Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58414 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4964 | 1.7272 | 0.8664 | [X:[1.327], M:[0.9804, 0.7022, 0.9904, 0.6719], q:[0.5092, 0.4812], qb:[0.5104, 0.4801], phi:[0.3365]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1], [0, 0, 0, 3], [-1, -1, 0, 1]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ | ${}M_{4}X_{1}$ | -3 | t^2.02 + t^2.11 + t^2.88 + t^2.94 + 3*t^2.97 + 2*t^3.98 + t^4.03 + t^4.07 + t^4.12 + t^4.21 + 2*t^4.9 + t^4.96 + t^4.98 + 5*t^4.99 + t^5.05 + t^5.07 + 3*t^5.08 + 2*t^5.42 + 2*t^5.51 + t^5.77 + t^5.83 + t^5.85 + 2*t^5.86 + t^5.88 + t^5.91 + 4*t^5.94 + 2*t^5.95 + t^5.99 - 3*t^6. + t^6.05 + t^6.08 + t^6.14 + t^6.17 + t^6.23 + t^6.32 + 2*t^6.43 + 2*t^6.52 + 2*t^6.86 + 3*t^6.92 - t^6.93 + 6*t^6.95 + t^6.96 + t^6.97 + 3*t^7. + 2*t^7.01 + 3*t^7.04 + t^7.06 + 3*t^7.09 + 2*t^7.1 + t^7.15 + 3*t^7.18 + t^7.19 + t^7.35 + t^7.36 + 2*t^7.44 + t^7.52 + 3*t^7.53 + 2*t^7.61 + 2*t^7.62 + t^7.78 + t^7.79 + 2*t^7.84 + 6*t^7.87 + 2*t^7.88 + t^7.9 + 2*t^7.93 + 4*t^7.95 + 9*t^7.96 + 3*t^7.97 + t^7.99 + 2*t^8.01 - 4*t^8.02 + t^8.04 + 8*t^8.05 + 2*t^8.06 + t^8.1 - 6*t^8.11 + t^8.14 + t^8.15 + 2*t^8.19 - t^8.2 + t^8.24 + t^8.28 + 2*t^8.31 + t^8.34 + 4*t^8.39 + 4*t^8.4 + t^8.43 - t^8.45 - t^8.46 + 5*t^8.48 + t^8.49 - 2*t^8.54 + t^8.65 + t^8.71 + 3*t^8.74 + t^8.77 + t^8.8 + 3*t^8.82 + 4*t^8.83 + t^8.85 - t^8.88 + t^8.9 + 5*t^8.91 + 4*t^8.92 + 2*t^8.93 - 3*t^8.94 + 4*t^8.96 - 7*t^8.97 + t^8.99 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.12/y - t^6.89/y - t^6.95/y - (3*t^6.98)/y - t^7.03/y + t^7.12/y - t^7.13/y + t^7.9/y + t^7.98/y + t^7.99/y - t^8.04/y + t^8.05/y + t^8.07/y + (2*t^8.08)/y - t^8.13/y - t^8.22/y + t^8.83/y + t^8.85/y + (2*t^8.86)/y + t^8.91/y + t^8.92/y + (2*t^8.94)/y + t^8.95/y - t^8.97/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.12*y - t^6.89*y - t^6.95*y - 3*t^6.98*y - t^7.03*y + t^7.12*y - t^7.13*y + t^7.9*y + t^7.98*y + t^7.99*y - t^8.04*y + t^8.05*y + t^8.07*y + 2*t^8.08*y - t^8.13*y - t^8.22*y + t^8.83*y + t^8.85*y + 2*t^8.86*y + t^8.91*y + t^8.92*y + 2*t^8.94*y + t^8.95*y - t^8.97*y | (g4*t^2.02)/(g1*g2) + (g4*t^2.11)/(g1*g3) + g1*g3*t^2.88 + (g1*g3*t^2.94)/g4^6 + g1*g2*t^2.97 + g4^3*t^2.97 + (g4^6*t^2.97)/(g1*g2) + g4^2*t^3.98 + (g4^5*t^3.98)/(g1*g2) + (g4^2*t^4.03)/(g1^2*g2^2) + (g4^5*t^4.07)/(g1*g3) + (g4^2*t^4.12)/(g1^2*g2*g3) + (g4^2*t^4.21)/(g1^2*g3^2) + (g1*g3*t^4.9)/g4^2 + (g3*g4*t^4.9)/g2 + (g3*t^4.96)/(g2*g4^5) + (g4^7*t^4.98)/(g1^2*g2^2) + (g1*g2*t^4.99)/g4^2 + 2*g4*t^4.99 + (2*g4^4*t^4.99)/(g1*g2) + t^5.05/g4^5 + (g4^7*t^5.07)/(g1^2*g2*g3) + (g2*g4*t^5.08)/g3 + (2*g4^4*t^5.08)/(g1*g3) + (g2*g3^2*t^5.42)/g4 + (g1*g4^5*t^5.42)/(g2*g3) + (g2^2*g3*t^5.51)/g4 + (g4^11*t^5.51)/(g1*g2^2*g3^2) + g1^2*g3^2*t^5.77 + (g1^2*g3^2*t^5.83)/g4^6 + (g3*g4^6*t^5.85)/g2 + g1^2*g2*g3*t^5.86 + g1*g3*g4^3*t^5.86 + (g1^2*g3^2*t^5.88)/g4^12 + (g1*g3*t^5.91)/g4^3 + 2*g4^6*t^5.94 + (g4^9*t^5.94)/(g1*g2) + (g4^12*t^5.94)/(g1^2*g2^2) + g1^2*g2^2*t^5.95 + g1*g2*g4^3*t^5.95 + (g4^6*t^5.99)/(g1^2*g2^2) - 4*t^6. + (g4^3*t^6.)/(g1*g2) + (g4^3*t^6.05)/(g1^3*g2^3) + (g4^6*t^6.08)/(g1^2*g2*g3) - (g2*t^6.09)/g3 + (g4^3*t^6.09)/(g1*g3) + (g4^3*t^6.14)/(g1^3*g2^2*g3) + (g4^6*t^6.17)/(g1^2*g3^2) + (g4^3*t^6.23)/(g1^3*g2*g3^2) + (g4^3*t^6.32)/(g1^3*g3^3) + (g2*g3^2*t^6.43)/g4^2 + (g1*g4^4*t^6.43)/(g2*g3) + (g2^2*g3*t^6.52)/g4^2 + (g4^10*t^6.52)/(g1*g2^2*g3^2) + g1*g3*g4^2*t^6.86 + (g3*g4^5*t^6.86)/g2 + (g1*g3*t^6.92)/g4^4 + (g3*t^6.92)/(g2*g4) + (g3*g4^2*t^6.92)/(g1*g2^2) - (g1^2*g2*g3*t^6.93)/g4^7 + 3*g4^5*t^6.95 + (2*g4^8*t^6.95)/(g1*g2) + (g4^11*t^6.95)/(g1^2*g2^2) + g1*g2*g4^2*t^6.96 + (g3*t^6.97)/(g1*g2^2*g4^4) + (2*g4^5*t^7.)/(g1^2*g2^2) + (g4^8*t^7.)/(g1^3*g2^3) + (2*g4^2*t^7.01)/(g1*g2) + (g2*g4^5*t^7.04)/g3 + (g4^8*t^7.04)/(g1*g3) + (g4^11*t^7.04)/(g1^2*g2*g3) + t^7.06/(g1*g2*g4^4) + (2*g4^5*t^7.09)/(g1^2*g2*g3) + (g4^8*t^7.09)/(g1^3*g2^2*g3) + (2*g4^2*t^7.1)/(g1*g3) + t^7.15/(g1*g3*g4^4) + (2*g4^5*t^7.18)/(g1^2*g3^2) + (g4^8*t^7.18)/(g1^3*g2*g3^2) + (g2*g4^2*t^7.19)/(g1*g3^2) + (g3^3*t^7.35)/g4^3 + (g1^3*t^7.36)/g4^3 + (g3^2*t^7.44)/g1 - (g1*g2^2*g3^2*t^7.44)/g4^6 + (g2*g3^2*t^7.44)/g4^3 + (g1*g4^3*t^7.44)/(g2*g3) + (g4^12*t^7.52)/(g1^2*g2^3*g3^2) + (g2*g3*t^7.53)/g1 + (g2^2*g3*t^7.53)/g4^3 + (g4^9*t^7.53)/(g1*g2^2*g3^2) + (g4^12*t^7.61)/(g1^2*g2^2*g3^3) + (g4^15*t^7.61)/(g1^3*g2^3*g3^3) + (g2^2*t^7.62)/g1 + (g2^3*t^7.62)/g4^3 + (g1*g3^2*g4*t^7.78)/g2 + (g1^2*g3^2*t^7.79)/g4^2 + (g1^2*g3^2*t^7.84)/g4^8 + (g1*g3^2*t^7.84)/(g2*g4^5) + 2*g1*g3*g4*t^7.87 + (3*g3*g4^4*t^7.87)/g2 + (g3*g4^7*t^7.87)/(g1*g2^2) + (2*g1^2*g2*g3*t^7.88)/g4^2 + (g1*g3^2*t^7.9)/(g2*g4^11) + (g1*g3*t^7.93)/g4^5 + (g3*t^7.93)/(g2*g4^2) + (3*g4^10*t^7.95)/(g1^2*g2^2) + (g4^13*t^7.95)/(g1^3*g2^3) + 5*g4^4*t^7.96 + (4*g4^7*t^7.96)/(g1*g2) + (g1^2*g2^2*t^7.97)/g4^2 + 2*g1*g2*g4*t^7.97 + (g1*g3*t^7.99)/g4^11 + (g4^4*t^8.01)/(g1^2*g2^2) + (g4^7*t^8.01)/(g1^3*g2^3) - (4*g4*t^8.02)/(g1*g2) + (g4^13*t^8.04)/(g1^3*g2^2*g3) + (2*g2*g4^4*t^8.05)/g3 + (3*g4^7*t^8.05)/(g1*g3) + (3*g4^10*t^8.05)/(g1^2*g2*g3) + (g1*g2^2*g4*t^8.06)/g3 + (g4^4*t^8.06)/(g1^4*g2^4) + (g4^7*t^8.1)/(g1^3*g2^2*g3) - (g2*t^8.11)/(g3*g4^2) - (5*g4*t^8.11)/(g1*g3) + (g4^10*t^8.14)/(g1^2*g3^2) + (g4^4*t^8.15)/(g1^4*g2^3*g3) + (g4^4*t^8.19)/(g1^2*g3^2) + (g4^7*t^8.19)/(g1^3*g2*g3^2) - (g2*g4*t^8.2)/(g1*g3^2) + (g4^4*t^8.24)/(g1^4*g2^2*g3^2) + (g4^7*t^8.28)/(g1^3*g3^3) + (g1*g2*g3^3*t^8.31)/g4 + (g1^2*g4^5*t^8.31)/g2 + (g4^4*t^8.34)/(g1^4*g2*g3^3) + g2*g3^2*g4^2*t^8.39 + (g3^2*g4^5*t^8.39)/g1 + (2*g4^11*t^8.39)/(g2^2*g3) + (2*g1*g2^2*g3^2*t^8.4)/g4 + (g1^2*g4^5*t^8.4)/g3 + (g1*g4^8*t^8.4)/(g2*g3) + (g4^4*t^8.43)/(g1^4*g3^4) - (g1*g2^2*g3^2*t^8.45)/g4^7 - (g1^2*t^8.46)/(g3*g4) + g2^2*g3*g4^2*t^8.48 + (g2*g3*g4^5*t^8.48)/g1 + (g4^11*t^8.48)/(g2*g3^2) + (g4^14*t^8.48)/(g1*g2^2*g3^2) + (g4^17*t^8.48)/(g1^2*g2^3*g3^2) + (g1*g2^3*g3*t^8.49)/g4 - (g1*g2^3*g3*t^8.54)/g4^7 - (g4^5*t^8.54)/(g2*g3^2) + g1^3*g3^3*t^8.65 + (g1^3*g3^3*t^8.71)/g4^6 + g1^3*g2*g3^2*t^8.74 + g1^2*g3^2*g4^3*t^8.74 + (g1*g3^2*g4^6*t^8.74)/g2 + (g1^3*g3^3*t^8.77)/g4^12 + (g1^2*g3^2*t^8.8)/g4^3 + (g1^3*g3^3*t^8.82)/g4^18 + (g3*g4^9*t^8.82)/g2 + (g3*g4^12*t^8.82)/(g1*g2^2) + g1^3*g2^2*g3*t^8.83 + g1^2*g2*g3*g4^3*t^8.83 + 2*g1*g3*g4^6*t^8.83 + (g1^2*g3^2*t^8.85)/g4^9 - 4*g1*g3*t^8.88 + (2*g3*g4^3*t^8.88)/g2 + (g3*g4^6*t^8.88)/(g1*g2^2) + (g4^18*t^8.9)/(g1^3*g2^3) + 2*g4^9*t^8.91 + (2*g4^12*t^8.91)/(g1*g2) + (g4^15*t^8.91)/(g1^2*g2^2) + g1^3*g2^3*t^8.92 + g1^2*g2^2*g4^3*t^8.92 + 2*g1*g2*g4^6*t^8.92 + (g3*t^8.93)/(g1*g2^2) + (g3*g4^3*t^8.93)/(g1^2*g2^3) - (4*g1*g3*t^8.94)/g4^6 + (g3*t^8.94)/(g2*g4^3) + (3*g4^9*t^8.96)/(g1^2*g2^2) + (g4^12*t^8.96)/(g1^3*g2^3) - 5*g1*g2*t^8.97 - g4^3*t^8.97 - (g4^6*t^8.97)/(g1*g2) + (g3*t^8.99)/(g1^2*g2^3*g4^3) - t^4.01/(g4*y) - t^5.02/(g4^2*y) - t^6.03/(g1*g2*y) - t^6.12/(g1*g3*y) - (g1*g3*t^6.89)/(g4*y) - (g1*g3*t^6.95)/(g4^7*y) - (g1*g2*t^6.98)/(g4*y) - (g4^2*t^6.98)/y - (g4^5*t^6.98)/(g1*g2*y) - t^7.03/(g1*g2*g4*y) + (g4^2*t^7.12)/(g1^2*g2*g3*y) - t^7.13/(g1*g3*g4*y) + (g3*g4*t^7.9)/(g2*y) - (g1*g3*t^7.96)/(g4^8*y) + (g3*t^7.96)/(g2*g4^5*y) + (g4^7*t^7.98)/(g1^2*g2^2*y) + (g4*t^7.99)/y - (g4*t^8.04)/(g1^2*g2^2*y) + t^8.05/(g4^5*y) + (g4^7*t^8.07)/(g1^2*g2*g3*y) + (g2*g4*t^8.08)/(g3*y) + (g4^4*t^8.08)/(g1*g3*y) - (g4*t^8.13)/(g1^2*g2*g3*y) - (g4*t^8.22)/(g1^2*g3^2*y) + (g1^2*g3^2*t^8.83)/(g4^6*y) + (g3*g4^6*t^8.85)/(g2*y) + (g1^2*g2*g3*t^8.86)/y + (g1*g3*g4^3*t^8.86)/y + (g1*g3*t^8.91)/(g4^3*y) + (g1^2*g2*g3*t^8.92)/(g4^6*y) + (g4^6*t^8.94)/y + (g4^9*t^8.94)/(g1*g2*y) + (g1*g2*g4^3*t^8.95)/y - (g3*t^8.97)/(g2*g4^6*y) - (t^4.01*y)/g4 - (t^5.02*y)/g4^2 - (t^6.03*y)/(g1*g2) - (t^6.12*y)/(g1*g3) - (g1*g3*t^6.89*y)/g4 - (g1*g3*t^6.95*y)/g4^7 - (g1*g2*t^6.98*y)/g4 - g4^2*t^6.98*y - (g4^5*t^6.98*y)/(g1*g2) - (t^7.03*y)/(g1*g2*g4) + (g4^2*t^7.12*y)/(g1^2*g2*g3) - (t^7.13*y)/(g1*g3*g4) + (g3*g4*t^7.9*y)/g2 - (g1*g3*t^7.96*y)/g4^8 + (g3*t^7.96*y)/(g2*g4^5) + (g4^7*t^7.98*y)/(g1^2*g2^2) + g4*t^7.99*y - (g4*t^8.04*y)/(g1^2*g2^2) + (t^8.05*y)/g4^5 + (g4^7*t^8.07*y)/(g1^2*g2*g3) + (g2*g4*t^8.08*y)/g3 + (g4^4*t^8.08*y)/(g1*g3) - (g4*t^8.13*y)/(g1^2*g2*g3) - (g4*t^8.22*y)/(g1^2*g3^2) + (g1^2*g3^2*t^8.83*y)/g4^6 + (g3*g4^6*t^8.85*y)/g2 + g1^2*g2*g3*t^8.86*y + g1*g3*g4^3*t^8.86*y + (g1*g3*t^8.91*y)/g4^3 + (g1^2*g2*g3*t^8.92*y)/g4^6 + g4^6*t^8.94*y + (g4^9*t^8.94*y)/(g1*g2) + g1*g2*g4^3*t^8.95*y - (g3*t^8.97*y)/(g2*g4^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57360 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4756 | 1.686 | 0.8752 | [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] | t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |