Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58416 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4161 | 1.6081 | 0.8806 | [X:[1.3971], M:[0.7369, 0.7703, 1.0383], q:[0.711, 0.4095], qb:[0.5521, 0.5187], phi:[0.3014]] | [X:[[0, 0, 4]], M:[[-1, 1, -5], [1, -1, -5], [-1, 1, -7]], q:[[-1, -1, 5], [-1, -1, 7]], qb:[[2, 0, 0], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | t^2.21 + t^2.31 + t^2.71 + t^2.78 + t^3.11 + t^3.69 + t^3.79 + t^4.19 + t^4.42 + t^4.52 + 2*t^4.59 + t^4.62 + 2*t^4.69 + t^4.92 + t^5. + t^5.02 + t^5.33 + 2*t^5.43 + t^5.49 + 2*t^5.5 + t^5.57 + t^5.6 + t^5.67 + t^5.77 + t^5.83 + t^5.9 - 3*t^6. + t^6.23 + 5*t^6.4 + t^6.47 + 2*t^6.5 + t^6.57 + t^6.58 + t^6.63 + t^6.68 + t^6.73 + 2*t^6.8 + t^6.83 + t^6.9 + t^6.93 + t^6.98 + t^7. - t^7.08 + t^7.13 + t^7.21 + t^7.23 + 2*t^7.3 + 3*t^7.31 + t^7.33 + 4*t^7.38 + 2*t^7.41 + 4*t^7.48 + t^7.54 + 2*t^7.58 + 2*t^7.64 + t^7.68 + 2*t^7.71 + 2*t^7.74 + t^7.78 - t^7.98 + t^8.04 + t^8.11 + 2*t^8.14 + t^8.21 + 5*t^8.28 - 2*t^8.31 + t^8.35 + 5*t^8.38 + t^8.39 + t^8.44 + t^8.46 + 2*t^8.48 + t^8.49 + 2*t^8.54 + t^8.56 + 4*t^8.61 + t^8.68 - t^8.71 - 4*t^8.78 + t^8.81 + t^8.84 - 2*t^8.89 + 2*t^8.94 - t^8.99 + t^8.71/y^2 - t^3.9/y - t^4.81/y - t^6.11/y - t^6.22/y - t^6.62/y - t^6.69/y - (2*t^7.02)/y - t^7.12/y - t^7.59/y + t^8./y + t^8.02/y + t^8.1/y - t^8.53/y - t^8.6/y + t^8.9/y - t^8.93/y - t^3.9*y - t^4.81*y - t^6.11*y - t^6.22*y - t^6.62*y - t^6.69*y - 2*t^7.02*y - t^7.12*y - t^7.59*y + t^8.*y + t^8.02*y + t^8.1*y - t^8.53*y - t^8.6*y + t^8.9*y - t^8.93*y + t^8.71*y^2 | (g2*t^2.21)/(g1*g3^5) + (g1*t^2.31)/(g2*g3^5) + t^2.71/g3^6 + (g2*g3^7*t^2.78)/g1 + (g2*t^3.11)/(g1*g3^7) + (g2*g3^5*t^3.69)/g1 + (g1*g3^5*t^3.79)/g2 + g3^4*t^4.19 + (g2^2*t^4.42)/(g1^2*g3^10) + t^4.52/g3^10 + (2*g2*g3^3*t^4.59)/g1 + (g1^2*t^4.62)/(g2^2*g3^10) + (2*g1*g3^3*t^4.69)/g2 + (g2*t^4.92)/(g1*g3^11) + (g2^2*g3^2*t^5.)/g1^2 + (g1*t^5.02)/(g2*g3^11) + (g2^2*t^5.33)/(g1^2*g3^12) + (2*t^5.43)/g3^12 + (g3^17*t^5.49)/(g1^3*g2^3) + (2*g2*g3*t^5.5)/g1 + (g2^2*g3^14*t^5.57)/g1^2 + (g1*g3*t^5.6)/g2 + (g1^2*g2^4*t^5.67)/g3^2 + (g1^4*g2^2*t^5.77)/g3^2 + (g2*t^5.83)/(g1*g3^13) + (g2^2*t^5.9)/g1^2 - 3*t^6. + (g2^2*t^6.23)/(g1^2*g3^14) + (2*g2*t^6.4)/(g1*g3) + (3*g3^15*t^6.4)/(g1^3*g2^3) + (g2^2*g3^12*t^6.47)/g1^2 + (2*g1*t^6.5)/(g2*g3) + g3^12*t^6.57 + (g1^2*g2^4*t^6.58)/g3^4 + (g2^3*t^6.63)/(g1^3*g3^15) + (g1^4*g2^2*t^6.68)/g3^4 + (g2*t^6.73)/(g1*g3^15) + (2*g2^2*t^6.8)/(g1^2*g3^2) + (g1*t^6.83)/(g2*g3^15) + t^6.9/g3^2 + (g1^3*t^6.93)/(g2^3*g3^15) + (g2*g3^11*t^6.98)/g1 + (g1^2*t^7.)