Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58408 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4166 | 1.6154 | 0.8769 | [X:[1.3639], M:[0.7951, 0.7951, 1.0458], q:[0.5097, 0.5097], qb:[0.6952, 0.3771], phi:[0.3181]] | [X:[[0, 0, 2]], M:[[1, 1, -6], [-1, -1, 1], [0, 0, 3]], q:[[-1, -2, 7], [1, 0, 0]], qb:[[0, 1, -1], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -3 | 2*t^2.39 + 2*t^2.66 + t^3.14 + 2*t^3.61 + t^4.09 + 4*t^4.57 + 3*t^4.77 + 3*t^5.05 + t^5.3 + 3*t^5.32 + 4*t^5.52 + 2*t^5.54 + 2*t^5.8 - 3*t^6. + 3*t^6.26 + 5*t^6.28 + 2*t^6.48 + 2*t^6.5 + 4*t^6.75 + t^6.95 - t^6.97 + 4*t^7.16 + 2*t^7.21 + 12*t^7.23 + 4*t^7.43 + 4*t^7.45 - 2*t^7.69 + 8*t^7.71 + 2*t^7.91 - t^7.93 + 2*t^7.96 + 4*t^7.98 + t^8.17 + 15*t^8.18 + 4*t^8.2 - 6*t^8.39 + t^8.44 + 3*t^8.46 - 4*t^8.66 + 2*t^8.68 + 3*t^8.86 - 4*t^8.88 + 8*t^8.92 + 8*t^8.94 + t^8.86/y^2 - t^3.95/y - t^4.91/y - (2*t^6.34)/y - (2*t^6.61)/y - t^7.09/y - (2*t^7.29)/y - (2*t^7.57)/y + t^7.77/y + (3*t^8.05)/y + t^8.32/y - (3*t^8.72)/y + (2*t^8.8)/y - t^3.95*y - t^4.91*y - 2*t^6.34*y - 2*t^6.61*y - t^7.09*y - 2*t^7.29*y - 2*t^7.57*y + t^7.77*y + 3*t^8.05*y + t^8.32*y - 3*t^8.72*y + 2*t^8.8*y + t^8.86*y^2 | (g1*g2*t^2.39)/g3^6 + (g3*t^2.39)/(g1*g2) + g1*g2*t^2.66 + (g3^7*t^2.66)/(g1*g2) + g3^3*t^3.14 + (g1*g2*t^3.61)/g3 + (g3^6*t^3.61)/(g1*g2) + g3^2*t^4.09 + (2*g1*g2*t^4.57)/g3^2 + (2*g3^5*t^4.57)/(g1*g2) + (g1^2*g2^2*t^4.77)/g3^12 + t^4.77/g3^5 + (g3^2*t^4.77)/(g1^2*g2^2) + (g1^2*g2^2*t^5.05)/g3^6 + g3*t^5.05 + (g3^8*t^5.05)/(g1^2*g2^2) + (g2^3*t^5.3)/g3^2 + g1^2*g2^2*t^5.32 + g3^7*t^5.32 + (g3^14*t^5.32)/(g1^2*g2^2) + (2*g1*g2*t^5.52)/g3^3 + (2*g3^4*t^5.52)/(g1*g2) + (g1*g3^6*t^5.54)/g2^2 + (g3^13*t^5.54)/(g1*g2^4) + g1*g2*g3^3*t^5.8 + (g3^10*t^5.8)/(g1*g2) - 3*t^6. + (3*g2^3*t^6.26)/g3^3 + (g1^2*g2^2*t^6.28)/g3 + 3*g3^6*t^6.28 + (g3^13*t^6.28)/(g1^2*g2^2) + (g1*g2*t^6.48)/g3^4 + (g3^3*t^6.48)/(g1*g2) + (g1*g3^5*t^6.5)/g2^2 + (g3^12*t^6.5)/(g1*g2^4) + 2*g1*g2*g3^2*t^6.75 + (2*g3^9*t^6.75)/(g1*g2) + (g1^2*g2^2*t^6.95)/g3^8 - t^6.95/g3 + (g3^6*t^6.95)/(g1^2*g2^2) - (g3^8*t^6.97)/g2^3 + (g1^3*g2^3*t^7.16)/g3^18 + (g1*g2*t^7.16)/g3^11 + t^7.16/(g1*g2*g3^4) + (g3^3*t^7.16)/(g1^3*g2^3) + (2*g2^3*t^7.21)/g3^4 + (3*g1^2*g2^2*t^7.23)/g3^2 + 6*g3^5*t^7.23 + (3*g3^12*t^7.23)/(g1^2*g2^2) + (g1^3*g2^3*t^7.43)/g3^12 + (g1*g2*t^7.43)/g3^5 + (g3^2*t^7.43)/(g1*g2) + (g3^9*t^7.43)/(g1^3*g2^3) + (g1^3*t^7.45)/g3^3 + (g1*g3^4*t^7.45)/g2^2 + (g3^11*t^7.45)/(g1*g2^4) + (g3^18*t^7.45)/(g1^3*g2^6) - (g1*g2^4*t^7.69)/g3^8 - (g2^2*t^7.69)/(g1*g3) + (g1^3*g2^3*t^7.71)/g3^6 + 3*g1*g2*g3*t^7.71 + (3*g3^8*t^7.71)/(g1*g2) + (g3^15*t^7.71)/(g1^3*g2^3) + (g1^2*g2^2*t^7.91)/g3^9 + (g3^5*t^7.91)/(g1^2*g2^2) - (g3^7*t^7.93)/g2^3 + (g1*g2^4*t^7.96)/g3^2 + (g2^2*g3^5*t^7.96)/g1 + g1^3*g2^3*t^7.98 + g1*g2*g3^7*t^7.98 + (g3^14*t^7.98)/(g1*g2) + (g3^21*t^7.98)/(g1^3*g2^3) + (g2^3*t^8.17)/g3^5 + (4*g1^2*g2^2*t^8.18)/g3^3 + 7*g3^4*t^8.18 + (4*g3^11*t^8.18)/(g1^2*g2^2) + (g1^2*g3^6*t^8.2)/g2 + (2*g3^13*t^8.2)/g2^3 + (g3^20*t^8.2)/(g1^2*g2^5) - (3*g1*g2*t^8.39)/g3^6 - (3*g3*t^8.39)/(g1*g2) + g2^3*g3*t^8.44 + g1^2*g2^2*g3^3*t^8.46 + g3^10*t^8.46 + (g3^17*t^8.46)/(g1^2*g2^2) - 2*g1*g2*t^8.66 - (2*g3^7*t^8.66)/(g1*g2) + (g1*g3^9*t^8.68)/g2^2 + (g3^16*t^8.68)/(g1*g2^4) + (g1^2*g2^2*t^8.86)/g3^10 + t^8.86/g3^3 + (g3^4*t^8.86)/(g1^2*g2^2) - (g1^2*t^8.88)/(g2*g3) - (2*g3^6*t^8.88)/g2^3 - (g3^13*t^8.88)/(g1^2*g2^5) + (4*g1*g2^4*t^8.92)/g3^3 + (4*g2^2*g3^4*t^8.92)/g1 + (g1^3*g2^3*t^8.94)/g3 + 3*g1*g2*g3^6*t^8.94 + (3*g3^13*t^8.94)/(g1*g2) + (g3^20*t^8.94)/(g1^3*g2^3) + t^8.86/(g3^3*y^2) - t^3.95/(g3*y) - t^4.91/(g3^2*y) - t^6.34/(g1*g2*y) - (g1*g2*t^6.34)/(g3^7*y) - (g1*g2*t^6.61)/(g3*y) - (g3^6*t^6.61)/(g1*g2*y) - (g3^2*t^7.09)/y - (g1*g2*t^7.29)/(g3^8*y) - t^7.29/(g1*g2*g3*y) - (g1*g2*t^7.57)/(g3^2*y) - (g3^5*t^7.57)/(g1*g2*y) + t^7.77/(g3^5*y) + (g1^2*g2^2*t^8.05)/(g3^6*y) + (g3*t^8.05)/y + (g3^8*t^8.05)/(g1^2*g2^2*y) + (g3^7*t^8.32)/y - (g1^2*g2^2*t^8.72)/(g3^13*y) - t^8.72/(g3^6*y) - (g3*t^8.72)/(g1^2*g2^2*y) + (g1*g2*g3^3*t^8.8)/y + (g3^10*t^8.8)/(g1*g2*y) - (t^3.95*y)/g3 - (t^4.91*y)/g3^2 - (t^6.34*y)/(g1*g2) - (g1*g2*t^6.34*y)/g3^7 - (g1*g2*t^6.61*y)/g3 - (g3^6*t^6.61*y)/(g1*g2) - g3^2*t^7.09*y - (g1*g2*t^7.29*y)/g3^8 - (t^7.29*y)/(g1*g2*g3) - (g1*g2*t^7.57*y)/g3^2 - (g3^5*t^7.57*y)/(g1*g2) + (t^7.77*y)/g3^5 + (g1^2*g2^2*t^8.05*y)/g3^6 + g3*t^8.05*y + (g3^8*t^8.05*y)/(g1^2*g2^2) + g3^7*t^8.32*y - (g1^2*g2^2*t^8.72*y)/g3^13 - (t^8.72*y)/g3^6 - (g3*t^8.72*y)/(g1^2*g2^2) + g1*g2*g3^3*t^8.8*y + (g3^10*t^8.8*y)/(g1*g2) + (t^8.86*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61010 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ | 1.4084 | 1.5975 | 0.8816 | [X:[1.3818], M:[0.7889, 0.7567, 1.0727, 1.0658], q:[0.5075, 0.5397], qb:[0.7036, 0.3945], phi:[0.3091]] | t^2.27 + t^2.37 + t^2.71 + t^3.2 + t^3.22 + t^3.63 + t^3.73 + t^4.15 + t^4.54 + 2*t^4.56 + t^4.64 + 2*t^4.66 + t^4.73 + t^4.98 + 2*t^5.41 + t^5.47 + 2*t^5.49 + t^5.56 + 2*t^5.58 + t^5.59 + t^5.69 + t^5.9 + t^5.92 - 3*t^6. - t^3.93/y - t^4.85/y - t^3.93*y - t^4.85*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57360 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4756 | 1.686 | 0.8752 | [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] | t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |