + t^5.84 + t^5.85 + t^5.98 + t^5.99 - 2*t^6. - t^4.05/y - t^5.1/y - t^4.05*y - t^5.1*y | detail | |
61078 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 1.4752 | 1.678 | 0.8791 | [X:[1.3776], M:[0.8852, 0.6708, 0.9336], q:[0.5791, 0.5307], qb:[0.5358, 0.4873], phi:[0.3112]] | t^2.01 + t^2.66 + 2*t^2.8 + t^3.05 + t^3.2 + t^4.02 + 3*t^4.13 + t^4.28 + t^4.67 + 2*t^4.81 + t^4.92 + 3*t^5.07 + 2*t^5.21 + t^5.31 + 3*t^5.46 + 3*t^5.6 + t^5.61 + t^5.71 + 2*t^5.85 - t^6. - t^3.93/y - t^4.87/y - t^5.95/y - t^3.93*y - t^4.87*y - t^5.95*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57361 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.4803 | 1.6874 | 0.8773 | [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] | t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y | detail |