Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57360 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4756 | 1.686 | 0.8752 | [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1], [0, 0, 0, 3]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -4 | t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. + t^6.087 + t^6.175 + t^6.322 + 2*t^6.431 + 2*t^6.518 + 3*t^6.862 + t^6.923 + 10*t^6.949 - t^7.01 + 3*t^7.037 + t^7.097 + t^7.158 + 4*t^7.185 + 2*t^7.354 + 2*t^7.528 + 4*t^7.616 + t^7.785 + t^7.846 + 5*t^7.872 + t^7.933 + 13*t^7.96 + t^7.994 + 11*t^8.047 - 6*t^8.107 + t^8.134 + t^8.195 + t^8.282 + 2*t^8.303 + 8*t^8.391 + t^8.43 - 4*t^8.451 + 6*t^8.478 - 4*t^8.539 + t^8.647 + t^8.708 + 3*t^8.734 + t^8.769 + t^8.795 + 6*t^8.822 + t^8.829 + t^8.856 - 2*t^8.882 + 10*t^8.909 - 3*t^8.943 - 7*t^8.97 - t^4.01/y - t^5.02/y - t^6.118/y - t^6.893/y - t^6.953/y - (3*t^6.98)/y - t^7.128/y - t^7.963/y - (2*t^7.99)/y + t^8.051/y + (3*t^8.077)/y - t^8.225/y + t^8.825/y + (3*t^8.852)/y + (3*t^8.913)/y + (3*t^8.939)/y - t^4.01*y - t^5.02*y - t^6.118*y - t^6.893*y - t^6.953*y - 3*t^6.98*y - t^7.128*y - t^7.963*y - 2*t^7.99*y + t^8.051*y + 3*t^8.077*y - t^8.225*y + t^8.825*y + 3*t^8.852*y + 3*t^8.913*y + 3*t^8.939*y | (g4*t^2.107)/(g1*g3) + g1*g3*t^2.882 + (g1*g3*t^2.943)/g4^6 + g1*g2*t^2.97 + g4^3*t^2.97 + (g4^6*t^2.97)/(g1*g2) + (g1*g2*t^3.98)/g4 + g4^2*t^3.98 + (g4^5*t^3.98)/(g1*g2) + (g4^5*t^4.067)/(g1*g3) + (g4^2*t^4.215)/(g1^2*g3^2) + (g1*g3*t^4.903)/g4^2 + (g1*g2*t^4.99)/g4^2 + g4*t^4.99 + (g4^4*t^4.99)/(g1*g2) + t^5.051/g4^5 + (g2*g4*t^5.077)/g3 + (2*g4^4*t^5.077)/(g1*g3) + (g4^7*t^5.077)/(g1^2*g2*g3) + (g2*g3^2*t^5.421)/g4 + (g1*g4^5*t^5.421)/(g2*g3) + (g2^2*g3*t^5.508)/g4 + (g4^11*t^5.508)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.765 + (g1^2*g3^2*t^5.825)/g4^6 + g1^2*g2*g3*t^5.852 + g1*g3*g4^3*t^5.852 + (g3*g4^6*t^5.852)/g2 + (g1^2*g3^2*t^5.886)/g4^12 + (g1*g3*t^5.913)/g4^3 + g1^2*g2^2*t^5.939 + g1*g2*g4^3*t^5.939 + 2*g4^6*t^5.939 + (g4^9*t^5.939)/(g1*g2) + (g4^12*t^5.939)/(g1^2*g2^2) - 4*t^6. + (g4^3*t^6.087)/(g1*g3) + (g4^6*t^6.175)/(g1^2*g3^2) + (g4^3*t^6.322)/(g1^3*g3^3) + (g2*g3^2*t^6.431)/g4^2 + (g1*g4^4*t^6.431)/(g2*g3) + (g2^2*g3*t^6.518)/g4^2 + (g4^10*t^6.518)/(g1*g2^2*g3^2) + (g1^2*g2*g3*t^6.862)/g4 + g1*g3*g4^2*t^6.862 + (g3*g4^5*t^6.862)/g2 + (g1*g3*t^6.923)/g4^4 + (g1^2*g2^2*t^6.949)/g4 + 2*g1*g2*g4^2*t^6.949 + 4*g4^5*t^6.949 + (2*g4^8*t^6.949)/(g1*g2) + (g4^11*t^6.949)/(g1^2*g2^2) - t^7.01/g4 + (g2*g4^5*t^7.037)/g3 + (g4^8*t^7.037)/(g1*g3) + (g4^11*t^7.037)/(g1^2*g2*g3) + (g4^2*t^7.097)/(g1*g3) + t^7.158/(g1*g3*g4^4) + (g2*g4^2*t^7.185)/(g1*g3^2) + (2*g4^5*t^7.185)/(g1^2*g3^2) + (g4^8*t^7.185)/(g1^3*g2*g3^2) + (g1^3*t^7.354)/g4^3 + (g3^3*t^7.354)/g4^3 - (g1*g2^2*g3^2*t^7.441)/g4^6 + (g2*g3^2*t^7.441)/g4^3 + (g1*g4^3*t^7.441)/(g2*g3) - (g4^6*t^7.441)/(g2^2*g3) + (g2^2*g3*t^7.528)/g4^3 + (g4^9*t^7.528)/(g1*g2^2*g3^2) + (g2^2*t^7.616)/g1 + (g2^3*t^7.616)/g4^3 + (g4^12*t^7.616)/(g1^2*g2^2*g3^3) + (g4^15*t^7.616)/(g1^3*g2^3*g3^3) + (g1^2*g3^2*t^7.785)/g4^2 + (g1^2*g3^2*t^7.846)/g4^8 + (2*g1^2*g2*g3*t^7.872)/g4^2 + g1*g3*g4*t^7.872 + (2*g3*g4^4*t^7.872)/g2 + (g1*g3*t^7.933)/g4^5 + (2*g1^2*g2^2*t^7.96)/g4^2 + 2*g1*g2*g4*t^7.96 + 5*g4^4*t^7.96 + (2*g4^7*t^7.96)/(g1*g2) + (2*g4^10*t^7.96)/(g1^2*g2^2) + (g1*g3*t^7.994)/g4^11 + (g1*g2^2*g4*t^8.047)/g3 + (3*g2*g4^4*t^8.047)/g3 + (3*g4^7*t^8.047)/(g1*g3) + (3*g4^10*t^8.047)/(g1^2*g2*g3) + (g4^13*t^8.047)/(g1^3*g2^2*g3) - (g2*t^8.107)/(g3*g4^2) - (4*g4*t^8.107)/(g1*g3) - (g4^4*t^8.107)/(g1^2*g2*g3) + (g4^10*t^8.134)/(g1^2*g3^2) + (g4^4*t^8.195)/(g1^2*g3^2) + (g4^7*t^8.282)/(g1^3*g3^3) + (g1*g2*g3^3*t^8.303)/g4 + (g1^2*g4^5*t^8.303)/g2 + (2*g1*g2^2*g3^2*t^8.391)/g4 + g2*g3^2*g4^2*t^8.391 + (g1^2*g4^5*t^8.391)/g3 + (g3^2*g4^5*t^8.391)/g1 + (g1*g4^8*t^8.391)/(g2*g3) + (2*g4^11*t^8.391)/(g2^2*g3) + (g4^4*t^8.43)/(g1^4*g3^4) - (g1*g2^2*g3^2*t^8.451)/g4^7 - (g1^2*t^8.451)/(g3*g4) - (g3^2*t^8.451)/(g1*g4) - (g4^5*t^8.451)/(g2^2*g3) + (g1*g2^3*g3*t^8.478)/g4 + g2^2*g3*g4^2*t^8.478 + (g2*g3*g4^5*t^8.478)/g1 + (g4^11*t^8.478)/(g2*g3^2) + (g4^14*t^8.478)/(g1*g2^2*g3^2) + (g4^17*t^8.478)/(g1^2*g2^3*g3^2) - (g1*g2^3*g3*t^8.539)/g4^7 - (g2*g3*t^8.539)/(g1*g4) - (g4^5*t^8.539)/(g2*g3^2) - (g4^11*t^8.539)/(g1^2*g2^3*g3^2) + g1^3*g3^3*t^8.647 + (g1^3*g3^3*t^8.708)/g4^6 + g1^3*g2*g3^2*t^8.734 + g1^2*g3^2*g4^3*t^8.734 + (g1*g3^2*g4^6*t^8.734)/g2 + (g1^3*g3^3*t^8.769)/g4^12 + (g1^2*g3^2*t^8.795)/g4^3 + g1^3*g2^2*g3*t^8.822 + g1^2*g2*g3*g4^3*t^8.822 + 2*g1*g3*g4^6*t^8.822 + (g3*g4^9*t^8.822)/g2 + (g3*g4^12*t^8.822)/(g1*g2^2) + (g1^3*g3^3*t^8.829)/g4^18 + (g1^2*g3^2*t^8.856)/g4^9 - 4*g1*g3*t^8.882 + (g1^2*g2*g3*t^8.882)/g4^3 + (g3*g4^3*t^8.882)/g2 + g1^3*g2^3*t^8.909 + g1^2*g2^2*g4^3*t^8.909 + 2*g1*g2*g4^6*t^8.909 + 2*g4^9*t^8.909 + (2*g4^12*t^8.909)/(g1*g2) + (g4^15*t^8.909)/(g1^2*g2^2) + (g4^18*t^8.909)/(g1^3*g2^3) - (3*g1*g3*t^8.943)/g4^6 - 4*g1*g2*t^8.97 + (g1^2*g2^2*t^8.97)/g4^3 - g4^3*t^8.97 - (4*g4^6*t^8.97)/(g1*g2) + (g4^9*t^8.97)/(g1^2*g2^2) - t^4.01/(g4*y) - t^5.02/(g4^2*y) - t^6.118/(g1*g3*y) - (g1*g3*t^6.893)/(g4*y) - (g1*g3*t^6.953)/(g4^7*y) - (g1*g2*t^6.98)/(g4*y) - (g4^2*t^6.98)/y - (g4^5*t^6.98)/(g1*g2*y) - t^7.128/(g1*g3*g4*y) - (g1*g3*t^7.963)/(g4^8*y) - (g1*g2*t^7.99)/(g4^2*y) - (g4^4*t^7.99)/(g1*g2*y) + t^8.051/(g4^5*y) + (g2*g4*t^8.077)/(g3*y) + (g4^4*t^8.077)/(g1*g3*y) + (g4^7*t^8.077)/(g1^2*g2*g3*y) - (g4*t^8.225)/(g1^2*g3^2*y) + (g1^2*g3^2*t^8.825)/(g4^6*y) + (g1^2*g2*g3*t^8.852)/y + (g1*g3*g4^3*t^8.852)/y + (g3*g4^6*t^8.852)/(g2*y) + (g3*t^8.913)/(g2*y) + (g1^2*g2*g3*t^8.913)/(g4^6*y) + (g1*g3*t^8.913)/(g4^3*y) + (g1*g2*g4^3*t^8.939)/y + (g4^6*t^8.939)/y + (g4^9*t^8.939)/(g1*g2*y) - (t^4.01*y)/g4 - (t^5.02*y)/g4^2 - (t^6.118*y)/(g1*g3) - (g1*g3*t^6.893*y)/g4 - (g1*g3*t^6.953*y)/g4^7 - (g1*g2*t^6.98*y)/g4 - g4^2*t^6.98*y - (g4^5*t^6.98*y)/(g1*g2) - (t^7.128*y)/(g1*g3*g4) - (g1*g3*t^7.963*y)/g4^8 - (g1*g2*t^7.99*y)/g4^2 - (g4^4*t^7.99*y)/(g1*g2) + (t^8.051*y)/g4^5 + (g2*g4*t^8.077*y)/g3 + (g4^4*t^8.077*y)/(g1*g3) + (g4^7*t^8.077*y)/(g1^2*g2*g3) - (g4*t^8.225*y)/(g1^2*g3^2) + (g1^2*g3^2*t^8.825*y)/g4^6 + g1^2*g2*g3*t^8.852*y + g1*g3*g4^3*t^8.852*y + (g3*g4^6*t^8.852*y)/g2 + (g3*t^8.913*y)/g2 + (g1^2*g2*g3*t^8.913*y)/g4^6 + (g1*g3*t^8.913*y)/g4^3 + g1*g2*g4^3*t^8.939*y + g4^6*t^8.939*y + (g4^9*t^8.939*y)/(g1*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58408 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4166 | 1.6154 | 0.8769 | [X:[1.3639], M:[0.7951, 0.7951, 1.0458], q:[0.5097, 0.5097], qb:[0.6952, 0.3771], phi:[0.3181]] | 2*t^2.39 + 2*t^2.66 + t^3.14 + 2*t^3.61 + t^4.09 + 4*t^4.57 + 3*t^4.77 + 3*t^5.05 + t^5.3 + 3*t^5.32 + 4*t^5.52 + 2*t^5.54 + 2*t^5.8 - 3*t^6. - t^3.95/y - t^4.91/y - t^3.95*y - t^4.91*y | detail | |
58407 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{2}$ | 1.3457 | 1.5553 | 0.8652 | [X:[1.2546, 1.3727], M:[0.8634, 1.0, 0.8819], q:[0.5683, 0.3137], qb:[0.5683, 0.3137], phi:[0.3727]] | t^2.59 + 3*t^2.65 + t^3. + 3*t^3.76 + 2*t^4.12 + t^4.53 + 2*t^4.7 + 2*t^4.88 + t^5.18 + t^5.24 + 6*t^5.29 + 2*t^5.47 + t^5.59 + 4*t^5.65 + 2*t^5.82 - 3*t^6. - t^4.12/y - t^5.24/y - t^4.12*y - t^5.24*y | detail | |
58412 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.4754 | 1.6843 | 0.876 | [X:[1.3316], M:[0.9726, 0.6984, 0.9974], q:[0.511, 0.4862], qb:[0.5164, 0.4812], phi:[0.3342]] | t^2.1 + t^2.9 + t^2.92 + t^2.98 + t^2.99 + t^3.01 + t^3.98 + t^3.99 + t^4.01 + t^4.08 + t^4.19 + t^4.91 + t^4.98 + t^5. + 2*t^5.01 + t^5.07 + 2*t^5.09 + t^5.1 + t^5.44 + t^5.45 + t^5.53 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.88 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y | detail | |
58414 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4964 | 1.7272 | 0.8664 | [X:[1.327], M:[0.9804, 0.7022, 0.9904, 0.6719], q:[0.5092, 0.4812], qb:[0.5104, 0.4801], phi:[0.3365]] | t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.03 + t^4.07 + t^4.12 + t^4.21 + 2*t^4.9 + t^4.96 + t^4.98 + 5*t^4.99 + t^5.05 + t^5.07 + 3*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.83 + t^5.85 + 2*t^5.86 + t^5.88 + t^5.91 + 4*t^5.94 + 2*t^5.95 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
58413 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ | 1.4776 | 1.6858 | 0.8765 | [X:[1.3443], M:[0.9514, 0.688, 1.0164, 0.9469], q:[0.5054, 0.5098], qb:[0.5433, 0.4743], phi:[0.3279]] | t^2.06 + t^2.84 + t^2.85 + t^2.94 + t^2.95 + t^3.05 + t^3.92 + t^4.03 + 2*t^4.13 + t^4.14 + t^4.9 + t^4.91 + 2*t^4.92 + t^5. + t^5.02 + 2*t^5.11 + t^5.13 + t^5.46 + t^5.55 + t^5.56 + t^5.67 + t^5.68 + t^5.69 + t^5.71 + t^5.78 + t^5.79 + t^5.81 + t^5.88 + 2*t^5.89 + 2*t^5.9 + t^5.99 - 3*t^6. - t^3.98/y - t^4.97/y - t^3.98*y - t^4.97*y | detail | |
58409 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4669 | 1.6695 | 0.8787 | [X:[1.3518], M:[0.9208, 0.6996, 1.0278], q:[0.4952, 0.4682], qb:[0.5839, 0.5081], phi:[0.3241]] | t^2.1 + t^2.76 + t^2.93 + t^3.01 + t^3.08 + t^3.16 + t^3.98 + t^4.06 + t^4.13 + t^4.2 + t^4.21 + t^4.86 + t^4.87 + t^4.95 + t^5.03 + t^5.1 + t^5.11 + 2*t^5.18 + t^5.26 + t^5.27 + t^5.35 + t^5.53 + t^5.69 + t^5.77 + t^5.85 + t^5.86 + t^5.94 - 3*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y | detail | |
58411 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4755 | 1.685 | 0.8756 | [X:[1.3294], M:[0.9763, 0.7002, 0.9941], q:[0.5088, 0.4851], qb:[0.5149, 0.4794], phi:[0.3353]] | t^2.1 + t^2.89 + t^2.93 + t^2.96 + t^2.98 + t^3. + t^3.97 + t^3.99 + t^4.01 + t^4.08 + t^4.2 + t^4.91 + t^4.98 + t^4.99 + t^5.01 + t^5.03 + t^5.07 + 2*t^5.08 + t^5.1 + t^5.43 + t^5.44 + t^5.51 + t^5.53 + t^5.79 + t^5.82 + 2*t^5.86 + t^5.88 + t^5.89 + t^5.91 + t^5.93 + t^5.95 + 2*t^5.96 + t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail | |
58410 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4741 | 1.6808 | 0.877 | [X:[1.3386], M:[0.9841, 0.6693, 1.008], q:[0.508, 0.5], qb:[0.508, 0.5], phi:[0.3307]] | t^2.01 + t^2.95 + t^3. + 3*t^3.02 + 4*t^4.02 + t^4.04 + t^4.96 + t^4.98 + 3*t^5.01 + 4*t^5.03 + 2*t^5.52 + 2*t^5.54 + t^5.9 + t^5.95 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^6./y - t^3.99*y - t^4.98*y - t^6.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47893 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4759 | 1.6818 | 0.8776 | [X:[1.3444], M:[0.9513, 0.6879], q:[0.5244, 0.4922], qb:[0.5244, 0.4922], phi:[0.3278]] | t^2.064 + t^2.854 + t^2.95 + t^2.953 + 2*t^3.05 + 3*t^4.033 + t^4.127 + t^4.13 + t^4.917 + t^4.92 + t^5.014 + 3*t^5.017 + 3*t^5.113 + 2*t^5.51 + 2*t^5.606 + t^5.708 + t^5.804 + t^5.807 + t^5.901 + t^5.903 + t^5.906 - 2*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y | detail |