Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58417 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4757 1.6866 0.875 [X:[1.3316], M:[0.9973, 0.6737, 0.9661], q:[0.483, 0.5142], qb:[0.5197, 0.4778], phi:[0.3342]] [X:[[0, 0, 2]], M:[[0, 0, 3], [0, 0, -8], [-1, 1, -9]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.02 + t^2.88 + t^2.9 + t^2.98 + t^2.99 + t^3.01 + t^3.89 + t^3.99 + t^4.01 + t^4.04 + t^4.1 + t^4.89 + t^4.9 + t^4.92 + t^4.98 + t^5. + 2*t^5.01 + t^5.03 + t^5.11 + t^5.43 + t^5.44 + t^5.54 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.86 + t^5.87 + 2*t^5.89 + t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. + 2*t^6.02 + t^6.03 + t^6.06 - t^6.09 + t^6.43 + t^6.45 + t^6.54 + t^6.56 + t^6.77 + t^6.78 + t^6.86 + t^6.88 + 3*t^6.89 + t^6.91 + t^6.92 + t^6.94 + t^6.97 + 3*t^6.99 + t^7. + 2*t^7.02 + 2*t^7.03 + t^7.05 + t^7.08 + t^7.11 + t^7.31 + t^7.35 + t^7.45 + t^7.46 + t^7.56 + t^7.58 + t^7.64 + t^7.69 + 2*t^7.77 + 2*t^7.79 + t^7.8 + t^7.82 + 2*t^7.86 + 2*t^7.88 + 4*t^7.9 + 2*t^7.91 + t^7.93 + t^7.96 + t^7.97 + 5*t^7.99 + 2*t^8.01 - t^8.02 + 2*t^8.04 + t^8.05 + 2*t^8.08 + t^8.11 - t^8.13 + t^8.21 + t^8.31 + t^8.33 + t^8.4 + 2*t^8.42 + 2*t^8.44 + t^8.45 + t^8.51 + t^8.53 + t^8.54 - t^8.55 + t^8.66 - t^8.67 + t^8.68 + t^8.69 + t^8.74 + t^8.76 + 3*t^8.77 + 2*t^8.79 + t^8.8 + t^8.83 + t^8.85 + 3*t^8.87 - 2*t^8.88 + t^8.9 + 3*t^8.91 + 2*t^8.93 + t^8.94 + t^8.95 + 3*t^8.96 - 3*t^8.98 + t^8.99 - t^4./y - t^5.01/y - t^6.02/y - t^6.89/y - t^6.9/y - t^6.98/y - t^6.99/y - t^7.01/y - t^7.03/y - t^7.89/y + t^7.92/y + t^8.03/y - t^8.05/y + t^8.78/y + t^8.86/y + (2*t^8.87)/y + t^8.89/y + t^8.91/y - t^8.92/y + t^8.97/y + t^8.98/y - t^4.*y - t^5.01*y - t^6.02*y - t^6.89*y - t^6.9*y - t^6.98*y - t^6.99*y - t^7.01*y - t^7.03*y - t^7.89*y + t^7.92*y + t^8.03*y - t^8.05*y + t^8.78*y + t^8.86*y + 2*t^8.87*y + t^8.89*y + t^8.91*y - t^8.92*y + t^8.97*y + t^8.98*y t^2.02/g3^8 + (g2*t^2.88)/(g1*g3^3) + (g2*t^2.9)/(g1*g3^9) + g3^9*t^2.98 + g3^3*t^2.99 + t^3.01/g3^3 + (g2*t^3.89)/(g1*g3^4) + g3^2*t^3.99 + t^4.01/g3^4 + t^4.04/g3^16 + (g1*g3^8*t^4.1)/g2 + (g2*t^4.89)/(g1*g3^5) + (g2*t^4.9)/(g1*g3^11) + (g2*t^4.92)/(g1*g3^17) + g3^7*t^4.98 + g3*t^5. + (2*t^5.01)/g3^5 + t^5.03/g3^11 + (g1*g3^7*t^5.11)/g2 + (g1*g2^2*t^5.43)/g3 + (g3^2*t^5.44)/(g1^2*g2) + (g3^14*t^5.54)/(g1*g2^2) + (g1^2*g2*t^5.55)/g3 + (g2^2*t^5.76)/(g1^2*g3^6) + (g2^2*t^5.78)/(g1^2*g3^12) + (g2^2*t^5.8)/(g1^2*g3^18) + (g2*g3^6*t^5.86)/g1 + (g2*t^5.87)/g1 + (2*g2*t^5.89)/(g1*g3^6) + (g2*t^5.91)/(g1*g3^12) + g3^18*t^5.95 + g3^12*t^5.97 + 2*g3^6*t^5.98 - 3*t^6. + (2*t^6.02)/g3^6 + t^6.03/g3^12 + t^6.06/g3^24 - (g1*g3^12*t^6.09)/g2 + (g1*g2^2*t^6.43)/g3^2 + (g3*t^6.45)/(g1^2*g2) + (g3^13*t^6.54)/(g1*g2^2) + (g1^2*g2*t^6.56)/g3^2 + (g2^2*t^6.77)/(g1^2*g3^7) + (g2^2*t^6.78)/(g1^2*g3^13) + (g2*g3^5*t^6.86)/g1 + (g2*t^6.88)/(g1*g3) + (3*g2*t^6.89)/(g1*g3^7) + (g2*t^6.91)/(g1*g3^13) + (g2*t^6.92)/(g1*g3^19) + (g2*t^6.94)/(g1*g3^25) + g3^11*t^6.97 + 3*g3^5*t^6.99 + t^7./g3 + (2*t^7.02)/g3^7 + (2*t^7.03)/g3^13 + t^7.05/g3^19 + (g1*g3^17*t^7.08)/g2 + (g1*g3^5*t^7.11)/g2 + (g2^3*t^7.31)/g3^3 + t^7.35/(g1^3*g3^12) + (g1*g2^2*t^7.43)/g3^3 - (g3^6*t^7.43)/(g1^2*g2) + t^7.45/(g1^2*g2) + t^7.46/(g1^2*g2*g3^6) - g1^2*g2*g3^3*t^7.54 + (g3^12*t^7.54)/(g1*g2^2) + (g1^2*g2*t^7.56)/g3^3 + (g1^2*g2*t^7.58)/g3^9 + (g3^24*t^7.64)/g2^3 + (g1^3*t^7.69)/g3^3 + (2*g2^2*t^7.77)/(g1^2*g3^8) + (2*g2^2*t^7.79)/(g1^2*g3^14) + (g2^2*t^7.8)/(g1^2*g3^20) + (g2^2*t^7.82)/(g1^2*g3^26) + (2*g2*g3^4*t^7.86)/g1 + (2*g2*t^7.88)/(g1*g3^2) + (4*g2*t^7.9)/(g1*g3^8) + (2*g2*t^7.91)/(g1*g3^14) + (g2*t^7.93)/(g1*g3^20) + g3^16*t^7.96 + g3^10*t^7.97 + 5*g3^4*t^7.99 + (2*t^8.01)/g3^2 - t^8.02/g3^8 + (2*t^8.04)/g3^14 + t^8.05/g3^20 + t^8.08/g3^32 + (g1*g3^16*t^8.08)/g2 + (g1*g3^4*t^8.11)/g2 - (g1*t^8.13)/(g2*g3^2) + (g1^2*g3^16*t^8.21)/g2^2 + (g2^3*t^8.31)/g3^4 + t^8.33/(g1^3*g3) + g1*g2^2*g3^8*t^8.4 + (2*g3^11*t^8.42)/(g1^2*g2) + (2*g1*g2^2*t^8.44)/g3^4 + t^8.45/(g1^2*g2*g3) + (g3^23*t^8.51)/(g1*g2^2) + g1^2*g2*g3^8*t^8.53 + (g3^11*t^8.54)/(g1*g2^2) - g1^2*g2*g3^2*t^8.55 + (g1^2*g2*t^8.56)/g3^4 - (g3^5*t^8.56)/(g1*g2^2) + (g2^3*t^8.65)/(g1^3*g3^9) - (g3^17*t^8.65)/g2^3 + (g2^3*t^8.66)/(g1^3*g3^15) - g1^3*g3^2*t^8.67 + (g2^3*t^8.68)/(g1^3*g3^21) + (g2^3*t^8.69)/(g1^3*g3^27) + (g2^2*g3^3*t^8.74)/g1^2 + (g2^2*t^8.76)/(g1^2*g3^3) + (3*g2^2*t^8.77)/(g1^2*g3^9) + (2*g2^2*t^8.79)/(g1^2*g3^15) + (g2^2*t^8.8)/(g1^2*g3^21) + (g2*g3^15*t^8.83)/g1 + (g2*g3^9*t^8.85)/g1 + (3*g2*g3^3*t^8.87)/g1 - (2*g2*t^8.88)/(g1*g3^3) + (g2*t^8.9)/(g1*g3^9) + (3*g2*t^8.91)/(g1*g3^15) + (g2*t^8.93)/(g1*g3^21) + g3^27*t^8.93 + g3^21*t^8.94 + (g2*t^8.95)/(g1*g3^27) + (g2*t^8.96)/(g1*g3^33) + 2*g3^15*t^8.96 - 3*g3^9*t^8.98 + g3^3*t^8.99 - t^4./(g3*y) - t^5.01/(g3^2*y) - t^6.02/(g3^9*y) - (g2*t^6.89)/(g1*g3^4*y) - (g2*t^6.9)/(g1*g3^10*y) - (g3^8*t^6.98)/y - (g3^2*t^6.99)/y - t^7.01/(g3^4*y) - t^7.03/(g3^10*y) - (g2*t^7.89)/(g1*g3^5*y) + (g2*t^7.92)/(g1*g3^17*y) + t^8.03/(g3^11*y) - t^8.05/(g3^17*y) + (g2^2*t^8.78)/(g1^2*g3^12*y) + (g2*g3^6*t^8.86)/(g1*y) + (2*g2*t^8.87)/(g1*y) + (g2*t^8.89)/(g1*g3^6*y) + (g2*t^8.91)/(g1*g3^12*y) - (g2*t^8.92)/(g1*g3^18*y) + (g3^12*t^8.97)/y + (g3^6*t^8.98)/y - (t^4.*y)/g3 - (t^5.01*y)/g3^2 - (t^6.02*y)/g3^9 - (g2*t^6.89*y)/(g1*g3^4) - (g2*t^6.9*y)/(g1*g3^10) - g3^8*t^6.98*y - g3^2*t^6.99*y - (t^7.01*y)/g3^4 - (t^7.03*y)/g3^10 - (g2*t^7.89*y)/(g1*g3^5) + (g2*t^7.92*y)/(g1*g3^17) + (t^8.03*y)/g3^11 - (t^8.05*y)/g3^17 + (g2^2*t^8.78*y)/(g1^2*g3^12) + (g2*g3^6*t^8.86*y)/g1 + (2*g2*t^8.87*y)/g1 + (g2*t^8.89*y)/(g1*g3^6) + (g2*t^8.91*y)/(g1*g3^12) - (g2*t^8.92*y)/(g1*g3^18) + g3^12*t^8.97*y + g3^6*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57361 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4803 1.6874 0.8773 [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y detail