Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58409 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4669 1.6695 0.8787 [X:[1.3518], M:[0.9208, 0.6996, 1.0278], q:[0.4952, 0.4682], qb:[0.5839, 0.5081], phi:[0.3241]] [X:[[0, 0, 4]], M:[[1, 2, -12], [-1, -2, 2], [0, 0, 6]], q:[[-1, -1, 11], [1, 0, 0]], qb:[[0, -1, 1], [0, 2, 0]], phi:[[0, 0, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.1 + t^2.76 + t^2.93 + t^3.01 + t^3.08 + t^3.16 + t^3.98 + t^4.06 + t^4.13 + t^4.2 + t^4.21 + t^4.86 + t^4.87 + t^4.95 + t^5.03 + t^5.1 + t^5.11 + 2*t^5.18 + t^5.26 + t^5.27 + t^5.35 + t^5.53 + t^5.69 + t^5.77 + t^5.85 + t^5.86 + t^5.94 - 3*t^6. + t^6.01 + t^6.02 + 2*t^6.09 + t^6.15 + 2*t^6.17 + 2*t^6.24 + t^6.3 + 2*t^6.31 + t^6.32 + t^6.74 + t^6.82 + t^6.91 + t^6.96 + t^6.98 + t^6.99 + t^7.06 + 2*t^7.07 + 2*t^7.13 + 3*t^7.14 + 4*t^7.21 + t^7.22 + 2*t^7.28 + 3*t^7.29 + t^7.35 + 2*t^7.37 + t^7.45 + t^7.49 + t^7.62 + t^7.64 + t^7.72 + t^7.8 + 2*t^7.88 + t^7.94 + 3*t^7.96 + t^8.03 + 2*t^8.04 - 3*t^8.1 + 4*t^8.11 + t^8.12 + 2*t^8.18 + 2*t^8.19 + t^8.2 + t^8.25 + t^8.26 + 3*t^8.27 + 2*t^8.28 + t^8.29 + 2*t^8.34 + t^8.35 + t^8.36 + t^8.39 + 2*t^8.41 + 2*t^8.42 + t^8.43 + t^8.45 + t^8.5 + t^8.61 + t^8.7 - 4*t^8.76 + t^8.77 + t^8.78 + t^8.79 - t^8.84 + 2*t^8.86 + t^8.87 + 2*t^8.92 - 2*t^8.93 + 2*t^8.94 + t^8.95 - t^8.99 + t^8.92/y^2 - t^3.97/y - t^4.94/y - t^6.07/y - t^6.73/y - t^6.9/y - t^6.98/y - t^7.04/y - t^7.06/y - t^7.13/y - t^7.71/y + t^7.86/y - t^7.95/y - t^8.1/y + t^8.11/y - t^8.17/y + t^8.18/y + t^8.26/y + t^8.69/y + t^8.77/y - t^8.83/y + t^8.85/y + t^8.92/y - t^8.93/y + t^8.94/y - t^3.97*y - t^4.94*y - t^6.07*y - t^6.73*y - t^6.9*y - t^6.98*y - t^7.04*y - t^7.06*y - t^7.13*y - t^7.71*y + t^7.86*y - t^7.95*y - t^8.1*y + t^8.11*y - t^8.17*y + t^8.18*y + t^8.26*y + t^8.69*y + t^8.77*y - t^8.83*y + t^8.85*y + t^8.92*y - t^8.93*y + t^8.94*y + t^8.92*y^2 (g3^2*t^2.1)/(g1*g2^2) + (g1*g2^2*t^2.76)/g3^12 + g1*g2^2*t^2.93 + (g2*g3^11*t^3.01)/g1 + g3^6*t^3.08 + (g1*g3*t^3.16)/g2 + (g2*g3^9*t^3.98)/g1 + g3^4*t^4.06 + (g1*t^4.13)/(g2*g3) + (g3^4*t^4.2)/(g1^2*g2^4) + (g3^10*t^4.21)/(g1*g2^2) + t^4.86/g3^10 + (g1*g2^2*t^4.87)/g3^4 + (g2*g3^7*t^4.95)/g1 + g3^2*t^5.03 + (g1*t^5.1)/(g2*g3^3) + (g3^13*t^5.11)/(g1^2*g2) + (2*g3^8*t^5.18)/(g1*g2^2) + (g3^3*t^5.26)/g2^3 + (g1*g3^9*t^5.27)/g2 + (g3^20*t^5.35)/(g1*g2^2) + (g1^2*g2^4*t^5.53)/g3^24 + (g1^2*g2^4*t^5.69)/g3^12 + (g2^3*t^5.77)/g3 + (g1*g2^2*t^5.85)/g3^6 + g1^2*g2^4*t^5.86 + g2^3*g3^11*t^5.94 - 3*t^6. + g1*g2^2*g3^6*t^6.01 + (g2^2*g3^22*t^6.02)/g1^2 + g1^2*g2*g3*t^6.09 + (g2*g3^17*t^6.09)/g1 + (g3^6*t^6.15)/(g1*g2^2) + 2*g3^12*t^6.17 + (2*g1*g3^7*t^6.24)/g2 + (g3^6*t^6.3)/(g1^3*g2^6) + (g1^2*g3^2*t^6.31)/g2^2 + (g3^12*t^6.31)/(g1^2*g2^4) + (g3^18*t^6.32)/(g1*g2^2) + (g2^3*t^6.74)/g3^3 + (g1*g2^2*t^6.82)/g3^8 + g2^3*g3^9*t^6.91 + t^6.96/(g1*g2^2*g3^8) + g1*g2^2*g3^4*t^6.98 + (g2^2*g3^20*t^6.99)/g1^2 + (g1^2*g2*t^7.06)/g3 + (2*g2*g3^15*t^7.07)/g1 + (g1^3*t^7.13)/g3^6 + (g3^4*t^7.13)/(g1*g2^2) + 3*g3^10*t^7.14 + (3*g1*g3^5*t^7.21)/g2 + (g3^15*t^7.21)/(g1^3*g2^3) + (g3^21*t^7.22)/(g1^2*g2) + (2*g3^10*t^7.28)/(g1^2*g2^4) + (g1^2*t^7.29)/g2^2 + (2*g3^16*t^7.29)/(g1*g2^2) + (g3^5*t^7.35)/(g1*g2^5) + (g3^11*t^7.37)/g2^3 + (g3^27*t^7.37)/(g1^3*g2^3) + (g3^22*t^7.45)/(g1^2*g2^4) + (g2^6*t^7.49)/g3^6 + (g1*g2^2*t^7.62)/g3^22 + (g1^2*g2^4*t^7.64)/g3^16 + (g2^3*t^7.72)/g3^5 + (g1^2*g2^4*t^7.8)/g3^4 + 2*g2^3*g3^7*t^7.88 + t^7.94/g3^4 + g1*g2^2*g3^2*t^7.96 + (2*g2^2*g3^18*t^7.96)/g1^2 + (2*g1^2*g2*t^8.03)/g3^3 - (g3^7*t^8.03)/(g1^2*g2) + (2*g2*g3^13*t^8.04)/g1 - (3*g3^2*t^8.1)/(g1*g2^2) + 4*g3^8*t^8.11 + (g3^24*t^8.12)/g1^3 + (2*g1*g3^3*t^8.18)/g2 + (2*g3^19*t^8.19)/(g1^2*g2) + g1^2*g2*g3^9*t^8.2 + (g3^8*t^8.25)/(g1^2*g2^4) + (g1^2*t^8.26)/(g2^2*g3^2) + (3*g3^14*t^8.27)/(g1*g2^2) + 2*g3^20*t^8.28 + (g1^3*g2^6*t^8.29)/g3^36 + (2*g3^9*t^8.34)/g2^3 + (g1*g3^15*t^8.35)/g2 + (g3^31*t^8.36)/(g1^2*g2) + (g3^8*t^8.39)/(g1^4*g2^8) + (g1*g3^4*t^8.41)/g2^4 + (g3^14*t^8.41)/(g1^3*g2^6) + (g1^2*g3^10*t^8.42)/g2^2 + (g3^20*t^8.42)/(g1^2*g2^4) + (g3^26*t^8.43)/(g1*g2^2) + (g1^3*g2^6*t^8.45)/g3^24 + (g3^21*t^8.5)/g2^3 + (g1^2*g2^4*t^8.61)/g3^18 + (g1^3*g2^6*t^8.62)/g3^12 - (g2^4*t^8.62)/(g1*g3^2) + (g1*g2^5*t^8.7)/g3 - (4*g1*g2^2*t^8.76)/g3^12 + (g1^2*g2^4*t^8.77)/g3^6 + (g2^4*g3^10*t^8.78)/g1 + g1^3*g2^6*t^8.79 - (g2*t^8.84)/(g1*g3) + 2*g2^3*g3^5*t^8.86 + g1*g2^5*g3^11*t^8.87 + (2*t^8.92)/g3^6 - 2*g1*g2^2*t^8.93 + g1^2*g2^4*g3^6*t^8.94 + (g2^2*g3^16*t^8.94)/g1^2 + (g2^4*g3^22*t^8.95)/g1 - (g1*t^8.99)/(g2*g3^11) + t^8.92/(g3^6*y^2) - t^3.97/(g3^2*y) - t^4.94/(g3^4*y) - t^6.07/(g1*g2^2*y) - (g1*g2^2*t^6.73)/(g3^14*y) - (g1*g2^2*t^6.9)/(g3^2*y) - (g2*g3^9*t^6.98)/(g1*y) - t^7.04/(g1*g2^2*g3^2*y) - (g3^4*t^7.06)/y - (g1*t^7.13)/(g2*g3*y) - (g1*g2^2*t^7.71)/(g3^16*y) + t^7.86/(g3^10*y) - (g2*g3^7*t^7.95)/(g1*y) - (g1*t^8.1)/(g2*g3^3*y) + (g3^13*t^8.11)/(g1^2*g2*y) - (g3^2*t^8.17)/(g1^2*g2^4*y) + (g3^8*t^8.18)/(g1*g2^2*y) + (g3^3*t^8.26)/(g2^3*y) + (g1^2*g2^4*t^8.69)/(g3^12*y) + (g2^3*t^8.77)/(g3*y) - t^8.83/(g3^12*y) + (g1*g2^2*t^8.85)/(g3^6*y) + (g1^2*g2*t^8.92)/(g3^11*y) - (g2*g3^5*t^8.93)/(g1*y) + (g2^3*g3^11*t^8.94)/y - (t^3.97*y)/g3^2 - (t^4.94*y)/g3^4 - (t^6.07*y)/(g1*g2^2) - (g1*g2^2*t^6.73*y)/g3^14 - (g1*g2^2*t^6.9*y)/g3^2 - (g2*g3^9*t^6.98*y)/g1 - (t^7.04*y)/(g1*g2^2*g3^2) - g3^4*t^7.06*y - (g1*t^7.13*y)/(g2*g3) - (g1*g2^2*t^7.71*y)/g3^16 + (t^7.86*y)/g3^10 - (g2*g3^7*t^7.95*y)/g1 - (g1*t^8.1*y)/(g2*g3^3) + (g3^13*t^8.11*y)/(g1^2*g2) - (g3^2*t^8.17*y)/(g1^2*g2^4) + (g3^8*t^8.18*y)/(g1*g2^2) + (g3^3*t^8.26*y)/g2^3 + (g1^2*g2^4*t^8.69*y)/g3^12 + (g2^3*t^8.77*y)/g3 - (t^8.83*y)/g3^12 + (g1*g2^2*t^8.85*y)/g3^6 + (g1^2*g2*t^8.92*y)/g3^11 - (g2*g3^5*t^8.93*y)/g1 + g2^3*g3^11*t^8.94*y + (t^8.92*y^2)/g3^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57360 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4756 1.686 0.8752 [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail