Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58421 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5011 1.7285 0.8685 [X:[1.3619], M:[0.922, 0.6732, 0.922, 0.6732], q:[0.5208, 0.5208], qb:[0.5572, 0.487], phi:[0.319]] [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1], [-1, -1, 0, 0], [1, 1, 0, -5]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{3}$, ${ }M_{4}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -6 2*t^2.02 + 2*t^2.77 + t^2.87 + 2*t^3.02 + 3*t^4.04 + t^4.09 + 2*t^4.19 + 4*t^4.79 + 2*t^4.89 + 2*t^4.94 + 4*t^5.04 + 2*t^5.15 + 3*t^5.53 + t^5.55 + 4*t^5.64 + t^5.74 + t^5.76 + 3*t^5.79 + 2*t^5.89 - 6*t^6. + 3*t^6.05 + 4*t^6.06 + 2*t^6.11 + 3*t^6.21 + t^6.51 + 2*t^6.6 + t^6.72 - t^6.75 + 6*t^6.81 + 2*t^6.85 + 3*t^6.91 + 4*t^6.96 + 8*t^7.06 + 2*t^7.11 + 3*t^7.17 + 4*t^7.21 + t^7.25 - t^7.45 + t^7.46 + 6*t^7.55 + 4*t^7.56 + 7*t^7.66 + t^7.68 + 3*t^7.7 + 2*t^7.76 + 2*t^7.78 + 8*t^7.81 + t^7.89 + 4*t^7.91 + 4*t^7.96 - 10*t^8.02 + 4*t^8.07 + 5*t^8.08 + 2*t^8.12 + 4*t^8.17 + 4*t^8.23 + 4*t^8.3 + 3*t^8.38 + 3*t^8.4 + t^8.42 + 2*t^8.51 + 2*t^8.52 + 4*t^8.56 + 2*t^8.57 + t^8.61 + t^8.63 + 3*t^8.66 + 4*t^8.67 - 10*t^8.77 + 2*t^8.78 + 4*t^8.81 + 8*t^8.82 - t^8.87 + 3*t^8.92 + 4*t^8.93 + 2*t^8.98 + t^8.87/y^2 - (2*t^8.98)/y^2 - t^3.96/y - t^4.91/y - (2*t^5.98)/y - (2*t^6.72)/y - t^6.83/y - (2*t^6.93)/y - (2*t^6.98)/y + t^7.04/y - (2*t^7.68)/y + (3*t^7.79)/y + (2*t^7.89)/y - (3*t^8.)/y + (4*t^8.04)/y + t^8.53/y + (2*t^8.64)/y - (4*t^8.74)/y + (4*t^8.79)/y - (2*t^8.85)/y + (2*t^8.89)/y - (3*t^8.95)/y - t^3.96*y - t^4.91*y - 2*t^5.98*y - 2*t^6.72*y - t^6.83*y - 2*t^6.93*y - 2*t^6.98*y + t^7.04*y - 2*t^7.68*y + 3*t^7.79*y + 2*t^7.89*y - 3*t^8.*y + 4*t^8.04*y + t^8.53*y + 2*t^8.64*y - 4*t^8.74*y + 4*t^8.79*y - 2*t^8.85*y + 2*t^8.89*y - 3*t^8.95*y + t^8.87*y^2 - 2*t^8.98*y^2 (g1*g2*t^2.02)/g4^5 + (g4*t^2.02)/(g1*g3) + t^2.77/(g1*g2) + (g1*g3*t^2.77)/g4^6 + t^2.87/g4^3 + g1*g3*t^3.02 + (g4^6*t^3.02)/(g1*g2) + (g1^2*g2^2*t^4.04)/g4^10 + (g2*t^4.04)/(g3*g4^4) + (g4^2*t^4.04)/(g1^2*g3^2) + g4^2*t^4.09 + (g1*g2*t^4.19)/g4 + (g4^5*t^4.19)/(g1*g3) + (g1^2*g2*g3*t^4.79)/g4^11 + (2*t^4.79)/g4^5 + (g4*t^4.79)/(g1^2*g2*g3) + (g1*g2*t^4.89)/g4^8 + t^4.89/(g1*g3*g4^2) + (g1*g3*t^4.94)/g4^2 + (g4^4*t^4.94)/(g1*g2) + (g1^2*g2*g3*t^5.04)/g4^5 + 2*g4*t^5.04 + (g4^7*t^5.04)/(g1^2*g2*g3) + (g1*g2*t^5.15)/g4^2 + (g4^4*t^5.15)/(g1*g3) + t^5.53/(g1^2*g2^2) + (g1^2*g3^2*t^5.53)/g4^12 + (g3*t^5.53)/(g2*g4^6) + (g2*g3^2*t^5.55)/g4 + (g1*g3*t^5.64)/g4^9 + t^5.64/(g1*g2*g4^3) + (g1*g4^5*t^5.64)/(g2*g3) + (g4^11*t^5.64)/(g1*g2^2*g3^2) + t^5.74/g4^6 + (g2^2*g3*t^5.76)/g4 + (g3*t^5.79)/g2 + (g1^2*g3^2*t^5.79)/g4^6 + (g4^6*t^5.79)/(g1^2*g2^2) + (g1*g3*t^5.89)/g4^3 + (g4^3*t^5.89)/(g1*g2) - 4*t^6. - (g1^2*g2*g3*t^6.)/g4^6 - (g4^6*t^6.)/(g1^2*g2*g3) + g1^2*g3^2*t^6.05 + (g3*g4^6*t^6.05)/g2 + (g4^12*t^6.05)/(g1^2*g2^2) + (g1^3*g2^3*t^6.06)/g4^15 + (g1*g2^2*t^6.06)/(g3*g4^9) + (g2*t^6.06)/(g1*g3^2*g4^3) + (g4^3*t^6.06)/(g1^3*g3^3) + (g1*g2*t^6.11)/g4^3 + (g4^3*t^6.11)/(g1*g3) + (g2*t^6.21)/g3 + (g1^2*g2^2*t^6.21)/g4^6 + (g4^6*t^6.21)/(g1^2*g3^2) + (g2*g3^2*t^6.51)/g4^2 + (g1*g4^4*t^6.6)/(g2*g3) + (g4^10*t^6.6)/(g1*g2^2*g3^2) + (g2^2*g3*t^6.72)/g4^2 - (g3*t^6.75)/(g2*g4) + (g1^3*g2^2*g3*t^6.81)/g4^16 + (2*g1*g2*t^6.81)/g4^10 + (2*t^6.81)/(g1*g3*g4^4) + (g4^2*t^6.81)/(g1^3*g2*g3^2) + (g1*g3*t^6.85)/g4^4 + (g4^2*t^6.85)/(g1*g2) + (g1^2*g2^2*t^6.91)/g4^13 + (g2*t^6.91)/(g3*g4^7) + t^6.91/(g1^2*g3^2*g4) + (g1^2*g2*g3*t^6.96)/g4^7 + (2*t^6.96)/g4 + (g4^5*t^6.96)/(g1^2*g2*g3) + (g1^3*g2^2*g3*t^7.06)/g4^10 + (3*g1*g2*t^7.06)/g4^4 + (3*g4^2*t^7.06)/(g1*g3) + (g4^8*t^7.06)/(g1^3*g2*g3^2) + g1*g3*g4^2*t^7.11 + (g4^8*t^7.11)/(g1*g2) + (g1^2*g2^2*t^7.17)/g4^7 + (g2*t^7.17)/(g3*g4) + (g4^5*t^7.17)/(g1^2*g3^2) + (g1^2*g2*g3*t^7.21)/g4 + 2*g4^5*t^7.21 + (g4^11*t^7.21)/(g1^2*g2*g3) + (g3^3*t^7.25)/g4^3 - (g4^6*t^7.45)/(g2^2*g3) + (g2*g3^2*t^7.46)/g4^3 + (g1^3*g2*g3^2*t^7.55)/g4^17 + (2*g1*g3*t^7.55)/g4^11 + (2*t^7.55)/(g1*g2*g4^5) + (g4*t^7.55)/(g1^3*g2^2*g3) + (g1^3*t^7.56)/g4^3 + (g1*g4^3*t^7.56)/(g2*g3) + (g4^9*t^7.56)/(g1*g2^2*g3^2) + (g4^15*t^7.56)/(g1^3*g2^3*g3^3) + (g1^2*t^7.66)/g3 + (g1^2*g2*g3*t^7.66)/g4^14 + (2*t^7.66)/g4^8 + t^7.66/(g1^2*g2*g3*g4^2) + (g4^6*t^7.66)/(g2*g3^2) + (g4^12*t^7.66)/(g1^2*g2^2*g3^3) + (g2^2*g3*t^7.68)/g4^3 + (g1^2*g3^2*t^7.7)/g4^8 + (g3*t^7.7)/(g2*g4^2) + (g4^4*t^7.7)/(g1^2*g2^2) + (g1*g2*t^7.76)/g4^11 + t^7.76/(g1*g3*g4^5) + (g2^2*t^7.78)/g1 + (g1*g2^3*g3*t^7.78)/g4^6 + (g1^3*g2*g3^2*t^7.81)/g4^11 + (3*g1*g3*t^7.81)/g4^5 + (3*g4*t^7.81)/(g1*g2) + (g4^7*t^7.81)/(g1^3*g2^2*g3) + (g2^3*t^7.89)/g4^3 + (g1^2*g2*g3*t^7.91)/g4^8 + (2*t^7.91)/g4^2 + (g4^4*t^7.91)/(g1^2*g2*g3) + (g1^2*g3^2*t^7.96)/g4^2 + (2*g3*g4^4*t^7.96)/g2 + (g4^10*t^7.96)/(g1^2*g2^2) - (g1^3*g2^2*g3*t^8.02)/g4^11 - (4*g1*g2*t^8.02)/g4^5 - (4*g4*t^8.02)/(g1*g3) - (g4^7*t^8.02)/(g1^3*g2*g3^2) + (g1^3*g2*g3^2*t^8.07)/g4^5 + g1*g3*g4*t^8.07 + (g4^7*t^8.07)/(g1*g2) + (g4^13*t^8.07)/(g1^3*g2^2*g3) + (g1^4*g2^4*t^8.08)/g4^20 + (g1^2*g2^3*t^8.08)/(g3*g4^14) + (g2^2*t^8.08)/(g3^2*g4^8) + (g2*t^8.08)/(g1^2*g3^3*g4^2) + (g4^4*t^8.08)/(g1^4*g3^4) + (g1^2*g2^2*t^8.12)/g4^8 + (g4^4*t^8.12)/(g1^2*g3^2) + (g1^2*g2*g3*t^8.17)/g4^2 + 2*g4^4*t^8.17 + (g4^10*t^8.17)/(g1^2*g2*g3) + (g1^3*g2^3*t^8.23)/g4^11 + (g1*g2^2*t^8.23)/(g3*g4^5) + (g2*g4*t^8.23)/(g1*g3^2) + (g4^7*t^8.23)/(g1^3*g3^3) + t^8.3/(g1^3*g2^3) + (g1^3*g3^3*t^8.3)/g4^18 + (g1*g3^2*t^8.3)/(g2*g4^12) + (g3*t^8.3)/(g1*g2^2*g4^6) + (g1^2*g2^2*t^8.38)/g4^2 + (g2*g4^4*t^8.38)/g3 + (g4^10*t^8.38)/(g1^2*g3^2) + (g1^2*g3^2*t^8.4)/g4^15 + (g3*t^8.4)/(g2*g4^9) + t^8.4/(g1^2*g2^2*g4^3) + (g2*g3^2*t^8.42)/g4^4 + (g1*g3*t^8.51)/g4^12 + t^8.51/(g1*g2*g4^6) + (g1*g4^2*t^8.52)/(g2*g3) + (g4^8*t^8.52)/(g1*g2^2*g3^2) + (g3*t^8.56)/(g1*g2^2) + (g1^3*g3^3*t^8.56)/g4^12 + (g1*g3^2*t^8.56)/(g2*g4^6) + (g4^6*t^8.56)/(g1^3*g2^3) + (g1*g2*g3^3*t^8.57)/g4 + (g3^2*g4^5*t^8.57)/g1 + t^8.61/g4^9 + (g2^2*g3*t^8.63)/g4^4 + (g1^2*g3^2*t^8.66)/g4^9 + (g3*t^8.66)/(g2*g4^3) + (g4^3*t^8.66)/(g1^2*g2^2) + (g1^2*g4^5*t^8.67)/g2 + (2*g4^11*t^8.67)/(g2^2*g3) + (g4^17*t^8.67)/(g1^2*g2^3*g3^2) - (4*t^8.77)/(g1*g2) - (g1^3*g2*g3^2*t^8.77)/g4^12 - (4*g1*g3*t^8.77)/g4^6 - (g4^6*t^8.77)/(g1^3*g2^2*g3) + (g1*g2^2*g3^2*t^8.78)/g4 + (g2*g3*g4^5*t^8.78)/g1 + (g1*g3^2*t^8.81)/g2 + (g1^3*g3^3*t^8.81)/g4^6 + (g3*g4^6*t^8.81)/(g1*g2^2) + (g4^12*t^8.81)/(g1^3*g2^3) + (g1^4*g2^3*g3*t^8.82)/g4^21 + (2*g1^2*g2^2*t^8.82)/g4^15 + (2*g2*t^8.82)/(g3*g4^9) + (2*t^8.82)/(g1^2*g3^2*g4^3) + (g4^3*t^8.82)/(g1^4*g2*g3^3) - t^8.87/g4^3 + (g1^2*g3^2*t^8.92)/g4^3 + (g3*g4^3*t^8.92)/g2 + (g4^9*t^8.92)/(g1^2*g2^2) + t^8.93/(g1^3*g3^3) + (g1^3*g2^3*t^8.93)/g4^18 + (g1*g2^2*t^8.93)/(g3*g4^12) + (g2*t^8.93)/(g1*g3^2*g4^6) + (g1^3*g2^2*g3*t^8.98)/g4^12 + (g4^6*t^8.98)/(g1^3*g2*g3^2) + t^8.87/(g4^3*y^2) - t^8.98/(g1*g3*y^2) - (g1*g2*t^8.98)/(g4^6*y^2) - t^3.96/(g4*y) - t^4.91/(g4^2*y) - t^5.98/(g1*g3*y) - (g1*g2*t^5.98)/(g4^6*y) - (g1*g3*t^6.72)/(g4^7*y) - t^6.72/(g1*g2*g4*y) - t^6.83/(g4^4*y) - (g1*g2*t^6.93)/(g4^7*y) - t^6.93/(g1*g3*g4*y) - (g1*g3*t^6.98)/(g4*y) - (g4^5*t^6.98)/(g1*g2*y) + (g2*t^7.04)/(g3*g4^4*y) - (g1*g3*t^7.68)/(g4^8*y) - t^7.68/(g1*g2*g4^2*y) + (g1^2*g2*g3*t^7.79)/(g4^11*y) + t^7.79/(g4^5*y) + (g4*t^7.79)/(g1^2*g2*g3*y) + (g1*g2*t^7.89)/(g4^8*y) + t^7.89/(g1*g3*g4^2*y) - (g1^2*g2^2*t^8.)/(g4^11*y) - (g2*t^8.)/(g3*g4^5*y) - (g4*t^8.)/(g1^2*g3^2*y) + (g1^2*g2*g3*t^8.04)/(g4^5*y) + (2*g4*t^8.04)/y + (g4^7*t^8.04)/(g1^2*g2*g3*y) + (g3*t^8.53)/(g2*g4^6*y) + (g1*g3*t^8.64)/(g4^9*y) + t^8.64/(g1*g2*g4^3*y) - t^8.74/(g1^2*g2*g3*y) - (g1^2*g2*g3*t^8.74)/(g4^12*y) - (2*t^8.74)/(g4^6*y) + (2*g3*t^8.79)/(g2*y) + (g1^2*g3^2*t^8.79)/(g4^6*y) + (g4^6*t^8.79)/(g1^2*g2^2*y) - (g1*g2*t^8.85)/(g4^9*y) - t^8.85/(g1*g3*g4^3*y) + (g1*g3*t^8.89)/(g4^3*y) + (g4^3*t^8.89)/(g1*g2*y) - t^8.95/(g1^2*g3^2*y) - (g1^2*g2^2*t^8.95)/(g4^12*y) - (g2*t^8.95)/(g3*g4^6*y) - (t^3.96*y)/g4 - (t^4.91*y)/g4^2 - (t^5.98*y)/(g1*g3) - (g1*g2*t^5.98*y)/g4^6 - (g1*g3*t^6.72*y)/g4^7 - (t^6.72*y)/(g1*g2*g4) - (t^6.83*y)/g4^4 - (g1*g2*t^6.93*y)/g4^7 - (t^6.93*y)/(g1*g3*g4) - (g1*g3*t^6.98*y)/g4 - (g4^5*t^6.98*y)/(g1*g2) + (g2*t^7.04*y)/(g3*g4^4) - (g1*g3*t^7.68*y)/g4^8 - (t^7.68*y)/(g1*g2*g4^2) + (g1^2*g2*g3*t^7.79*y)/g4^11 + (t^7.79*y)/g4^5 + (g4*t^7.79*y)/(g1^2*g2*g3) + (g1*g2*t^7.89*y)/g4^8 + (t^7.89*y)/(g1*g3*g4^2) - (g1^2*g2^2*t^8.*y)/g4^11 - (g2*t^8.*y)/(g3*g4^5) - (g4*t^8.*y)/(g1^2*g3^2) + (g1^2*g2*g3*t^8.04*y)/g4^5 + 2*g4*t^8.04*y + (g4^7*t^8.04*y)/(g1^2*g2*g3) + (g3*t^8.53*y)/(g2*g4^6) + (g1*g3*t^8.64*y)/g4^9 + (t^8.64*y)/(g1*g2*g4^3) - (t^8.74*y)/(g1^2*g2*g3) - (g1^2*g2*g3*t^8.74*y)/g4^12 - (2*t^8.74*y)/g4^6 + (2*g3*t^8.79*y)/g2 + (g1^2*g3^2*t^8.79*y)/g4^6 + (g4^6*t^8.79*y)/(g1^2*g2^2) - (g1*g2*t^8.85*y)/g4^9 - (t^8.85*y)/(g1*g3*g4^3) + (g1*g3*t^8.89*y)/g4^3 + (g4^3*t^8.89*y)/(g1*g2) - (t^8.95*y)/(g1^2*g3^2) - (g1^2*g2^2*t^8.95*y)/g4^12 - (g2*t^8.95*y)/(g3*g4^6) + (t^8.87*y^2)/g4^3 - (t^8.98*y^2)/(g1*g3) - (g1*g2*t^8.98*y^2)/g4^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57361 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4803 1.6874 0.8773 [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y detail