/(g2^2*g3^2) - (g1^3*g2^3*t^7.08)/g3^5 + (g2^2*t^7.13)/(g1^2*g3^16) + (g2^3*t^7.21)/(g1^3*g3^3) + t^7.23/g3^16 + (2*g3^13*t^7.3)/(g1^3*g2^3) + (3*g2*t^7.31)/(g1*g3^3) + (g1^2*t^7.33)/(g2^2*g3^16) + (g2^6*t^7.38)/g3^6 + (3*g2^2*g3^10*t^7.38)/g1^2 + (2*g1*t^7.41)/(g2*g3^3) + (g1^2*g2^4*t^7.48)/g3^6 + 3*g3^10*t^7.48 + (g2^3*t^7.54)/(g1^3*g3^17) + (g1^4*g2^2*t^7.58)/g3^6 + (g1^2*g3^10*t^7.58)/g2^2 + (2*g2*t^7.64)/(g1*g3^17) + (g1^6*t^7.68)/g3^6 + (3*g2^2*t^7.71)/(g1^2*g3^4) - (g3^12*t^7.71)/(g1^4*g2^2) + (2*g1*t^7.74)/(g2*g3^17) + (g2^3*g3^9*t^7.78)/g1^3 + t^7.81/g3^4 - (g3^12*t^7.81)/(g1^2*g2^4) - (g1^3*g2^3*t^7.98)/g3^7 + (g2^2*t^8.04)/(g1^2*g3^18) + (g2^3*t^8.11)/(g1^3*g3^5) + (2*t^8.14)/g3^18 - (g2*t^8.21)/(g1*g3^5) + (2*g3^11*t^8.21)/(g1^3*g2^3) + (4*g2^2*g3^8*t^8.28)/g1^2 + (g3^24*t^8.28)/(g1^4*g2^2) - (2*g1*t^8.31)/(g2*g3^5) + (g2^3*g3^21*t^8.35)/g1^3 + 5*g3^8*t^8.38 + (g1^2*g2^4*t^8.39)/g3^8 + (g2^3*t^8.44)/(g1^3*g3^19) + g1*g2^5*g3^5*t^8.46 + (2*g1^2*g3^8*t^8.48)/g2^2 + (g1^4*g2^2*t^8.49)/g3^8 + (2*g2*t^8.54)/(g1*g3^19) + g1^3*g2^3*g3^5*t^8.56 + (3*g2^2*t^8.61)/(g1^2*g3^6) + (g3^10*t^8.61)/(g1^4*g2^2) + (g2^3*g3^7*t^8.68)/g1^3 - t^8.71/g3^6 - (4*g2*g3^7*t^8.78)/g1 + (g1^2*t^8.81)/(g2^2*g3^6) + (g2^4*t^8.84)/(g1^4*g3^20) - (g1^3*g2^3*t^8.89)/g3^9 - (g1*g3^7*t^8.89)/g2 + (2*g2^2*t^8.94)/(g1^2*g3^20) - (g1^5*g2*t^8.99)/g3^9 + t^8.71/(g3^6*y^2) - t^3.9/(g3^2*y) - t^4.81/(g3^4*y) - (g2*t^6.11)/(g1*g3^7*y) - (g1*t^6.22)/(g2*g3^7*y) - t^6.62/(g3^8*y) - (g2*g3^5*t^6.69)/(g1*y) - (2*g2*t^7.02)/(g1*g3^9*y) - (g1*t^7.12)/(g2*g3^9*y) - (g2*g3^3*t^7.59)/(g1*y) + (g2^2*g3^2*t^8.)/(g1^2*y) + (g1*t^8.02)/(g2*g3^11*y) + (g3^2*t^8.1)/y - (g1^2*t^8.53)/(g2^2*g3^12*y) - (g1*g3*t^8.6)/(g2*y) + (g2^2*t^8.9)/(g1^2*y) - (g1*t^8.93)/(g2*g3^13*y) - (t^3.9*y)/g3^2 - (t^4.81*y)/g3^4 - (g2*t^6.11*y)/(g1*g3^7) - (g1*t^6.22*y)/(g2*g3^7) - (t^6.62*y)/g3^8 - (g2*g3^5*t^6.69*y)/g1 - (2*g2*t^7.02*y)/(g1*g3^9) - (g1*t^7.12*y)/(g2*g3^9) - (g2*g3^3*t^7.59*y)/g1 + (g2^2*g3^2*t^8.*y)/g1^2 + (g1*t^8.02*y)/(g2*g3^11) + g3^2*t^8.1*y - (g1^2*t^8.53*y)/(g2^2*g3^12) - (g1*g3*t^8.6*y)/g2 + (g2^2*t^8.9*y)/g1^2 - (g1*t^8.93*y)/(g2*g3^13) + (t^8.71*y^2)/g3^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57361 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.4803 | 1.6874 | 0.8773 | [X:[1.3615], M:[0.9228, 0.6736, 0.9213], q:[0.5197, 0.5212], qb:[0.5576, 0.486], phi:[0.3193]] | t^2.021 + t^2.764 + t^2.768 + t^2.873 + t^3.017 + t^3.021 + t^3.975 + t^4.042 + t^4.084 + t^4.19 + t^4.194 + t^4.785 + t^4.789 + t^4.894 + t^4.933 + t^4.937 + t^5.038 + t^5.042 + t^5.147 + t^5.152 + t^5.528 + t^5.532 + t^5.537 + t^5.546 + t^5.637 + t^5.639 + t^5.642 + t^5.644 + t^5.747 + t^5.761 + t^5.781 + t^5.785 + t^5.79 + t^5.89 + t^5.895 - 4*t^6. - t^3.958/y - t^4.916/y - t^5.979/y - t^3.958*y - t^4.916*y - t^5.979*y | detail |